Year 2019, Volume 5 , Issue 2, Pages 76 - 82 2019-08-27

Köprüören-Kütahya’da Yayılış Gösteren Sulak Alan Bitkileri Tarafından Ağır Metal Akümülasyonu ve Su-Sediment İlişkisi
Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya

Betül AKIN [1] , Nüket AKANIL BİNGÖL [2]


Köprüören, Kütahya’da bulunan Kocasu Nehri ile bu nehirle bağlantısı bulunan iki göletin kenarlarında yayılış gösteren bazı sulak alan bitkilerindeki (Phragmites australis (Cav.) Trin. Ex Steud, Typha latifolia L., Nasturdium officinale L., Lemna minor L., Lythrum salicaria ve Ceratophyllum demersum L.) bor, çinko ve arsenic miktarları ile su ve sedimentteki bor, çinko, arsenik, gümüş, kurşun, bakır, kadmiyum ve krom konsantrasyonları tarafımızdan araştırılmıştır. Bu çalışmada araştırılan sekiz ağır metal arasından, arsenik sedimentte yüksek konsantrasyonda bulunurken (288,66 mg/kg), su numunelerinde en yüksek konsantrasyonda bor
(903 µg/L) tespit edilmiştir. Ayrıca, bitkideki çinko, bor ve arsenik konsantrasyonlarının sırasıyla 70-280, 37,6-1682,5 ve 0,2-34 mg/kg kuru ağırlık arasında değiştiği saptanmıştır. Sonuç olarak, C. demersum, L. minor ve N. officinale’nin en yüksek çinko, bor ve arsenik biriktirme kapasitesine sahip olduğu bulunmuştur.

We investigated the concentrations of boron, zinc, arsenic, silver, lead, copper, cadmium and chromium in water, sediment and boron, zinc and arsenic in some wetland plants (Phragmites australis (Cav.) Trin. Ex Steud, Typha latifolia L., Nasturdium officinale L., Lemna minor L., Lythrum salicaria L., and Ceratophyllum demersum L.) of Kocasu Stream and two related ponds in Köprüören, Kütahya. According to our results, among the eight heavy metals investigated in this study, arsenic was found at high concentration in sediment (288.66 mg/kg) whereas boron (903 µg/L) was detected in the highest concentration in water samples. We also determined that zinc, boron and arsenic concentrations in plants varied from 70 to 280, 37.6 to 1682.5, and 0.2 to 34 mg/kg dry weight (DW), respectively. As a result, it was found that C. demersum, L. minor and N. officinale had the highest accumulation capacity of zinc, boron and arsenic.

