Research Article
BibTex RIS Cite

Kültür Balıklarından Kaynaklanan Parazitlerin Nasıl Yabani Balık Azalmalarını Etkileyebileceğini Epidemiyolojik Modelleme Kullanarak Anlaşılması

Year 2024, Volume: 10 Issue: 1, 22 - 38, 25.04.2024
https://doi.org/10.17216/limnofish.1329949

Abstract

Çeşitli uygulama alanlarının yanı sıra, bu çalışmada epidemiyolojik modelleme kültür balıklarından kaynaklanan parazitlerinin nasıl yabani balık azalmalarına yol açabileceğinin anlaşılması için kullanılmıştır. Kültür ve yabani balıklar arasındaki mikro-parazitlerin ve makro-parazitlerin yayılımına yönelik iki ayrı stratejik model geliştirilmiştir: mikroparaziter enfeksiyonlar için SIR (Sağlam-Enfektif-Geçiren) modeli ve makro-paraziter enfestasyonlar için bölümlü ve yoğunluğa bağlı model. Sonuçlar, başta yabani balık popülasyonlarında çoğalan parazitlerin kültür balıklarını enfekte ettikten sonra belirli yetiştiricilik şartları altında epizootiklere neden olabileceklerini işaret ettiler. Akabinde, bu parazitler kültür balıklarından yabani balıklara yayılabilirler ve yabani balık popülasyonlarının dinamikleri üzerinde olumsuz etkiye sahip olabilirler. İki modeldeki temel model değişkenlerinin duyarlılık analizleri, abiyotik etmenler tarafından etkilenen ve edilgen yönetime izin veren değişkenler, örneğin mikroparaziter modelde patojene özgü yayılım hızı (β) ve enfektif kültür balıkları ile sağlam yabani balıklar arasındaki patojene özgü yayılım hızı (δ) ve makroparaziter modelde erişkin parazitlerin enfektif evre üretim hızı (λ) ile parazitin enfektif evreleri ile konakçısı arasındaki yayılım hızı (β), kimyasal kontrol ve üretim alanının boş bırakılmasını içeren model parametreleri ile kıyasla daha duyarlı olduklarını göstermiştir. Bu, parazitlerden kaynaklanan epizootiklerin yok edilmesinde ve yabani balık soyunun korunmasını amaçlayan su ürünlerindeki müdahale yöntemlerinden çok koruyucu hekimliğin önemini vurgulamaktadır.

