Derleme
BibTex RIS Kaynak Göster

A Review About Cyclomorphosis in Plankton

Yıl 2018, Cilt: 44 Sayı: 2, 187 - 202, 11.10.2018

Öz

Cyclomorphism or seasonal polymorphism was first described in
zooplankton by Lauterborn at 1904.
This term is nowadays referred to as the seasonal
changes in body structures affected by the abiotic (temperature, turbulence,
light) and biotic (nutrient, predator, pressure) circulation in small aquatic
organisms. These seasonal changes may cause the season to look like two
different forms. Cyclomorphosis more prevalent, especially among planktonic
cladocerans, but also among protozoa, dinoflagellates and rotifers. Cyclomorphosis
is a consequence of changes in the physical appearance and behavior of
organisms. Cyclomorphism is reduce the sinking rate of the organism in aquatic
environment and facilitates swimming, at the same time, another advantage is
the defense against feeding with planktons predators. Researchers have shown
that chemicals released by some hunter species (kairomons) cause body spurs
such as caudal spin, hump, and defense against the predator. This review also
details cyclomorphosis and changes in the plankton. 

Kaynakça

  • Alam A (1998). Studies on the culture and cyclomorphosis of certain freshwater planktonic Rotifers. Aquaculture and Fisheries Section Department of Zoology Faculty of Life Sciences, Aligarh Muslim University in India.
  • Anonymus (2016a). http://concerncrisis.blogspot.com.tr/2008/01/scenedesmus.html/(Erişim Tarihi:14.04.2016)
  • Anonymus (2016b). Seasonal changes in zooplankton communities. http://www.people.bethel.edu/Zooplankton_cyclomorph. (Erişim Tarihi: 14.04.2016)
  • Beauchamp PDE (1952). Un facteur de la vericabilite chez les rotifers du genre Brachionus. Seances Acad Sci 234: 219–244.
  • Beckius J (2013). Structural cyclomorphosis in populations of low motility zooplankton. University of Wyoming.
  • Benndorf J, Kranich J, Mehner T, Wagner A (2001). Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from biomanipulated Bautzen Reservoir (Germany). Freshwater Biology 46(2): 199–211.
  • Bertolo A, Lacroix G, Lescher-Moutoue F, Hjelm J (2010). Relationship between fish and the number of horns in Ceratium hırundinella (Dinophyceae): A food web mediated effect on algal morphology. J Phycol 46: 33–40.
  • Black RW, Hairston N Jr (1983). Cyclomorphosis in Eubosmina longispina in a small North American pond. Hydrobiologia 102: 61–67.
  • Brooks JL (1965). Predation and relative helmet size in cyclomorphic Daphnia. Proc Natl Acad Sci 53: 119–126.
  • Brooks JL, Dodson SI (1965). Predation, body size and composition of plankton. Science 150: 28–35.
  • Brooks JL (1966). Cyclomorphosis, turbulence, and overwintering in Daphnia. Verh Int Ver Limnol 16: 1653–1659.
  • Carpenter SR, Kitchell JF, Hodgson JR (1985). Cascading trophic interactions and lake ecosystem productivity. Bio Science 35: 635–639.
  • Cyr H, Curtis JM (1999). Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118: 306–315.
  • Dodson SI (1974). Adaptive change in plankton morphology in response to size- selective predation: A new hypothesis of cyclomorphosis. Limnol Oceanogr 19: 721–729.
  • Dodson SI (1989). The ecological role of chemical stimuli for the zooplankton: predator induced morphology in Daphnia. Oecologia (Berl.) 78: 361–367.
  • Engel K, Schreder T, Tollrian R (2014). Morphological defences of invasive Daphnia lumholtzi protect against vertebrate and invertebrate predators. J Plankton Res 36(4): 1140–1145.
  • Florkin M (2012). Metabolism and growth, 2012 - books.google.com. Erişim Tarihi: 15.04.2016
  • Gilbert JJ (1966). Rotifer ecology and embryological induction. Science 151: 1234–1237.
  • Gilbert JJ (1967). Asplanchna and posterolateral spine production in Brachionus calyciflorus. Arch Hydrobiol 64: 1–62.
  • Gilbert JJ (1988). Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology 69: 1826–1838.
  • Gilbert JJ, Waage JK (1967). Asplanchna, Asplanchna-substance, and posterolateral spine length variation of the rotifer Brachionus calyciflorus in a natural environment. Ecology 48: 1027–1031.
  • Gilbert JJ, Williamson CE (1978). Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 37: 13–22.
  • Gilbert JJ (2011). Induction of different defenses by two enemies in the rotifer Keratella tropica: response priority and sensitivity to enemy density. Freshwater Biology 56: 926–938.
  • Gliwicz ZM, Lampert W (1990). Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71(2): 691–702.
  • Green J, Lan OB (1974) Asplanchna and the spines of Brachionus calydflorus in two Javanese sewage ponds. Fresh Water Biology 4: 223–226.
  • Havel JE (2009). Stanley Ivan Dodson: a distinguished ecologist, naturalist, and teacher. Hydrobiologia 636: 1–6.
  • Hessen DO, Van Donk E (1993). Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch Hydrobiol 127: 129–140.
