Research Article
BibTex RIS Cite

Farklı Besi Ortamlarının Pseudopediastrum boryanum (Turpin) E. Hegewald İzolatlarının Biyokütle Üretimine Etkileri Üzerine Araştırma

Year 2018, Volume: 4 Issue: 1, 6 - 12, 27.04.2018
https://doi.org/10.17216/limnofish.348198

Abstract

Mikroalg,
Pseudopediastrum boryanum (Turpin) E.
Hegewald, atık su arıtımı ve biyodizel üretim potansiyelinden dolayı araştırma
konusu olarak seçilmiştir. Bu araştırmada, iki besi ortamı (Allen ve BG-11)
kullanılarak, kesikli kültür sisteminde P.
boryanum
'un büyüme ve biyokütle üretimi araştırılmıştır. Önceki
çalışmalarımızda, P. boryanum
dilüsyon tekniği kullanılarak, farklı tatlısu birikintilerinden izole
edilmiştir. İzole edilen P. boryanum
suşu, 270 mL besi ortamı + 30 mL süspansiyon kültür ile aşılanmış ve 16:8
aydınlık/karanlık fotoperiyodu uygulanmıştır. Optik yoğunluk 670 nm'de
UV-Visible spektrofotometre kullanılarak tespit edilmiş ve suşların hücre
sayımı damla sayım metodu kullanılarak yapılmıştır. Kültürlerin kuru ağırlık ve
klorofil-a tayinleri de gerçekleştirilmiştir. Allen ortamında en yüksek hücre
yoğunluğu (3,67x106 hücre/mL), kuru ağırlık (0,032 g/mL) ve
klorofil-a (16,39 μg L-1) olarak tespit edilmiştir. P. boryanum’un büyüme oranları Allen
besi ortamında 0,6676 d-1 ve BG-11 ortamında 0,6021 d-1
olarak bulunmuştur.