References

  • Amundrud TL, Murray AG. 2009. Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch. J Fish Dis. 32(1):27-44. doi: 10.1111/j.1365-2761.2008.00980.x
  • Anderson RM, May RM. 1979a. Population biology of infectious diseases: Part I. Nature. 280:361-367. doi: 10.1038/280361a0
  • Anderson RM, May RM. 1979b. Population biology of infectious diseases: Part II. Nature. 280:455-461. doi: 10.1038/280455a0
  • Anonymous. 2015. What is Sensitivity Analysis? [cited 2015 June 22]. Available: http://uk.mathworks.com/help/sldo/ug/what-is-sensitivity-analysis.html [Accessed: 11 July 2015].
  • Beaglehole R, Bonita R, Kjellström T. 1993. Basic epidemiology. Geneva, Switzerland: World Health Organization 174 p.
  • Bode HW. 1945. Network Analysis and Feedback Amplifier Design. New York: D. Van Nostrand Company, Inc 551 p.
  • Costello MJ. 2006. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22(10): 475-483. doi: 10.1016/j.pt.2006.08.006
  • Costello MJ. 2009. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proceedings of the Royal Society B. 276(1672): 3385-3394. doi: 10.1098/rspb.2009.0771
  • FAO. 2022. The State of World Fisheries and Aquaculture 2022. Food and Agricultural Organisation of United Nations. Available: https://www.fao.org/3/cc0461en/online/cc0461en.html [Accessed 07 July 2023].
  • Georgiadis MP, Gardner IA, Hedrick RP. 2001. The role of epidemiology in the prevention, diagnosis, and control of infectious diseases of fish. Prev Vet Med. 48(4):287-302. doi: 10.1016/S0167-5877(00)00202-6
  • Green MD. 2010. A strategic model for epidemic control in aquaculture. Prev Vet Med. 94(1-2): 119-127. doi: 10.1016/j.prevetmed.2009.12.004
  • Green MD, Penman DJ, Migaud H, Bron JE, Taggart JB, McAndrew BJ. 2012. The impact of escaped farmed Atlantic salmon (Salmo salar L.) on catch statistics in Scotland. Plos ONE. 7(9):e43560. doi: 10.1371/journal.pone.0043560
  • Guo FC, Woo PTK. 2009. Selected parasitosis in cultured and wild fish. Vet Parasitol. 163(3):207-216. doi: 10.1016/j.vetpar.2009.06.016
  • Heuch PA, Bjørn PA, Finstad B, Holst JC, Asplin L, Nilsen F. 2005. A review of the Norwegian `National Action Plan Against Salmon Lice on Salmonids`: The effect on wild salmonids. Aquaculture. 246(1-4):79-92. doi: 10.1016/j.aquaculture.2004.12.027
  • Krkošek M, Lewis MA, Volpe JP. 2005. Transmission dynamics of parasitic sea lice from farm to wild salmon. Proceedings of the Royal Society B. 272(1564):689-696. doi: 10.1098/rspb.2004.3027
  • Krkošek M. 2010. Host density thresholds and disease control for fisheries and aquaculture. Aquacult Env Interac. 1(1): 21-32. doi: 10.3354/aei0004
  • McCallum H, Barlow N, Hone J. 2001. How should pathogen transmission be modelled? Trends Ecol Evol. 16(6):295-300. doi: 10.1016/S0169-5347(01)02144-9
  • McKenzie E, Gettinby G, McCart K, Revie CW. 2004. Time-series models of sea Lice Caligus elongatus (Nordmann) abundance on Atlantic salmon Salmo salar L. in Loch Sunart, Scotland. Aquac Res. 35(8):764-772. doi: 10.1111/j.1365-2109.2004.01099.x
  • Miossec L, Garseth AH, Midtlyng PJ, Raynard R, Peeler E, de Bals I. 2005. DIPNET - A European project to evaluate disease interactions and pathogen exchange between farmed and wild aquatic animal population fish, shellfish and crustaceans. Poster presented at 8th International Conference on Shellfish Restoration; Brest, France. Available: https://archimer.ifremer.fr/doc/00000/3325/ [Accessed: 01 July 2015].
  • Morris D. 2011. Development of a risk evaluation system for the establishment of Gyrodactylus salaris in Scottish river systems. Scotland: Scottish Aquaculture Research Forum (SARF). Project No.: SARF070. Morrison RN, Crosbie PBB, Nowak BF. 2004. The induction of laboratory-based amoebic gill disease revisited. J Fish Dis. 27(8):445-449. doi: 10.1111/j.1365-2761.2004.00561.x
  • Munday BL, Zilberg D, Findlay V. 2001. Gill disease of marine fish caused by infection with Neoparamoeba pemaquidensis. J Fish Dis. 24(9):497-507. doi: 10.1046/j.1365-2761.2001.00329.x
