Research Article
BibTex RIS Cite

Probiyotiğin Dreissena polymorpha'da Bakır Nanopartikül Birikimi Üzerine Etkisi

Year 2024, Volume: 10 Issue: 1, 39 - 46, 25.04.2024
https://doi.org/10.17216/limnofish.1272399

Abstract

Boyutları 0,1-100 nm arasında olan materyaller nanopartikül (NP) malzemeler olarak adlandırılmaktadır. Son yıllarda endüstrinin gelişmesine paralel olarak NP materyallerin kullanım alanları ve miktarları da artmıştır. Cu gibi ağır metallerin de NP boyutlarında gereksinimi ve kullanım alanları genişlemiştir. Tüm bu gelişmeler beraberinde ekosistem üzerinde telafisi zorlaşan sorunları doğurmuştur. Yapılan bu çalışmada probiyotiklerin CuNP ağır metal birikimi üzerine etkisini araştırmak için model canlı olarak Zebra Midye (Dreissena polymorpha) seçilmiştir. Model organizma probiyotikli ve doğrudan olmak üzere CuNP’ün üç farklı konsantrasyonuna (5, 10, 50 mg/L) 24 ve 96 saat süreyle maruz bırakılmıştır. Doğrudan ve probiyotik ile muamele edilen D. polymorpha dokularındaki CuNP birikim miktarları kıyaslanmıştır. CuNP'ye doğrudan maruz bırakılan test organizmasındaki birikim miktarı probiyotik uygulanan gruplara kıyasla daha fazla olduğu, ancak yalnızca 24 saatlik en yüksek konsantrasyon (50 mg/L) olan uygulama grubunda istatistiksel açıdan anlamlı (p < 0,05) fark bulunmuştur. Sonuç olarak çalışmadan elde edilen bulgulara göre, probiyotiklerin sucul canlılar üzerinde olumlu gelişimsel etkilerinin yanısıra organizmada birikim miktarlarının eliminasyonunda faydalı olduğu tespit edilmiştir.

Thanks

Uğur Aqua Su Ürünleri Gıda San.Tic.

