Tek hücreli, basit organizmalar olan mikroalgler, sahip oldukları karakteristik özellikleri sayesinde gıda, çevre teknolojileri, enerji, kozmetik, ilaç, akuakültür gibi çeşitli endüstrilerde yaygın olarak kullanılmaktadır. Mikroalglere ve uygulama alanlarına olan ilgi her geçen gün artış gösterse de endüstriyel çaptaki üretimlerde çeşitli sorunlarla karşı karşıya kalınabilmektedir. Organizmaların büyüme kinetiği ve hedef ürün eldesi proseslerdeki temel aşamalardan olup, bu aşamalarda meydana gelebilecek herhangi bir problem, sistemin tamamını olumsuz etkilemektedir. Bu problemleri önlemek için izlenebilecek yollardan biri, hücrelerin büyümesini ve ürün miktarını etkileyen parametrelerin kullanımıyla kinetik modeller geliştirilmesidir. Matematiksel modeller ile üretim sırasında elde edilen sonuçların sayısal olarak ifadesi sağlanmakta ve böylece ölçek büyütmede ve benzer proseslerde kullanılabilecek güvenilir veriler elde edilmektedir. Bu makalede, mikroalg hücrelerinin büyümesi ve ürün üretimine dair geliştirilen kinetik modeller substrat, ışık ve sıcaklık parametreleri açısından değerlendirilerek literatürde kullanılan modeller özetlenmiştir.
Bu makale, ES1408 COST aksiyonu kapsamında olup Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBİTAK) 115M014 proje kapsamında finansal olarak desteklenmiştir.
Kaynakça
Bechet Q, Shilton A, Guieysse B. 2013. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv. 31(8):1648-1663. doi: 10.1016/j.biotechadv.2013.08.014
Bernard O, Mairet F, Chachuat B. 2015. Modelling of microalgae culture systems with applications to control and optimization. Adv Biochem Eng Biotechnol. 153:59-87.
doi: 10.1007/10_2014_287
Bougaran G, Bernard O, Sciandra A. 2010. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. J Theor Biol. 265(3):443-454.
doi: 10.1016/j.jtbi.2010.04.018
Carcano S. 2010. A model for cell growth in batch bioreactors [Master's Thesis]. Politecnico Di Milano. 128 p.
Chalker BE. 1980. Modeling light saturation curves for photosynthesis: An exponential function. J Theor Biol. 84(2):205-215. doi: 10.1016/S0022-5193(80)80004-X
Droop M. 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. J Mar Biol Assoc U.K. 48(3):689-733.
doi: 10.1017/S0025315400019238
Goldman JC, Carpenter EJ. 1974. A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr. 19(5):756-766. doi: 10.4319/lo.1974.19.5.0756
Grima EM, Camacho FG, Perez JAS, Sevilla JMF, Fernandez FGA, Gomez AC. 1994. A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biot. 61(2):167-173. doi: 10.1002/jctb.280610212
Haario H, Kalachev L, Laine M. 2009. Reduced models of algae growth. Bull Math Biol. 71(7):1626-1648. doi: 10.1007/s11538-009-9417-7
Huesemann M, Crowe B, Waller P, Chavis A, Hobbs S, Edmundson S, Wigmosta M. 2016. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Res. 13:195-206. doi: 10.1016/j.algal.2015.11.008
Jalalizadeh M. 2012. Development of an integrated process model for algae growth in a photobioreactor [Master's Thesis]. University of South Florida. 76 p.,
James SC, Boriah V. 2010. Modeling algae growth in an open-channel raceway. J Comput Biol. 17(7):895-906. doi: 10.1089/cmb.2009.0078
Klausmeier CA, Litchman E, Levin SA. 2004. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol Oceanogr. 49(4part2):1463-1470.
doi: 10.4319/lo.2004.49.4_part_2.1463
Koutinas M, Kiparissides A, Pistikopoulos EN, Mantalaris A. 2012. Bioprocess systems engineering: Transferring traditional process engineering principles to industrial biotechnology. Comput Struct Biotech. 3(4):e201210022. doi: 10.5936/csbj.201210022
Lee E, Jalalizadeh M, Zhang Q. 2015. Growth kinetic models for microalgae cultivation: A review. Algal Res. 12:497-512. doi: 10.1016/j.algal.2015.10.004
Lemesle V, Mailleret L. 2008. A mechanistic investigation of the algae growth “Droop” model. Acta Biotheor. 56:87-102. doi: 10.1007/s10441-008-9031-3
Mirzaie MAM, Kalbasi M, Ghobadian B, Mousavi SM. 2016. Kinetic modeling of mixotrophic growth of Chlorella vulgaris as a new feedstock for biolubricant. J Appl Phycol. 28:2707-2717. doi: 10.1007/s10811-016-0841-4
Packer A. 2014. Cell quota based population models and their applications [PhD Thesis]. Arizona State University. 116 p.