  • Murray AG, Peeler EJ. 2005. A framework for understanding the potential for emerging diseases in aquaculture. Prev Vet Med. 67(2-3):223-235. doi: 10.1016/j.prevetmed.2004.10.012
  • Murray AG. 2009. Using simple models to review the application and implications of different approaches used to simulate transmission of pathogens among aquatic animals. Prev Vet Med. 88(3):167-177. doi: 10.1016/j.prevetmed.2008.09.006
  • Murray AG. 2013. Epidemiology of the spread of viral diseases under aquaculture. Curr Opin Virol. 3(1):74-78. doi: 10.1016/j.coviro.2012.11.002
  • Murray AG, Hall M, Munro LA, Wallace IS. 2011. Modelling management strategies for a disease including undetected sub-clinical infection: Bacterial kidney disease in Scottish salmon and trout farms. Epidemics. 3(3-4):171-182. doi: 10.1016/j.epidem.2011.10.002
  • Peeler EJ, Taylor NGH. 2011. The application of epidemiology in aquatic animal health -opportunities and challenges. Vet Res. 42(94):1-15. doi: 10.1186/1297-9716-42-94
  • Penston MJ, Millar CP, Zuur A, Davies IM. 2008. Spatial and temporal Distribution of L. salmonis (Krøyer) larvae in a sea loch containing Atlantic salmon, Salmo salar L., farms on the north-west coast of Scotland. J Fish Dis. 31(5):361-371. doi: 10.1111/j.1365-2761.2008.00915.x
  • Reno PW. 1998. Factors involved in the dissemination of disease in fish populations. J Aquat Anim Health. 10(2):160-171. doi:10.1577/1548-8667(1998)010%3C0160:FIITDO%3E2.0.CO;2
  • Revie CW, Gettinby G, Treasurer JW, Rae GH. 2002. The epidemiology of the sea lice, Caligus elongatus Nordmann, in marine aquaculture of Atlantic salmon, Salmo salar L., in Scotland. J Fish Dis. 25(7):391-399. doi: 10.1046/j.1365-2761.2002.00388.x
  • Revie CW, Robbins C, Gettinby G, Kelly L, Treasurer JW. 2005. A mathematical model of the growth of sea lice, Lepeophtheirus salmonis, populations on farmed Atlantic salmon, Salmo salar L., in Scotland and its use in the assessment of the treatment strategies. J Fish Dis. 28(10):603-613. doi: 10.1111/j.1365-2761.2005.00665.x
  • Roberts M, Heesterbeek H. 1993. Bluff your way in epidemic models. Trends Microbiol. 1(9):343-348. doi: 10.1016/0966-842X(93)90075-3
  • Rodgers CJ, Peeler EJ. 2012. The role of risk analysis in the development of biosecurity programmes for the maintenance of specific pathogen-free populations. In: Austin B, editor. Infectious disease in aquaculture.
  • Sawston, the UK: Woodhead Publishing Limited: p. 318-329.
  • Salama NKG, Murray AG. 2013. A comparison of modelling approaches to assess the transmission of pathogens between Scottish fish farms: The role of hydrodynamics and site biomass. Prev Vet Med. 108(4):285-293. doi: 10.1016/j.prevetmed.2012.11.005
  • Soares S, Murray GA, Crumlish M, Turnbull JF, Green DM. 2013. Factors affecting variation in mortality of marine Atlantic salmon Salmo salar in Scotland. Dis Aquat Organ. 103(2):101-109. doi: 10.3354/dao02562
  • Todd CD. 2007. The copepod parasite (Lepeophtheirus salmonis (Krøyer), Caligus elongates Nordmann) interactions between wild and farmed Atlantic salmon (Salmo salar L.) and wild sea trout (Salmo trutta L.): a mini review. J Plankton Res. 29(supplement 1):i61-i71. doi: 10.1093/plankt/fbl067
  • Tokşen E, Çilli E. 2010. Occurrence of parasites in cultured common dentex (Dentex dentex L.) from İzmir, Turkey. Bull Eur Ass Fish Pathol. 30(3):92-98.
  • Turnbull JF, Berrill IK, Green DM, Kaye R, Morris D, Murray AG, del-Pozo J, Shinn A. 2011. Applied epidemiology with examples from UK aquaculture. Aquac Res. 42(s1):21-27. doi: 10.1111/j.1365-2109.2010.02667.x
  • Wagner GN, Fast MD, Johnson SC. 2008. Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol. 24(4):176-183. doi: 10.1016/j.pt.2007.12.010
  • Werkmann M, Green DM, Murray AG, Turnbull JF. 2011. The effectiveness of fallowing strategies in disease control in salmon aquaculture assessed with an SIS model. Pre Vet Med. 98(1):64-73. doi: 10.1016/j.prevetmed.2010.10.004