References

  • ABdel‐Tawwab M, Mousa MAA, Mohammed MA. 2010. Use of live baker's yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of Galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity. Journal of the World Aquaculture Society. 41(2), 214-223. doi: 10.1111/j.1749-7345.2010.00361.x
  • Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A. 2021. Probiotics and gut microbiome− Prospects and challenges in remediating heavy metal toxicity. Journal of Hazardous Materials. 420, 126676. doi: 10.1016/j.jhazmat.2021.126676
  • Binelli A, Della Torre C, Magni, S, Parolini M. 2015. Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. Environmental pollution. 196, 386-403. doi:10.1016/j.envpol.2014.10.023
  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB. 2012. Isolation and identification of cadmium-and lead-resistant lactic acid bacteria for application as metal removing probiotic. International Journal of Environmental Science and Technology. 9, 433-440. doi: 10.1007/s13762-012-0049-3
  • Clayton ME, Steinmann R, Fent K. 2000. Different expression patterns of heat shock proteins hsp 60 and hsp 70 in zebra mussels (Dreissena polymorpha) exposed to copper and tributyltin. Aquatic Toxicology. 47(3-4), 213-226. doi: 10.1016/S0166-445X(99)00022-3
  • Cimen ICC, Danabas D, Ates M. 2020. Comparative effects of Cu (60–80 nm) and CuO (40 nm) nanoparticles in Artemia salina: Accumulation, elimination and oxidative stress. Science of the Total Environment. 717, 137230. doi: 10.1016/j.scitotenv.2020.137230
  • Çimen ICÇ, Serdar O. 2022. Effect Of Metallothıoneın Levels In Gammarus Pulex Exposed To Copper And Copperoxıde Nanopartıcles. Ecological Life Sciences. 17(2), 59-67. doi: 10.12739/NWSA.2022.17.2.5A0166
  • Clearwater S.J. Farag A.M. 2022 Meyer Bioavailability and toxicity of diet borne copper and zinc to fish Comp. Biochem. Physiol. 132C, 269-313. doi: 10.1016/S1532-0456(02)00078-9
  • Dagani R. 2023. Nanomaterials: safe or unsafe? Chem. Eng. News. 81 (17), 30-33. doi: 10.1021/cen-v081n017.p030
  • Dağlıoğlu Y, Öztürk BY. 2016. Desmodesmus multivariabilis’ in bor partiküllerine maruz kalmada biyolojik birikiminin değerlendirilmesi. Biyolojik Çeşitlilik ve Koruma. 9(3), 204-209.
  • Daisley BA, Monachese M, Trinder M, Bisanz JE, Chmiel JA, Burton JP, Reid G. 2019. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut microbes. 10(3), 321-333. doi: 10.1080/19490976.2018.1526581
  • Dreher KL. 2004. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol. Sci. 77(1), 3-5. doi: 10.1093/toxsci/kfh041
  • Erguven GÖ, Serdar O, Tanyol M, Yildirim NC, Yildirim N, Durmus B. 2022. The Bioremediation Capacity of Sphingomonas melonis for Methomyl‐Contaminated Soil Media: RSM Optimization and Biochemical Assessment by Dreissena polymorpha. ChemistrySelect,.7(27), e202202105. doi: 10.1002/slct.202202105
  • Garai P, Banerjee P, Mondal P, Saha NC. 2021. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J Clin Toxicol. 11(S18): 001. doi: 10.35248/2161-0495.21.s18.001
  • Giri SS, Yun S, Jun JW, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Sukumaran V, Park SC. 2018. Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Frontiers in Immunology. 9:1824. doi: 10.3389/fimmu.2018.01824 Hoet P.H.M. Nemmar A.B. 2004. Nemery. Health impact of nanomaterials Nat. Biotechnol. 22(1), 19. doi: 10.1038/nbt0104-19.
  • Kakade A, Sharma M, Salama E, Zhang P, Zhang, L, Xing X, Yue J, Song Z, Nan L, Su Y, et al. 2023. Heavy metals (HMs) pollution in the aquatic environment: Role of probiotics and gut microbiota in HMs remediation. Environ. Res. 223, 115186. doi: 10.1016/j.envres.2022.115186
  • Kargar SHM, Shirazi NH. 2020. Lactobacillus fermentum and Lactobacillus plantarum bioremediation ability assessment for copper and zinc. Archives of Microbiology. 202(7), 1957-1963. doi: 10.1007/s00203-020-01916-w Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G. 2017. Effects of nanoparticles in species of aquaculture interest. Environ. Sci. Pollut. Res. 24(21), 17326-17346. doi: 10.1007/s11356-017-9360-3
  • Lall SP. 2002. The minerals. In Halver JE, Hardy RW, editors. Fish Nutrition, New York, Academic Press. p. 259-308.
  • Le TY, Grabner D, Nachev M, Peijnenburg WJ, Hendriks AJ, Sures B. 2021. Modelling copper toxicokinetics in the zebra mussel, Dreissena polymorpha, under chronic exposures at various pH and sodium concentrations. Chemosphere. 267, 129278. doi.org/10.1016/j.chemosphere.2020.129278
  • Lee M, Shiau S. 2002. Dietary copper requirement of juvenile grass shrimp Penaeus monodon and effects on non-specific immune response. Fish Shellfish Immunol. 13 (4), p. 259-270. doi.org/10.1006/fsim.2001.0401