Pegallapati AK, Nirmalakhandan N. 2012. Modeling algal growth in bubble columns under sparging with CO2-enriched air. Bioresour Technol. 124:137-145.
doi: 10.1016/j.biortech.2012.08.026
Perez EB, Pina IC, Rodriguez LP. 2008. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J. 40(3):520-525.
doi: 10.1016/j.bej.2008.02.007
Price K, Farag IH. 2013. Resources conservation in microalgae biodiesel production. Int J Eng Tech Res. 1(8):49-56.
Ronda SR, Bokka CS, Ketineni C, Rijal B, Allu PR. 2012. Aeration effect on Spirulina platensis growth and G-linolenic acid production. Braz J Microbiol.
43(1):12-20. doi: 10.1590/S1517-83822012000100002
Sachdeva N, Kumar GD, Gupta RP, Mathur AS, Manikandan B, Basu B, Tuli DK. 2016. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions. Bioresour Technol. 218:934-943. doi: 10.1016/j.biortech.2016.07.063
Spijkerman E, de Castro F, Gaedke U. 2011. Independent colimitation for carbon dioxide and inorganic phosphorus. PlOs ONE. 6(12):e28219.doi:10.1371/journal.pone.0028219
Steele JH. 1962. Environmental control of photosynthesis in the sea. Limnol Ocenaogr. 7(2):137-150. doi: 10.4319/lo.1962.7.2.0137
Surendhiran D, Vijay M, Sivaprakash B, Sirajunnisa A. 2015. Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production. 3 Biotech. 5(5):663-669.
doi: 10.1007/s13205-014-0264-3
Vinayagam R, Vytla RM, Chandrasekaran M. 2014. Development of a simple kinetic model and parameter estimation for biomass and nattokinase production by Bacillus subtilis 1a752. Austin J Biotech Bioeng. 2(1):1-5.
Yang JS, Rasa E, Tantayotai P, Scow KM, Yuan HL, Hristova KR. 2011. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol. 102(3):3077-3082. doi: 10.1016/j.biortech.2010.10.049
Yuan S, Zhou X, Chen R, Song B. 2014. Study on modelling microalgae growth in nitrogen-limited culture system for estimating biomass productivity. Renew Sustain Energy Rev. 34:525-535. doi: 10.1016/j.rser.2014.03.032
Zhang XW, Gong X-D, Chen F. 1999. Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis. J Ind Microbiol Biot. 23(1):691-696. doi: 10.1038/sj.jim.2900685
Being simple organisms, unicellular microalgae are commonly used in several industrial applications such as food, environmental technologies, energy, cosmetic, pharmaceutical and aquaculture due to their specific features. Although the interest in microalgae and their application areas are increasing day by day, various problems may be encountered for their industrial scale production. Varieties of problems may be faced in their industrial scale production despite the interest on microalgae and their application areas are increasing day by day, Growth kinetics of organisms and target product formations are the basic stages in the processes when any problem that may occur during these stages affects the entire system negatively. One of the ways to prevent these problems is to develop kinetic models by means of using parameters that affect the growth of cells and the amount of product. Numerical expression of the results gained during the tproduction is provided with mathematical models, and thus, reliable data that can be used in scaling up and similar processes are obtained. In this article, the models used in the literature are summarized by evaluating the kinetic models developed for the growth of microalgae cells and product production in terms of substrate, light and temperature parameters.
Bechet Q, Shilton A, Guieysse B. 2013. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv. 31(8):1648-1663. doi: 10.1016/j.biotechadv.2013.08.014
Bernard O, Mairet F, Chachuat B. 2015. Modelling of microalgae culture systems with applications to control and optimization. Adv Biochem Eng Biotechnol. 153:59-87.
doi: 10.1007/10_2014_287
Bougaran G, Bernard O, Sciandra A. 2010. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. J Theor Biol. 265(3):443-454.
doi: 10.1016/j.jtbi.2010.04.018
Carcano S. 2010. A model for cell growth in batch bioreactors [Master's Thesis]. Politecnico Di Milano. 128 p.