References

  • Ak I, Cirik S, Goksan T. 2008. Effect of light intensity, salinity and temperature on growth in Camalt strain of Dunaliella viridis Teodoresco from Turkey. J Biol Sci. 8(8): 1356-1359. doi: 10.3923/jbs.2008.1356.1359
  • Al-Shatri AHA, Ali E, Al-Shorgani NKN, Kalil MS. 2014. Growth of Scenedesmus dimorphus in different algal media and pH profile due to secreted metabolites. Afr J Biotechnol. 13(16):1714-1720. doi:10.5897/AJB2013.13455
  • Baykal Ozer T. Acıkgoz Erkaya. I. Udo Udoh A. Yalcın Duygu D, Akbulut A, Bayramoglu G, Arica MY. 2012. Biosorption of Cr (VI) by free and immobilized Pediastrum boryanum biomass: equilibrium, kinetic, and thermodynamic studies. Environ Sci Pollut Res. 19(7): 2983-2993. doi: 10.1007/s11356-012-0809-0
  • Bourrelly P. 1972. Les Algues D’eau Douce, Tome I: Les Algues Vertes E’ditions N. Boubee & Cie 3, France: Place Saint Andre Des Arts 572p.
  • Brennan L, Owende P. 2010. Biofuels form microalgae - a review of technologies for production, processing and extractios of biofuels and co-products. Renew Sust Energ Rev. 14(2): 557-577. doi: 10.1016/j.rser.2009.10.009
  • Bricaud A, Morel A, Babin M, Allali K, Claustre H. 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) eaters: analysis and implication for bio-optical models. J Geophys Res. 103(13): 31033-31044. doi: 10.1029/98JC02712
  • Chia MA, Lombardi AT, Melao MGG. 2013. Growth and biochemical composition of Chlorella vulgaris in different growth media. Annals of the Brazilian Academy of Sciences 85(4): 1427-1438. doi: 10.1590/0001-3765201393312
  • CSIRO 2017. Commonwealth Scientific and Industrial Research Organization. [Cited 2017 July]. Available from http://www.csiro.au/. Duygu Yalçin D. 2017. Increasing the protein amount of Chlorella vulgaris [Chlorphyta] strains isolated from different fresh water ponds. Journal of Environmental Science and Engineering B(6): 201-208. doi:10.17265/2162-5263/2017.04.003
  • Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K. 2016. Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenerg. 88: 126-134. doi: 10.1016/j.biombioe.2016.03.019
  • Fakhri M, Arifin NB, Budianto B, Yuniarti A, Hariati AM. 2015. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nature Environment and Pollution Technology 14(3): 563-566. Falkowski PG. 1984, Physiological responses of phytoplankton to natural light regimes. J Plankton Res. 6(2): 295-307. doi: 10.1093/plankt/6.2.295
  • Godoy-Hernández G, Vázquez-Flota FA. 2006. Growth measurements: estimation of cell division and cell expansion. In: Loyola-Vargas VM, Vázquez-Flota F, editor. Plant cell culture protocols. New Jersey (USA): Humana Press Inc. p. 51-58.
  • Hosikian A, Lim S, Halim R, Danquah KM. 2010. Chlorophyll extraction form microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering. ID 391632: 1-11. doi:10.1155/2010/391632
  • Idenyi JN, Ebenyi LN, Ogah O, Nwali BU, Ogbanshi ME. 2016. Effect of different growth media on the cell densities of freshwater microalgae isolates. IOSR-JPBS. 11(3): 24-28. doi: 10.9790/3008-1103042428
  • Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photo-bioreactors. Bioresour Technol. 116: 307-313. doi: 10.1016/j.biortech.2012.03.074
  • Liang K, Zhang Q, Gu M, Cong W. 2013. Effect of phosphorus on lipid accumulation in freshwater microalgae Chlorella sp. J Appl Phycol. 25(1): 311-318. doi: 10.1007/s10811-012-9865-6
  • Lourenço SO, Barbarino E, Lavin PL, Lanfer Marquez UM, Aidar E. 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol. 39(1): 17-32. doi: 10.1080/0967026032000157156
  • Murdock JN, Wetzel DL. 2009. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectroscopy Rev. 44(4): 335-361. doi: 10.1080/05704920902907440
  • Nehul JN. 2014. Influence of various culture media on growth and production of carotenoids in a cyanobacterium Lyngbya bipunctata Lemm. Bioscience Discovery 5(1):60-63.
  • Park JBK, Craggs RJ. 2011. Nutrient removal and nitrogen balances in high rate algal ponds with carbon dioxide addition. Water Sci Technol. 63(8): 1758-1764. doi: 10.2166/wst.2011.114
  • Park JBK, Craggs RJ, Shilton AN. 2013. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling. Water Res. 47(13): 4422-4432. doi: 10.1016/j.watres.2013.04.001
  • Park JBK, Craggs RJ, Shilton AN. 2014. Investigating the life-cycle and growth rate of Pediastrum boryanum and the implication for wastewater treatment high rate algal ponds. Water Res. 60: 130-140. doi: 10.1016/j.watres.2014.04.028
  • Prescott GW. 1975. Algae of the western great lakes area. Michigan: W.M.C. Brown Company Publishers 977p.
  • Ribeiro-Rodrigues LH, Arenzon A, Raya-Rodriguez MT, Fontoura NF. 2011. Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J Environ Chem Ecotoxicol. 3(8): 225-228.
  • Santos-Ballardo DU, Rossi S, Hernández V, Gómez RV, Rendón-Unceta MC, Caro-Corrales J, Valdez-Ortiz A. 2015. A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture 448: 87-92. doi: 10.1016/j.aquaculture.2015.05.044
  • Sasson A. 1988. Biotechnologies and development. France: UNESCO Technical Center for Agricultural and Rural Cooperation (CTA) 361p.
  • Singh UB, Sharma C. 2014. Determination of suitable growth medium for Chlorella minutissima. Inter J of Eng Science & Research 3(8):481-485.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambet A. 2006. Commercial applications of microalgae. J Biosci Bioeng. 101(2): 87-96. doi: org/10.1263/jbb.101.87
  • Wahidin S, Idris A, Shaleh SRM. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technol. 129: 7-11. doi: 10.1016/j.biortech.2012.11.032
  • Youngman RE. 1978. Measurement of chlorophyll-a. New York: Water Research Centre Technical Report. Report No.: 82.