  • Lorentzen M, Maage A, Julshamn K. 1998. Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquac. Nutr. 4(1), p. 67-72. doi: 10.1046/j.1365-2095.1998.00046.x
  • Madreseh S, Ghaisari HR, Hosseinzadeh S. 2019. Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and trace element residues in rainbow trout (Oncorhynchus mykiss) tissues. Probiotics and antimicrobial proteins. 11(4), 1257-1263. doi: 10.1007/s12602-018-9487-7
  • Mersch J, Morhain E, Mouvet C. 1993. Laboratory accumulation and depuration of copper and cadmium in the freshwater mussel Dreissena polymorpha and the aquatic moss Rhynchostegium riparioides. Chemosphere. 27(8), 1475-1485. doi: 10.1016/0045-6535(93)90242-W
  • Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Srinivasan V. 2016. The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J. Trace Elem. Med. Biol. 34, 39-49. doi: 10.1016/j.jtemb.2015.12.003
  • Pala A, Serdar O, Ince M, Önal A. 2019. Modeling approach with Box-Behnken design for optimization of Pb bioaccumulation parameters in Gammarus pulex (L., 1758). Atomic Spectroscopy. 40(3), 98-103. doi: 10.46770/AS.2019.03.004
  • Saliu OD, Olatunji GA, Olosho AI, Adeniyi AG, Azeh Y, Samo FT, Ajetomobi OO. 2019. Barrier property enhancement of starch citrate bioplastic film by an ammonium-thiourea complex modification. Journal of Saudi Chemical Society. 23(2), 141-149. doi: 10.1016/j.jscs.2018.06.004
  • Sandeva G, Atanasoff A, Nikolov G, Zapryanova D. A. 2016. Preliminary Study On Some Chemical Parameters Of Water From Probiotic Treated Common Carp (Cyprinus Carpio L.) Enclosures. Paper presented at: 2nd International Congress on Applied Ichthyology & Aquatic Environment 10 - 12 November 2016, Messolonghi, Greece.
  • Sami M, Ibrahim NK, Mohammad DA. 2020. Effect of probiotics on the growth performance and survival rate of the grooved carpet shell clam seeds, Ruditapes decussatus,(Linnaeus, 1758) from the Suez Canal. Egyptian Journal of Aquatic Biology and Fisheries. 24(7), 531-551. doi: 10.21608/ejabf.2020.122311
  • Serdar O, Pala A, Ince M, Onal A. 2019. Modelling cadmium bioaccumulation in Gammarus pulex by using experimental design approach. Chemistry and Ecology. 35(10), 922-936. doi: 10.1080/02757540.2019.1670814
  • Serdar O. 2021. Determination of the effect of cyfluthrin pesticide on zebra mussel (Dreissena polymorpha) by Some Antioxidant Enzyme Activities. Journal of Anatolian Environmental and Animal Sciences. 6(1), 77-83. doi: 10.35229/jaes.804479.
  • Sharifuzzaman SM, Abbass A, Tinsley JW, Austin B. 2011. Subcellular components of probiotics KocuriaSM1 and Rhodococcus SM2 induce protective immunity in rainbow trout (Oncorhynchus mykiss, Walbaum) against Vibrio anguillarum. Fish & shellfish immunology. 30(1), 347-353. doi: 10.1016/j.fsi.2010.11.005
  • Shao XP, Liu WB, Lu KL, Xu WN, Zhang WW, Wang Y, Zhu J. 2012. Effects of tribasic copper chloride on growth copper status antioxidant activities immune responses and intestinal micro flora of blunt snout bream (Megalobrama amblycephala) fed practical diets. Aquaculture. 338, pp. 154-159. doi: 10.1016/j.aquaculture.2012.01.018
  • Turnlund JR. 1994. Copper. In Shils ME, Olson JA, Shike M, editors. Modern Nutrition in Health and Disease. 8th edn. vol. 1, USA (1994), Lea & Febiger Malvern, p. 231-241.
  • Wang P, Nie X, WangY, Li Y, Zhang L, Wang L, Bai Z, Chen Z, Zhao Y, Chen C. 2013. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-beta/Smad signaling pathway. Small. 9 (22), p. 3799-3811. doi: 10.1002/smll.201300607
  • Watanabe T, Kiron V, Satoh S. 1997. Trace minerals in fish nutrition. Aquaculture. 151(1-4), p. 185-207. doi: 10.1016/S0044-8486(96)01503-7
  • Yaqoob MU, AbdEl-Hack ME, Hassan F, El-Saadony MT, Khafaga AF, Batiha GE, Yehia N, Elnesr SS, Alagawany M, El-Tarabily KA, Wang M. 2021.The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poultry science. 100(7), 101143. doi: 10.1016/j.psj.2021.101143
  • Yu B, Wang X, Dong KF, Xiao G, Ma D. 2020. Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Marine Pollution Bulletin. 159, 111505. doi: 10.1016/j.marpolbul.2020.111505
  • Yu Z, Dai ZY, Qin GX, Li MY, Wu LF. 2020. Alleviative effects of dietary microbial floc on copper-induced inflammation, oxidative stress, intestinal apoptosis and barrier dysfunction in Rhynchocypris lagowski Dybowski. Fish & Shellfish Immunology, 106, 120-132. doi: 10.1016/j.fsi.2020.07.070
  • Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. 2020. Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927. doi: 10.1111/raq.12416