Chalker BE. 1980. Modeling light saturation curves for photosynthesis: An exponential function. J Theor Biol. 84(2):205-215. doi: 10.1016/S0022-5193(80)80004-X
Droop M. 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. J Mar Biol Assoc U.K. 48(3):689-733.
doi: 10.1017/S0025315400019238
Goldman JC, Carpenter EJ. 1974. A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr. 19(5):756-766. doi: 10.4319/lo.1974.19.5.0756
Grima EM, Camacho FG, Perez JAS, Sevilla JMF, Fernandez FGA, Gomez AC. 1994. A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biot. 61(2):167-173. doi: 10.1002/jctb.280610212
Haario H, Kalachev L, Laine M. 2009. Reduced models of algae growth. Bull Math Biol. 71(7):1626-1648. doi: 10.1007/s11538-009-9417-7
Huesemann M, Crowe B, Waller P, Chavis A, Hobbs S, Edmundson S, Wigmosta M. 2016. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Res. 13:195-206. doi: 10.1016/j.algal.2015.11.008
Jalalizadeh M. 2012. Development of an integrated process model for algae growth in a photobioreactor [Master's Thesis]. University of South Florida. 76 p.,
James SC, Boriah V. 2010. Modeling algae growth in an open-channel raceway. J Comput Biol. 17(7):895-906. doi: 10.1089/cmb.2009.0078
Klausmeier CA, Litchman E, Levin SA. 2004. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol Oceanogr. 49(4part2):1463-1470.
doi: 10.4319/lo.2004.49.4_part_2.1463
Koutinas M, Kiparissides A, Pistikopoulos EN, Mantalaris A. 2012. Bioprocess systems engineering: Transferring traditional process engineering principles to industrial biotechnology. Comput Struct Biotech. 3(4):e201210022. doi: 10.5936/csbj.201210022
Lee E, Jalalizadeh M, Zhang Q. 2015. Growth kinetic models for microalgae cultivation: A review. Algal Res. 12:497-512. doi: 10.1016/j.algal.2015.10.004
Lemesle V, Mailleret L. 2008. A mechanistic investigation of the algae growth “Droop” model. Acta Biotheor. 56:87-102. doi: 10.1007/s10441-008-9031-3
Mirzaie MAM, Kalbasi M, Ghobadian B, Mousavi SM. 2016. Kinetic modeling of mixotrophic growth of Chlorella vulgaris as a new feedstock for biolubricant. J Appl Phycol. 28:2707-2717. doi: 10.1007/s10811-016-0841-4
Packer A. 2014. Cell quota based population models and their applications [PhD Thesis]. Arizona State University. 116 p.
Pegallapati AK, Nirmalakhandan N. 2012. Modeling algal growth in bubble columns under sparging with CO2-enriched air. Bioresour Technol. 124:137-145.
doi: 10.1016/j.biortech.2012.08.026
Perez EB, Pina IC, Rodriguez LP. 2008. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J. 40(3):520-525.
doi: 10.1016/j.bej.2008.02.007
Price K, Farag IH. 2013. Resources conservation in microalgae biodiesel production. Int J Eng Tech Res. 1(8):49-56.
Ronda SR, Bokka CS, Ketineni C, Rijal B, Allu PR. 2012. Aeration effect on Spirulina platensis growth and G-linolenic acid production. Braz J Microbiol.
43(1):12-20. doi: 10.1590/S1517-83822012000100002
Sachdeva N, Kumar GD, Gupta RP, Mathur AS, Manikandan B, Basu B, Tuli DK. 2016. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions. Bioresour Technol. 218:934-943. doi: 10.1016/j.biortech.2016.07.063
Spijkerman E, de Castro F, Gaedke U. 2011. Independent colimitation for carbon dioxide and inorganic phosphorus. PlOs ONE. 6(12):e28219.doi:10.1371/journal.pone.0028219
Steele JH. 1962. Environmental control of photosynthesis in the sea. Limnol Ocenaogr. 7(2):137-150. doi: 10.4319/lo.1962.7.2.0137
Surendhiran D, Vijay M, Sivaprakash B, Sirajunnisa A. 2015. Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production. 3 Biotech. 5(5):663-669.
doi: 10.1007/s13205-014-0264-3
Vinayagam R, Vytla RM, Chandrasekaran M. 2014. Development of a simple kinetic model and parameter estimation for biomass and nattokinase production by Bacillus subtilis 1a752. Austin J Biotech Bioeng. 2(1):1-5.
Yang JS, Rasa E, Tantayotai P, Scow KM, Yuan HL, Hristova KR. 2011. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol. 102(3):3077-3082. doi: 10.1016/j.biortech.2010.10.049
Yuan S, Zhou X, Chen R, Song B. 2014. Study on modelling microalgae growth in nitrogen-limited culture system for estimating biomass productivity. Renew Sustain Energy Rev. 34:525-535. doi: 10.1016/j.rser.2014.03.032
Zhang XW, Gong X-D, Chen F. 1999. Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis. J Ind Microbiol Biot. 23(1):691-696. doi: 10.1038/sj.jim.2900685