  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869-881. doi: 10.1016/j.chemosphere.2013.01.075
  • Anonymous 2017. The environmental situation report of Kütahya city. Kütahya: Kütahya Governorship Environment and Urbanisation Province Directorate 153 p. [in Turkish]
  • Arslan Ş, Çelik M. 2015. Assessment of the pollutants in soils and surface waters around Gümüş Köy Silver Mine (Kütahya, Turkey). B Environ Contam Tox. 95(4):499-506. doi: 10.1007/s00128-015-1613-6
  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR. 2005. Phytoremediation - an overview. Crit Rev Plant Sci. 24(2):109-122. doi: 10.1080/07352680590952496
  • Böcük H, Yakar A, Türker OC. 2013. Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. Ecol Indic. 29:538-548. doi: 10.1016/j.ecolind.2013.01.029
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol. 173:677-702. doi: 10.1111/j.1469-8137.2007.01996.x
  • Broadley MR, Brown P, Cakmak İ, Rengel Z, Zhao F. 2012. Function of nutrients: Micronutrients. In: Marschner P. editor. Mineral Nutrition of Higher Plants. USA: Academic Press. p. 191-243.
  • Chen M, Mishraa S, Heckathorna SA, Frantzb JM, Krauseb C. 2014. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. J Plant Physiol. 171(3-4):235-242. doi: 10.1016/j.jplph.2013.07.008
  • Çiçek A, Tokatli C, Köse E. 2013. Ecological risk assessment of heavy metals in sediment of Felent Stream, Sakarya River Basin, Turkey. Pakistan J Zool. 45(5):1335-1341.
  • Del-Campo Marin CM, Oron G. 2007. Boron removal by the duckweed Lemna gibba: A potential method for the remediation of boron-polluted waters. Water Res. 41(20):4579-4584. doi: 10.1016/j.watres.2007.06.051
  • Đozić A, Selimbašić V, Cipurković A, Tanjić I, Uljić M, Zohorović M. 2014. Metal pollution assessment in sediments of the Spreča River. Technologica Acta. 7(1):69-79. Farag M, Zhang MF. 2014. Effect of boron toxicity stress on seed germination, root elongation and early seedling development of watermelon Citrullus lanatus Thumb. J Anim Plant Sci. 21(2):3313-3325.
  • Finnegan PM, Chen W. 2012. Arsenic Toxicity: The effects on plant metabolism. Front Physiol. 3:1-18.doi: 10.3389/fphys.2012.00182
  • Ghobrial MG. 2000. Treatment of cadmium, copper, zinc and iron in wastewater by the hornwort Ceratophyllum demersum. Egyptian Journal of Aquatic Biology and Fisheries. 4(1):35-46. doi: 10.21608/ejabf.2000.1639
  • Gounden D, Kisten K, Moodley R, Shaik S, Jonnalagadda SB. 2016. Impact of spiked concentrations of Cd, Pb, As and Zn in growth medium on elemental uptake of Nasturtium officinale (watercress). J Environ Sci Heal B. 51(1):1-7. doi: 10.1080/03601234.2015.1080477
  • Gür N, Türker OC, Böcük, H. 2016. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere. 157:1-9. doi: 10.1016/j.chemosphere.2016.04.138
  • Hastorun S. 2017. The Mineral Industry of Turkey. 2014 U.S. Geological Survey Minerals Yearbook, Turkey. 46.1-46.26.
  • Howe PD. 1998. A review of boron effects in the environment. Biol Trace Elem Res. 66(1-3):153-166. doi: 10.1007/BF02783135 JMP SAS 1995. JMP. Cary, NC, USA: SAS Institute Inc 302 p. p.
  • Kaçar B, İnal A. 2008. Bitki Analizleri. Ankara: Nobel Yayın Dağıtım Ltd. Şti 892 p. (in Turkish) . Kisten K, Gounden D, Moodley R, Jonnalagadda SB. 2015. Elemental distribution and uptake by watercress (Nasturtium aquaticum) as a function of water quality. J Environ Sci Heal B. 50(6):439-447. doi: 10.1080/03601234.2015.1011971
  • Klink A, Macioł A, Wisłocka M, Krawczyk J. 2013. Metal accumulation and distribution in the organs of Typha latifolia L. (Cattail) and their potential use in bioindication. Limnologica. 43(3):164-168. doi: 10.1016/j.limno.2012.08.012
  • Kose E, Cicek A, Uysal K, Tokatlı C, Emiroglu O, Arslan N. 2015. Heavy Metal accumulations in water, sediment, and some cyprinid species in Porsuk Stream (Turkey). Water Environ Res. 87(3):195-204. doi: 10.2175/106143015X14212658612993
  • Kumari M, Tripathi BD. 2015. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol Environ Saf. 112:80-86. doi: 10.1016/j.ecoenv.2014.10.034
  • Kütahya Dumlupınar Üniversitesi 2018. İleri Teknolojiler Merkezi; [cited 2018 Aug 24]. Available from https://iltem.dpu.edu.tr/analiz-ucretleri/. Li N, Wang J, Song W-Y. 2016. Arsenic uptake and translocation in plants. Plant and Cell Physiology. 57(1):4-13. doi: 10.1093/pcp/pcv143
  • Lone MI, He Z, Stoffella PJ, Yang X. 2008. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J Zhejiang Univ Sci B. 9(3):210-220. doi: 10.1631/jzus.B0710633
  • Matache ML, Marin C, Tudorache A, Rozylowicz L. 2013. Plants accumulating heavy metals in the Danube River wetlands. J Environ Health Sci. 11(39):1-7. doi: 10.1186/2052-336X-11-39
  • Mishra S, Wellenreuther G, Mattusch J, Stark HJ, Kupper H. 2013. Speciation and distribution of arsenic in the non-hyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol. 163:1396-1408.doi: 10.1104/pp.113.224303
  • Moosavi SG, Seghatoleslami MJ. 2013. Phytoremediation: A review. Adv Agri Biol. 1(1):5-11.
  • Nable RO, Bañuelos GS, Paull JG. 1997. Boron toxicity. Plant Soil. 193(2):181-198.doi: 10.1023/A:1004272227886
  • Ozturk F, Duman F, Leblebici Z, Temizgul R. 2010. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot. 69(2):167-174.doi: 10.1016/j.envexpbot.2010.03.006
  • Paschke MW, Perry LG, Redente EF. 2006. Zinc toxicity thresholds for reclamation forb species. Water Air Soil Poll. 170(1-4):317-330.doi: 10.1007/s11270-006-3139-3
  • Priti S, Biswajit B. 2016. Assessment of heavy metal pollution in water resources and their impacts: A Review. Journal of Basic and Applied Engineering Research. 3(8):671-675.
  • Rahman MA, Hasegawa H. 2011. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere. 83(5):633-646.doi: 10.1016/j.chemosphere.2011.02.045
  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC. 2013. Zinc – An Indispensable Micronutrient. Physiol Mol Biol Pla. 19(1):11-20.doi: 10.1007/s12298-012-0139-1
  • Smedley PL, Kinniburgh DG. 2002. A Review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5
  • Srivastava S, Sounderajan S, Udas A, Suprasanna P. 2014. Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecol Eng. 73:297-301.doi: 10.1016/j.ecoleng.2014.09.029
  • Tatar ŞY, Öbek E. 2014. Potential of Lemna gibba L. and Lemna minor L. for accumulation of boron from secondary effluents. Ecol Eng. 70:332-336. doi: 10.1016/j.ecoleng.2014.06.033
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metal toxicity and the environment. In: Luch, A. editor. Molecular, Clinical and Environmental Toxicology. Basel: Springer. p. 133-164.
  • Tokatlı C, Köse E, Çiçek A, Arslan N, Emiroğlu Ö. 2012. Evaluations of water quality and the determination of trace elements on biotic and abiotic components of Felent Stream (Kütahya, Sakarya River Basin/Turkey). Biological Diversity and Conservation. 5/2:73-80.
  • Tripathi DK, Singh S, Singh S, Mishra S, Chauhan DK, Dubey NK. 2015. Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant. 37(139):1-14.doi: 10.1007/s11738-015-1870-3
  • Türkkan A, Soysal A. 2011. TTB Kütahya Gümüşköy gümüş madeni atik depolama baraj göçüğü inceleme raporu; ( cited 2018 Aug 15). Available from https://ttb.org.tr/images/stories/file/TTBKUTAHYARAPOR.doc
  • Uthus E. O. 1992. Evidence for arsenic essentiality. Environ Geochem Hlth. 14(2): 55-58. doi: 10.1007/BF01783629
  • World Health Organization 1998. Environmental Health Criteria 204; [cited 2018 Aug 24]. Available from http://www.inchem.org/documents/ehc/ehc/ehc204.htm
  • Xue P, Yan C, Sun G, Luo Z. 2012. Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environ Sci Pollut R. 19(9):3969-3976. doi: 10.1007/s11356-012-0856-6
  • Yuce G, Pinarbasi A, Ozcelik S, Ugurluoglu D. 2005. Soil and water pollution derived from anthropogenic activities in the Porsuk River Basin, Turkey. Environ Geol. 49:359-375 doi: 10.1007/s00254-005-0072-5
Primary Language en
Subjects Science
Published Date August 2019
Journal Section Research Article
Authors