Effect of Probiotic on Copper Nanoparticle Accumulation in Dreissena polymorpha

Year 2024, Volume: 10 Issue: 1, 39 - 46, 25.04.2024
https://doi.org/10.17216/limnofish.1272399

Abstract

Materials with dimensions between 0.1 and 100 nm are called nanoparticle (NP) materials. In recent years, the usage areas and quantities of NP materials have increased in parallel with the development of the industry. The need and usage areas of heavy metals such as Cu have also expanded in NP sizes. All these developments have led to problems on the ecosystem that are becoming more difficult to compensate. In this study, Zebra Mussel (Dreissena polymorpha) was chosen as a model to investigate the effect of probiotics on CuNP heavy metal accumulation. The model organism was exposed to three different concentrations of CuNP (5, 10, 50 mg/L) with probiotics and directly for 24 and 96 hours. CuNP accumulation amounts in D. polymorpha tissues treated directly and with probiotics were compared. The amount of accumulation in the test organism directly exposed to CuNP was higher compared to the groups administered with probiotics, but a statistically significant difference (p<0.05) was found only in the treatment group with the highest 24-hour concentration (50 mg/L). As a result, according to the findings obtained from the study, it has been determined that probiotics have positive developmental effects on aquatic organisms, as well as beneficial in the elimination of their accumulation in the organism.

Thanks

Uğur Aqua Su Ürünleri Gıda San.Tic.