  • Hutchinson GE (1957). A treatise on limnology, 1st ed. Chapman and Hall, 1015, London.
  • Hutchinson GE (1967). A treatiseo n limnology, vol. II. Introduction to lake biology and the limnoplankton. John Wiley ve Sons, New York.
  • Hutchinson TC (1967). Comparative studies of the ability of species to withstand prolonged periods of darkness. J Ecol 55: 291-299.
  • Jacobs J (1966). Predation and rate of evolution in cyclomorphic Daphnia. Int Ver Theor Angew Limnol Verh 16: 1645-1652.
  • Jacobs J (1967). Untersuchungen zur funktion and evolution der zyklomorphose bei Daphnia mit besonderer berucksichtigung der selektion durch Fische. Arch Hydrobiol 62: 467-541.
  • Karsten G (1907). Das indische phytoplankton. Nach dem Material der Deutschen Tiesee-Expedition 1898-1899. Deutsche Tiefsee- Expedition 1898-1899, 2, 1-328, Taf. 35–54.
  • Kerfoot WC (1975). The divergence of adjacent populations. Ecology 56: 1298–1313.
  • Korosi BJ, Kurek J, Smol PJ (2013). A review on utilizing Bosmina size structure archived in Lake sediments to infer historic shifts in predation regimes. Journal of Plankton Research 35: 444–460.
  • Laforsch C, Tollrian R (2004). Extreme helmet formation in Daphnia cucullata induced by small-scale turbulence. Limnol Oceanogr 29(5): 1127–1131.
  • Long JD, Smalley GW, Barsby T, Anderson JT, Hay ME (2007). Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. Proc Natl Acad Sci 104: 10512–10517.
  • Nunn AD, Harvey JP, Cowx IG (2007). The food and feding relationships of larval and 0+ year juvenile fishes in lowland rivers and connected waterbodies. II. Prey selection and the influence of gape. J Fish Biol 70: 743–757.
  • O’Donnell DR, Fey SB, Cottingham KL (2013). Nutrient availability influences kairomone induced defenses in Scenedesmus acutus (Chlorophyceae). J Plankton Res 35(1): 191–200.
  • Rabus M, Sollradl T, Schaumann HC, Laforsch C (2013). Uncovering ultrastructural defences in Daphnia magna an interdisciplinary approach to assess the predator-induced fortification of the carapace. Plos One 8: e67856.
  • Razak AS, Saisho T (2011). Cyclomorphism in Bosmina longirostris (Crustacea: Cladocera) from Lake Ikeda, Japan. Sains Malaysiana 40(6): 543–547.
  • Riessen HP (1984). The other side of cyclomorphosis: why Daphnia lose their helmets. Limnol Oceanogr 29: 1123–1127.
  • Riessen HP (2012). Costs of predator-induced morphological defences in Daphnia. Freshwater Biology 57: 1422–1433.
  • Riessen HP, Linleyb RD, Altshulerd L, Rabus M, Söllradl T, Schaumannf HC, Laforsche C, Yan NB (2012). Changes in water chemistry can disable plankton prey defenses. Pnas 109: 15377–15382.
  • Rossi V, Maurone C, Benassi G, Ferrari I (2014). Reproduction of Daphnia pulex in a Northern Italy pond. J Limnol 73(3): 459–467.
  • Sakamoto M, Hanazato T (2008). Antennule shape and body size of Bosmina: key factors determining its vulnerability to predacious Copepoda. Limnology 9: 27–34.
  • Sakamoto M, Chang KH, Hanazato T (2007). Plastic phenotypes of antennule shape in Bosmina longirostris controlled by physical stimuli from predators. Limnol Oceanogr 52: 2072–2078.
  • Sommer U, Sommer F, Santer B, Zollner E, Jurgens K, Jamieson C, Boersma M, Gocke K (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.
  • Sprules WG, Carter JCH, Ramcharan CW (1984). Phenotypic associations in the Bosminidae (Cladocera): zoogeographic patterns. Limnol Oceanogr 29: 161–169.
  • Tanyolaç J (2011). Limnoloji. Tatlı su bilimi. 6.Baskı. Hatipoğlu Yayınları.
  • Tollrian R (1995). Predator-induced morphological defences: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76: 1691–1705.
  • Tollrian R, Dodson SI (1999). Inducible defenses in Cladocera: constraints, costs, and multipredator environments. In: The Ecology and Evolution of Inducible Defenses (Eds R. Tollrian & C.D. Harvell), pp. 177–202.
  • Toumi H, Bejaoui M, Boumaiza M (2015). Cyclomorphosis in Daphnia magna and Ceriodaphnia reticulate (Cladocera) from northern Tunisian groundwater: influence of temperature and invertebrates? Crustaceana 88: 1139–1148.
  • Wetzel RG (1983). Limnology, 2nd ed. Saunders. College Publisher, Philadelphia.
  • Wetzel RG (2001). Limnological analyses, 3rd Limnology: lake and river ecosystems.
  • Wojtal A, Frankiewicz P, Lotkowska WI (2004). The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir. Hydrobiologia 515: 123–135.
  • Wong CK, Sprules WG (1985). Size-selective feeding by the predatory copepod Epischura lacustris Forbes. Can J Fish Aquat Sci 42: 189–193.
  • Xie P, Iwakuma T, Fujii K (1998). Changes in the structure of a zooplankton community during a Ceratium (Dinoflagellate) bloom in a eutrophic fishless pond. J Plankton Res 20: 1663–1678.
  • Yurista PM (2000). Cyclomorphosis in Daphnia lumholtzi induced by temperature. Fresh Water Biology 43: 207–213.
  • Zaret TM (1980). Predation and freshwater communities. Yale University Press, New Haven, London, 155–180.