Understanding How Parasites from Farmed Fish May Influence Wild Fish Declines Using Epidemiological Modelling

Year 2024, Volume: 10 Issue: 1, 22 - 38, 25.04.2024
https://doi.org/10.17216/limnofish.1329949

Abstract

Beside various fields of its applications, in this study epidemiological modelling was used to understand how parasites from farmed fish may cause wild fish declines. Two separate strategic models were constructed addressing the transmission of micro-parasites and macro-parasites between farmed and wild fish: A SIR (Susceptible-Infective-Removed) model for micro-parasite infections and a compartmental density-dependent model for macro-parasite infestations. The results indicated that parasites originated in wild fish populations, after infecting farmed fish can cause epizootics. Subsequently, these parasites can be transmitted from farmed to wild fish and might have negative impact on the dynamics of wild fish populations. Sensitivity analysis of the basic model parameters in both models showed that model parameters, which are influenced by abiotic factors and allow passive manipulation, such as pathogen specific transmission rate (β), pathogen specific transmission rate between infected farmed and susceptible wild fish (δ), the rate of production of infective stages by an adult parasite (λ) and transmission rate between host and parasite infective stages (β) are more sensitive compared to model parameters which encompass chemical control and fallowing. This emphasizes the importance of the preventive medicine rather than intervention procedures in aquaculture aiming at eradicating epizootics caused by parasites and protecting wild fish stocks.