Investigating the Effect of Different Growth Media on Biomass Production of Pseudopediastrum boryanum (Turpin) E. Hegewald Isolates

Year 2018, Volume: 4 Issue: 1, 6 - 12, 27.04.2018
https://doi.org/10.17216/limnofish.348198

Abstract






Microalgae Pseudopediastrum
boryanum
(Turpin) E. Hegewald was
chosen as a subject for the present research due to its potential uses of
wastewater treatment and biodiesel production. In the present study, we
investigated the growth and biomass production of P. boryanum through
use of semi-continuous cultures employing two growth media (Allen and BG-11).
In our previous study, P. boryanum was isolated from different
freshwater reservoir through the dilution technique. The isolated P.
boryanum
strain was inoculated with 270 mL of medium + 30 mL of suspension
culture
and the 16:8 light/dark
photoperiod was applied. Optical density was recorded by using
UV-Visible spectrophotometer at 670 nm, and cell
count examination was performed through drop count method. Besides, dry weight
and chlorophyll-a concentration of strain were determined.
The highest cell density (3.67x106 cells/mL), dry weight
(0.032 g/mL) and chlorophyll-a (16.39 µgL-1) production were
observed in the Allen medium.
Growth rates of P. boryanum
were found to be 0.6676 d-1 in the Allen and 0.6021 d-1
in the BG-11 medium.