Orcid: 0000-0002-2325-7496
Author: Betül AKIN
Institution: Department of Biology, Faculty of Art and Science, Dumlupinar University, Kütahya, Turkey
Country: Turkey


Orcid: 0000-0003-2797-3729
Author: Nüket AKANIL BİNGÖL (Primary Author)
Institution: Department of Biology, Faculty of Art and Science, Dumlupinar University, Kütahya, Turkey
Country: Turkey


Dates

Publication Date : August 27, 2019

Bibtex @research article { limnofish416601, journal = {Journal of Limnology and Freshwater Fisheries Research}, issn = {}, eissn = {2149-4428}, address = {}, publisher = {Egirdir Fisheries Research Institute}, year = {2019}, volume = {5}, pages = {76 - 82}, doi = {10.17216/limnofish.416601}, title = {Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya}, key = {cite}, author = {AKIN, Betül and AKANIL BİNGÖL, Nüket} }
APA AKIN, B , AKANIL BİNGÖL, N . (2019). Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya. Journal of Limnology and Freshwater Fisheries Research , 5 (2) , 76-82 . DOI: 10.17216/limnofish.416601
MLA AKIN, B , AKANIL BİNGÖL, N . "Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya". Journal of Limnology and Freshwater Fisheries Research 5 (2019 ): 76-82 <http://www.limnofish.org/en/issue/47894/416601>
Chicago AKIN, B , AKANIL BİNGÖL, N . "Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya". Journal of Limnology and Freshwater Fisheries Research 5 (2019 ): 76-82
RIS TY - JOUR T1 - Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya AU - Betül AKIN , Nüket AKANIL BİNGÖL Y1 - 2019 PY - 2019 N1 - doi: 10.17216/limnofish.416601 DO - 10.17216/limnofish.416601 T2 - Journal of Limnology and Freshwater Fisheries Research JF - Journal JO - JOR SP - 76 EP - 82 VL - 5 IS - 2 SN - -2149-4428 M3 - doi: 10.17216/limnofish.416601 UR - https://doi.org/10.17216/limnofish.416601 Y2 - 2019 ER -
EndNote %0 Journal of Limnology and Freshwater Fisheries Research Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya %A Betül AKIN , Nüket AKANIL BİNGÖL %T Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya %D 2019 %J Journal of Limnology and Freshwater Fisheries Research %P -2149-4428 %V 5 %N 2 %R doi: 10.17216/limnofish.416601 %U 10.17216/limnofish.416601
ISNAD AKIN, Betül , AKANIL BİNGÖL, Nüket . "Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya". Journal of Limnology and Freshwater Fisheries Research 5 / 2 (August 2019): 76-82 . https://doi.org/10.17216/limnofish.416601
AMA AKIN B , AKANIL BİNGÖL N . Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya. Journal of Limnology and Freshwater Fisheries Research. 2019; 5(2): 76-82.
Vancouver AKIN B , AKANIL BİNGÖL N . Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya. Journal of Limnology and Freshwater Fisheries Research. 2019; 5(2): 82-76.