References

  • Amundrud TL, Murray AG. 2009. Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch. J Fish Dis. 32(1):27-44. doi: 10.1111/j.1365-2761.2008.00980.x
  • Anderson RM, May RM. 1979a. Population biology of infectious diseases: Part I. Nature. 280:361-367. doi: 10.1038/280361a0
  • Anderson RM, May RM. 1979b. Population biology of infectious diseases: Part II. Nature. 280:455-461. doi: 10.1038/280455a0
  • Anonymous. 2015. What is Sensitivity Analysis? [cited 2015 June 22]. Available: http://uk.mathworks.com/help/sldo/ug/what-is-sensitivity-analysis.html [Accessed: 11 July 2015].
  • Beaglehole R, Bonita R, Kjellström T. 1993. Basic epidemiology. Geneva, Switzerland: World Health Organization 174 p.
  • Bode HW. 1945. Network Analysis and Feedback Amplifier Design. New York: D. Van Nostrand Company, Inc 551 p.
  • Costello MJ. 2006. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22(10): 475-483. doi: 10.1016/j.pt.2006.08.006
  • Costello MJ. 2009. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proceedings of the Royal Society B. 276(1672): 3385-3394. doi: 10.1098/rspb.2009.0771
  • FAO. 2022. The State of World Fisheries and Aquaculture 2022. Food and Agricultural Organisation of United Nations. Available: https://www.fao.org/3/cc0461en/online/cc0461en.html [Accessed 07 July 2023].
  • Georgiadis MP, Gardner IA, Hedrick RP. 2001. The role of epidemiology in the prevention, diagnosis, and control of infectious diseases of fish. Prev Vet Med. 48(4):287-302. doi: 10.1016/S0167-5877(00)00202-6
  • Green MD. 2010. A strategic model for epidemic control in aquaculture. Prev Vet Med. 94(1-2): 119-127. doi: 10.1016/j.prevetmed.2009.12.004
  • Green MD, Penman DJ, Migaud H, Bron JE, Taggart JB, McAndrew BJ. 2012. The impact of escaped farmed Atlantic salmon (Salmo salar L.) on catch statistics in Scotland. Plos ONE. 7(9):e43560. doi: 10.1371/journal.pone.0043560
  • Guo FC, Woo PTK. 2009. Selected parasitosis in cultured and wild fish. Vet Parasitol. 163(3):207-216. doi: 10.1016/j.vetpar.2009.06.016
  • Heuch PA, Bjørn PA, Finstad B, Holst JC, Asplin L, Nilsen F. 2005. A review of the Norwegian `National Action Plan Against Salmon Lice on Salmonids`: The effect on wild salmonids. Aquaculture. 246(1-4):79-92. doi: 10.1016/j.aquaculture.2004.12.027
  • Krkošek M, Lewis MA, Volpe JP. 2005. Transmission dynamics of parasitic sea lice from farm to wild salmon. Proceedings of the Royal Society B. 272(1564):689-696. doi: 10.1098/rspb.2004.3027
  • Krkošek M. 2010. Host density thresholds and disease control for fisheries and aquaculture. Aquacult Env Interac. 1(1): 21-32. doi: 10.3354/aei0004
  • McCallum H, Barlow N, Hone J. 2001. How should pathogen transmission be modelled? Trends Ecol Evol. 16(6):295-300. doi: 10.1016/S0169-5347(01)02144-9
  • McKenzie E, Gettinby G, McCart K, Revie CW. 2004. Time-series models of sea Lice Caligus elongatus (Nordmann) abundance on Atlantic salmon Salmo salar L. in Loch Sunart, Scotland. Aquac Res. 35(8):764-772. doi: 10.1111/j.1365-2109.2004.01099.x
  • Miossec L, Garseth AH, Midtlyng PJ, Raynard R, Peeler E, de Bals I. 2005. DIPNET - A European project to evaluate disease interactions and pathogen exchange between farmed and wild aquatic animal population fish, shellfish and crustaceans. Poster presented at 8th International Conference on Shellfish Restoration; Brest, France. Available: https://archimer.ifremer.fr/doc/00000/3325/ [Accessed: 01 July 2015].
  • Morris D. 2011. Development of a risk evaluation system for the establishment of Gyrodactylus salaris in Scottish river systems. Scotland: Scottish Aquaculture Research Forum (SARF). Project No.: SARF070. Morrison RN, Crosbie PBB, Nowak BF. 2004. The induction of laboratory-based amoebic gill disease revisited. J Fish Dis. 27(8):445-449. doi: 10.1111/j.1365-2761.2004.00561.x
  • Munday BL, Zilberg D, Findlay V. 2001. Gill disease of marine fish caused by infection with Neoparamoeba pemaquidensis. J Fish Dis. 24(9):497-507. doi: 10.1046/j.1365-2761.2001.00329.x
  • Murray AG, Peeler EJ. 2005. A framework for understanding the potential for emerging diseases in aquaculture. Prev Vet Med. 67(2-3):223-235. doi: 10.1016/j.prevetmed.2004.10.012