References

  • Ak I, Cirik S, Goksan T. 2008. Effect of light intensity, salinity and temperature on growth in Camalt strain of Dunaliella viridis Teodoresco from Turkey. J Biol Sci. 8(8): 1356-1359. doi: 10.3923/jbs.2008.1356.1359
  • Al-Shatri AHA, Ali E, Al-Shorgani NKN, Kalil MS. 2014. Growth of Scenedesmus dimorphus in different algal media and pH profile due to secreted metabolites. Afr J Biotechnol. 13(16):1714-1720. doi:10.5897/AJB2013.13455
  • Baykal Ozer T. Acıkgoz Erkaya. I. Udo Udoh A. Yalcın Duygu D, Akbulut A, Bayramoglu G, Arica MY. 2012. Biosorption of Cr (VI) by free and immobilized Pediastrum boryanum biomass: equilibrium, kinetic, and thermodynamic studies. Environ Sci Pollut Res. 19(7): 2983-2993. doi: 10.1007/s11356-012-0809-0
  • Bourrelly P. 1972. Les Algues D’eau Douce, Tome I: Les Algues Vertes E’ditions N. Boubee & Cie 3, France: Place Saint Andre Des Arts 572p.
  • Brennan L, Owende P. 2010. Biofuels form microalgae - a review of technologies for production, processing and extractios of biofuels and co-products. Renew Sust Energ Rev. 14(2): 557-577. doi: 10.1016/j.rser.2009.10.009
  • Bricaud A, Morel A, Babin M, Allali K, Claustre H. 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) eaters: analysis and implication for bio-optical models. J Geophys Res. 103(13): 31033-31044. doi: 10.1029/98JC02712
  • Chia MA, Lombardi AT, Melao MGG. 2013. Growth and biochemical composition of Chlorella vulgaris in different growth media. Annals of the Brazilian Academy of Sciences 85(4): 1427-1438. doi: 10.1590/0001-3765201393312
  • CSIRO 2017. Commonwealth Scientific and Industrial Research Organization. [Cited 2017 July]. Available from http://www.csiro.au/. Duygu Yalçin D. 2017. Increasing the protein amount of Chlorella vulgaris [Chlorphyta] strains isolated from different fresh water ponds. Journal of Environmental Science and Engineering B(6): 201-208. doi:10.17265/2162-5263/2017.04.003
  • Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K. 2016. Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenerg. 88: 126-134. doi: 10.1016/j.biombioe.2016.03.019
  • Fakhri M, Arifin NB, Budianto B, Yuniarti A, Hariati AM. 2015. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nature Environment and Pollution Technology 14(3): 563-566. Falkowski PG. 1984, Physiological responses of phytoplankton to natural light regimes. J Plankton Res. 6(2): 295-307. doi: 10.1093/plankt/6.2.295
  • Godoy-Hernández G, Vázquez-Flota FA. 2006. Growth measurements: estimation of cell division and cell expansion. In: Loyola-Vargas VM, Vázquez-Flota F, editor. Plant cell culture protocols. New Jersey (USA): Humana Press Inc. p. 51-58.
  • Hosikian A, Lim S, Halim R, Danquah KM. 2010. Chlorophyll extraction form microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering. ID 391632: 1-11. doi:10.1155/2010/391632
  • Idenyi JN, Ebenyi LN, Ogah O, Nwali BU, Ogbanshi ME. 2016. Effect of different growth media on the cell densities of freshwater microalgae isolates. IOSR-JPBS. 11(3): 24-28. doi: 10.9790/3008-1103042428
  • Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photo-bioreactors. Bioresour Technol. 116: 307-313. doi: 10.1016/j.biortech.2012.03.074
  • Liang K, Zhang Q, Gu M, Cong W. 2013. Effect of phosphorus on lipid accumulation in freshwater microalgae Chlorella sp. J Appl Phycol. 25(1): 311-318. doi: 10.1007/s10811-012-9865-6
  • Lourenço SO, Barbarino E, Lavin PL, Lanfer Marquez UM, Aidar E. 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol. 39(1): 17-32. doi: 10.1080/0967026032000157156
  • Murdock JN, Wetzel DL. 2009. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectroscopy Rev. 44(4): 335-361. doi: 10.1080/05704920902907440
  • Nehul JN. 2014. Influence of various culture media on growth and production of carotenoids in a cyanobacterium Lyngbya bipunctata Lemm. Bioscience Discovery 5(1):60-63.
  • Park JBK, Craggs RJ. 2011. Nutrient removal and nitrogen balances in high rate algal ponds with carbon dioxide addition. Water Sci Technol. 63(8): 1758-1764. doi: 10.2166/wst.2011.114
  • Park JBK, Craggs RJ, Shilton AN. 2013. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling. Water Res. 47(13): 4422-4432. doi: 10.1016/j.watres.2013.04.001
  • Park JBK, Craggs RJ, Shilton AN. 2014. Investigating the life-cycle and growth rate of Pediastrum boryanum and the implication for wastewater treatment high rate algal ponds. Water Res. 60: 130-140. doi: 10.1016/j.watres.2014.04.028
  • Prescott GW. 1975. Algae of the western great lakes area. Michigan: W.M.C. Brown Company Publishers 977p.
  • Ribeiro-Rodrigues LH, Arenzon A, Raya-Rodriguez MT, Fontoura NF. 2011. Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J Environ Chem Ecotoxicol. 3(8): 225-228.
  • Santos-Ballardo DU, Rossi S, Hernández V, Gómez RV, Rendón-Unceta MC, Caro-Corrales J, Valdez-Ortiz A. 2015. A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture 448: 87-92. doi: 10.1016/j.aquaculture.2015.05.044
  • Sasson A. 1988. Biotechnologies and development. France: UNESCO Technical Center for Agricultural and Rural Cooperation (CTA) 361p.
  • Singh UB, Sharma C. 2014. Determination of suitable growth medium for Chlorella minutissima. Inter J of Eng Science & Research 3(8):481-485.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambet A. 2006. Commercial applications of microalgae. J Biosci Bioeng. 101(2): 87-96. doi: org/10.1263/jbb.101.87
  • Wahidin S, Idris A, Shaleh SRM. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technol. 129: 7-11. doi: 10.1016/j.biortech.2012.11.032
  • Youngman RE. 1978. Measurement of chlorophyll-a. New York: Water Research Centre Technical Report. Report No.: 82.
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Dilek Yalçın Duygu 0000-0003-2127-8186

İlkay Açıkgöz Erkaya 0000-0003-1730-4951

Tülay Özer 0000-0003-2926-6622

Publication Date April 27, 2018
Published in Issue Year 2018Volume: 4 Issue: 1

Cite

APA Yalçın Duygu, D., Açıkgöz Erkaya, İ., & Özer, T. (2018). Investigating the Effect of Different Growth Media on Biomass Production of Pseudopediastrum boryanum (Turpin) E. Hegewald Isolates. Journal of Limnology and Freshwater Fisheries Research, 4(1), 6-12. https://doi.org/10.17216/limnofish.348198