References

  • ABdel‐Tawwab M, Mousa MAA, Mohammed MA. 2010. Use of live baker's yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of Galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity. Journal of the World Aquaculture Society. 41(2), 214-223. doi: 10.1111/j.1749-7345.2010.00361.x
  • Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A. 2021. Probiotics and gut microbiome− Prospects and challenges in remediating heavy metal toxicity. Journal of Hazardous Materials. 420, 126676. doi: 10.1016/j.jhazmat.2021.126676
  • Binelli A, Della Torre C, Magni, S, Parolini M. 2015. Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. Environmental pollution. 196, 386-403. doi:10.1016/j.envpol.2014.10.023
  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB. 2012. Isolation and identification of cadmium-and lead-resistant lactic acid bacteria for application as metal removing probiotic. International Journal of Environmental Science and Technology. 9, 433-440. doi: 10.1007/s13762-012-0049-3
  • Clayton ME, Steinmann R, Fent K. 2000. Different expression patterns of heat shock proteins hsp 60 and hsp 70 in zebra mussels (Dreissena polymorpha) exposed to copper and tributyltin. Aquatic Toxicology. 47(3-4), 213-226. doi: 10.1016/S0166-445X(99)00022-3
  • Cimen ICC, Danabas D, Ates M. 2020. Comparative effects of Cu (60–80 nm) and CuO (40 nm) nanoparticles in Artemia salina: Accumulation, elimination and oxidative stress. Science of the Total Environment. 717, 137230. doi: 10.1016/j.scitotenv.2020.137230
  • Çimen ICÇ, Serdar O. 2022. Effect Of Metallothıoneın Levels In Gammarus Pulex Exposed To Copper And Copperoxıde Nanopartıcles. Ecological Life Sciences. 17(2), 59-67. doi: 10.12739/NWSA.2022.17.2.5A0166
  • Clearwater S.J. Farag A.M. 2022 Meyer Bioavailability and toxicity of diet borne copper and zinc to fish Comp. Biochem. Physiol. 132C, 269-313. doi: 10.1016/S1532-0456(02)00078-9
  • Dagani R. 2023. Nanomaterials: safe or unsafe? Chem. Eng. News. 81 (17), 30-33. doi: 10.1021/cen-v081n017.p030
  • Dağlıoğlu Y, Öztürk BY. 2016. Desmodesmus multivariabilis’ in bor partiküllerine maruz kalmada biyolojik birikiminin değerlendirilmesi. Biyolojik Çeşitlilik ve Koruma. 9(3), 204-209.
  • Daisley BA, Monachese M, Trinder M, Bisanz JE, Chmiel JA, Burton JP, Reid G. 2019. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut microbes. 10(3), 321-333. doi: 10.1080/19490976.2018.1526581
  • Dreher KL. 2004. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol. Sci. 77(1), 3-5. doi: 10.1093/toxsci/kfh041
  • Erguven GÖ, Serdar O, Tanyol M, Yildirim NC, Yildirim N, Durmus B. 2022. The Bioremediation Capacity of Sphingomonas melonis for Methomyl‐Contaminated Soil Media: RSM Optimization and Biochemical Assessment by Dreissena polymorpha. ChemistrySelect,.7(27), e202202105. doi: 10.1002/slct.202202105
  • Garai P, Banerjee P, Mondal P, Saha NC. 2021. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J Clin Toxicol. 11(S18): 001. doi: 10.35248/2161-0495.21.s18.001
  • Giri SS, Yun S, Jun JW, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Sukumaran V, Park SC. 2018. Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Frontiers in Immunology. 9:1824. doi: 10.3389/fimmu.2018.01824 Hoet P.H.M. Nemmar A.B. 2004. Nemery. Health impact of nanomaterials Nat. Biotechnol. 22(1), 19. doi: 10.1038/nbt0104-19.
  • Kakade A, Sharma M, Salama E, Zhang P, Zhang, L, Xing X, Yue J, Song Z, Nan L, Su Y, et al. 2023. Heavy metals (HMs) pollution in the aquatic environment: Role of probiotics and gut microbiota in HMs remediation. Environ. Res. 223, 115186. doi: 10.1016/j.envres.2022.115186
  • Kargar SHM, Shirazi NH. 2020. Lactobacillus fermentum and Lactobacillus plantarum bioremediation ability assessment for copper and zinc. Archives of Microbiology. 202(7), 1957-1963. doi: 10.1007/s00203-020-01916-w Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G. 2017. Effects of nanoparticles in species of aquaculture interest. Environ. Sci. Pollut. Res. 24(21), 17326-17346. doi: 10.1007/s11356-017-9360-3
  • Lall SP. 2002. The minerals. In Halver JE, Hardy RW, editors. Fish Nutrition, New York, Academic Press. p. 259-308.
  • Le TY, Grabner D, Nachev M, Peijnenburg WJ, Hendriks AJ, Sures B. 2021. Modelling copper toxicokinetics in the zebra mussel, Dreissena polymorpha, under chronic exposures at various pH and sodium concentrations. Chemosphere. 267, 129278. doi.org/10.1016/j.chemosphere.2020.129278
  • Lee M, Shiau S. 2002. Dietary copper requirement of juvenile grass shrimp Penaeus monodon and effects on non-specific immune response. Fish Shellfish Immunol. 13 (4), p. 259-270. doi.org/10.1006/fsim.2001.0401
  • Lorentzen M, Maage A, Julshamn K. 1998. Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquac. Nutr. 4(1), p. 67-72. doi: 10.1046/j.1365-2095.1998.00046.x