  • Murray AG. 2009. Using simple models to review the application and implications of different approaches used to simulate transmission of pathogens among aquatic animals. Prev Vet Med. 88(3):167-177. doi: 10.1016/j.prevetmed.2008.09.006
  • Murray AG. 2013. Epidemiology of the spread of viral diseases under aquaculture. Curr Opin Virol. 3(1):74-78. doi: 10.1016/j.coviro.2012.11.002
  • Murray AG, Hall M, Munro LA, Wallace IS. 2011. Modelling management strategies for a disease including undetected sub-clinical infection: Bacterial kidney disease in Scottish salmon and trout farms. Epidemics. 3(3-4):171-182. doi: 10.1016/j.epidem.2011.10.002
  • Peeler EJ, Taylor NGH. 2011. The application of epidemiology in aquatic animal health -opportunities and challenges. Vet Res. 42(94):1-15. doi: 10.1186/1297-9716-42-94
  • Penston MJ, Millar CP, Zuur A, Davies IM. 2008. Spatial and temporal Distribution of L. salmonis (Krøyer) larvae in a sea loch containing Atlantic salmon, Salmo salar L., farms on the north-west coast of Scotland. J Fish Dis. 31(5):361-371. doi: 10.1111/j.1365-2761.2008.00915.x
  • Reno PW. 1998. Factors involved in the dissemination of disease in fish populations. J Aquat Anim Health. 10(2):160-171. doi:10.1577/1548-8667(1998)010%3C0160:FIITDO%3E2.0.CO;2
  • Revie CW, Gettinby G, Treasurer JW, Rae GH. 2002. The epidemiology of the sea lice, Caligus elongatus Nordmann, in marine aquaculture of Atlantic salmon, Salmo salar L., in Scotland. J Fish Dis. 25(7):391-399. doi: 10.1046/j.1365-2761.2002.00388.x
  • Revie CW, Robbins C, Gettinby G, Kelly L, Treasurer JW. 2005. A mathematical model of the growth of sea lice, Lepeophtheirus salmonis, populations on farmed Atlantic salmon, Salmo salar L., in Scotland and its use in the assessment of the treatment strategies. J Fish Dis. 28(10):603-613. doi: 10.1111/j.1365-2761.2005.00665.x
  • Roberts M, Heesterbeek H. 1993. Bluff your way in epidemic models. Trends Microbiol. 1(9):343-348. doi: 10.1016/0966-842X(93)90075-3
  • Rodgers CJ, Peeler EJ. 2012. The role of risk analysis in the development of biosecurity programmes for the maintenance of specific pathogen-free populations. In: Austin B, editor. Infectious disease in aquaculture.
  • Sawston, the UK: Woodhead Publishing Limited: p. 318-329.
  • Salama NKG, Murray AG. 2013. A comparison of modelling approaches to assess the transmission of pathogens between Scottish fish farms: The role of hydrodynamics and site biomass. Prev Vet Med. 108(4):285-293. doi: 10.1016/j.prevetmed.2012.11.005
  • Soares S, Murray GA, Crumlish M, Turnbull JF, Green DM. 2013. Factors affecting variation in mortality of marine Atlantic salmon Salmo salar in Scotland. Dis Aquat Organ. 103(2):101-109. doi: 10.3354/dao02562
  • Todd CD. 2007. The copepod parasite (Lepeophtheirus salmonis (Krøyer), Caligus elongates Nordmann) interactions between wild and farmed Atlantic salmon (Salmo salar L.) and wild sea trout (Salmo trutta L.): a mini review. J Plankton Res. 29(supplement 1):i61-i71. doi: 10.1093/plankt/fbl067
  • Tokşen E, Çilli E. 2010. Occurrence of parasites in cultured common dentex (Dentex dentex L.) from İzmir, Turkey. Bull Eur Ass Fish Pathol. 30(3):92-98.
  • Turnbull JF, Berrill IK, Green DM, Kaye R, Morris D, Murray AG, del-Pozo J, Shinn A. 2011. Applied epidemiology with examples from UK aquaculture. Aquac Res. 42(s1):21-27. doi: 10.1111/j.1365-2109.2010.02667.x
  • Wagner GN, Fast MD, Johnson SC. 2008. Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol. 24(4):176-183. doi: 10.1016/j.pt.2007.12.010
  • Werkmann M, Green DM, Murray AG, Turnbull JF. 2011. The effectiveness of fallowing strategies in disease control in salmon aquaculture assessed with an SIS model. Pre Vet Med. 98(1):64-73. doi: 10.1016/j.prevetmed.2010.10.004
There are 40 citations in total.

Details

Primary Language English
Subjects Fish Pests and Diseases
Journal Section Research Article
Authors

Esat Çilli 0000-0002-4325-7039

Publication Date April 25, 2024
Published in Issue Year 2024Volume: 10 Issue: 1

Cite

APA Çilli, E. (2024). Understanding How Parasites from Farmed Fish May Influence Wild Fish Declines Using Epidemiological Modelling. Journal of Limnology and Freshwater Fisheries Research, 10(1), 22-38. https://doi.org/10.17216/limnofish.1329949