  • Madreseh S, Ghaisari HR, Hosseinzadeh S. 2019. Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and trace element residues in rainbow trout (Oncorhynchus mykiss) tissues. Probiotics and antimicrobial proteins. 11(4), 1257-1263. doi: 10.1007/s12602-018-9487-7
  • Mersch J, Morhain E, Mouvet C. 1993. Laboratory accumulation and depuration of copper and cadmium in the freshwater mussel Dreissena polymorpha and the aquatic moss Rhynchostegium riparioides. Chemosphere. 27(8), 1475-1485. doi: 10.1016/0045-6535(93)90242-W
  • Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Srinivasan V. 2016. The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J. Trace Elem. Med. Biol. 34, 39-49. doi: 10.1016/j.jtemb.2015.12.003
  • Pala A, Serdar O, Ince M, Önal A. 2019. Modeling approach with Box-Behnken design for optimization of Pb bioaccumulation parameters in Gammarus pulex (L., 1758). Atomic Spectroscopy. 40(3), 98-103. doi: 10.46770/AS.2019.03.004
  • Saliu OD, Olatunji GA, Olosho AI, Adeniyi AG, Azeh Y, Samo FT, Ajetomobi OO. 2019. Barrier property enhancement of starch citrate bioplastic film by an ammonium-thiourea complex modification. Journal of Saudi Chemical Society. 23(2), 141-149. doi: 10.1016/j.jscs.2018.06.004
  • Sandeva G, Atanasoff A, Nikolov G, Zapryanova D. A. 2016. Preliminary Study On Some Chemical Parameters Of Water From Probiotic Treated Common Carp (Cyprinus Carpio L.) Enclosures. Paper presented at: 2nd International Congress on Applied Ichthyology & Aquatic Environment 10 - 12 November 2016, Messolonghi, Greece.
  • Sami M, Ibrahim NK, Mohammad DA. 2020. Effect of probiotics on the growth performance and survival rate of the grooved carpet shell clam seeds, Ruditapes decussatus,(Linnaeus, 1758) from the Suez Canal. Egyptian Journal of Aquatic Biology and Fisheries. 24(7), 531-551. doi: 10.21608/ejabf.2020.122311
  • Serdar O, Pala A, Ince M, Onal A. 2019. Modelling cadmium bioaccumulation in Gammarus pulex by using experimental design approach. Chemistry and Ecology. 35(10), 922-936. doi: 10.1080/02757540.2019.1670814
  • Serdar O. 2021. Determination of the effect of cyfluthrin pesticide on zebra mussel (Dreissena polymorpha) by Some Antioxidant Enzyme Activities. Journal of Anatolian Environmental and Animal Sciences. 6(1), 77-83. doi: 10.35229/jaes.804479.
  • Sharifuzzaman SM, Abbass A, Tinsley JW, Austin B. 2011. Subcellular components of probiotics KocuriaSM1 and Rhodococcus SM2 induce protective immunity in rainbow trout (Oncorhynchus mykiss, Walbaum) against Vibrio anguillarum. Fish & shellfish immunology. 30(1), 347-353. doi: 10.1016/j.fsi.2010.11.005
  • Shao XP, Liu WB, Lu KL, Xu WN, Zhang WW, Wang Y, Zhu J. 2012. Effects of tribasic copper chloride on growth copper status antioxidant activities immune responses and intestinal micro flora of blunt snout bream (Megalobrama amblycephala) fed practical diets. Aquaculture. 338, pp. 154-159. doi: 10.1016/j.aquaculture.2012.01.018
  • Turnlund JR. 1994. Copper. In Shils ME, Olson JA, Shike M, editors. Modern Nutrition in Health and Disease. 8th edn. vol. 1, USA (1994), Lea & Febiger Malvern, p. 231-241.
  • Wang P, Nie X, WangY, Li Y, Zhang L, Wang L, Bai Z, Chen Z, Zhao Y, Chen C. 2013. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-beta/Smad signaling pathway. Small. 9 (22), p. 3799-3811. doi: 10.1002/smll.201300607
  • Watanabe T, Kiron V, Satoh S. 1997. Trace minerals in fish nutrition. Aquaculture. 151(1-4), p. 185-207. doi: 10.1016/S0044-8486(96)01503-7
  • Yaqoob MU, AbdEl-Hack ME, Hassan F, El-Saadony MT, Khafaga AF, Batiha GE, Yehia N, Elnesr SS, Alagawany M, El-Tarabily KA, Wang M. 2021.The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poultry science. 100(7), 101143. doi: 10.1016/j.psj.2021.101143
  • Yu B, Wang X, Dong KF, Xiao G, Ma D. 2020. Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Marine Pollution Bulletin. 159, 111505. doi: 10.1016/j.marpolbul.2020.111505
  • Yu Z, Dai ZY, Qin GX, Li MY, Wu LF. 2020. Alleviative effects of dietary microbial floc on copper-induced inflammation, oxidative stress, intestinal apoptosis and barrier dysfunction in Rhynchocypris lagowski Dybowski. Fish & Shellfish Immunology, 106, 120-132. doi: 10.1016/j.fsi.2020.07.070
  • Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. 2020. Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927. doi: 10.1111/raq.12416
There are 39 citations in total.

Details

Primary Language English
Subjects Fisheries Management
Journal Section Research Article
Authors

Ayşe Nur Aydın 0000-0002-5657-8958

Osman Serdar 0000-0003-1744-8883

Publication Date April 25, 2024
Published in Issue Year 2024Volume: 10 Issue: 1

Cite

APA Aydın, A. N., & Serdar, O. (2024). Effect of Probiotic on Copper Nanoparticle Accumulation in Dreissena polymorpha. Journal of Limnology and Freshwater Fisheries Research, 10(1), 39-46. https://doi.org/10.17216/limnofish.1272399