Planktonlarda Siklomorfozis Üzerine Derleme

Yıl 2018, Cilt: 44 Sayı: 2, 187 - 202, 11.10.2018

Öz

Siklomorfizm
veya mevsimsel polimorfizm zooplanktonlarda ilk olarak Lauterborn tarafından
1904 yılında tanımlanmıştır. Bu terim günümüzde küçük akuatik organizmalarda
abiyotik (sıcaklık, türbülans, ışık) ve biyotik (besin, predatör baskısı)
çevrenin etkisiyle vücut yapılarında mevsimsel olarak meydana gelen fiziksel
değişiklikler olarak adlandırılmaktadır. Bu mevsimsel değişiklikler türün
mevsimsel olarak iki farklı form gibi görünmesine neden olabilmektedir.
Siklomorfosiz özellikle planktonik kladoseralar arasında daha fazla
gözlemlenirken, ayrıca protozoa, dinoflagellat ve rotiferler arasında da yaygın
olarak görülmektedir. Siklomorfosiz sonucu canlıların fiziksel görünüşlerinde
ve davranışlarında birtakım değişiklikler söz konusudur. Siklomorfosiz akuatik
ortamda organizmanın batma oranını azaltı
p yüzmede kolaylık sağlarken, aynı
zamanda planktonla beslenen predatörlere karşı da bir savunma mekanizması
olarak kullanılmaktadır. Araştırmacılar tarafından bazı avcı türlerin
salgıladığı kimyasalların (kairomonlar) canlıda kaudal spin, tepelik gibi vücut
çıkıntılarına neden olduğu ortaya konmuştur. Bu derleme de planktonlardaki
siklomorfosiz olayı ve meydana gelen değişikliklerden detaylı olarak
bahsedilmiştir. 

Kaynakça

  • Alam A (1998). Studies on the culture and cyclomorphosis of certain freshwater planktonic Rotifers. Aquaculture and Fisheries Section Department of Zoology Faculty of Life Sciences, Aligarh Muslim University in India.
  • Anonymus (2016a). http://concerncrisis.blogspot.com.tr/2008/01/scenedesmus.html/(Erişim Tarihi:14.04.2016)
  • Anonymus (2016b). Seasonal changes in zooplankton communities. http://www.people.bethel.edu/Zooplankton_cyclomorph. (Erişim Tarihi: 14.04.2016)
  • Beauchamp PDE (1952). Un facteur de la vericabilite chez les rotifers du genre Brachionus. Seances Acad Sci 234: 219–244.
  • Beckius J (2013). Structural cyclomorphosis in populations of low motility zooplankton. University of Wyoming.
  • Benndorf J, Kranich J, Mehner T, Wagner A (2001). Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from biomanipulated Bautzen Reservoir (Germany). Freshwater Biology 46(2): 199–211.
  • Bertolo A, Lacroix G, Lescher-Moutoue F, Hjelm J (2010). Relationship between fish and the number of horns in Ceratium hırundinella (Dinophyceae): A food web mediated effect on algal morphology. J Phycol 46: 33–40.
  • Black RW, Hairston N Jr (1983). Cyclomorphosis in Eubosmina longispina in a small North American pond. Hydrobiologia 102: 61–67.
  • Brooks JL (1965). Predation and relative helmet size in cyclomorphic Daphnia. Proc Natl Acad Sci 53: 119–126.
  • Brooks JL, Dodson SI (1965). Predation, body size and composition of plankton. Science 150: 28–35.
  • Brooks JL (1966). Cyclomorphosis, turbulence, and overwintering in Daphnia. Verh Int Ver Limnol 16: 1653–1659.
  • Carpenter SR, Kitchell JF, Hodgson JR (1985). Cascading trophic interactions and lake ecosystem productivity. Bio Science 35: 635–639.
  • Cyr H, Curtis JM (1999). Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118: 306–315.
  • Dodson SI (1974). Adaptive change in plankton morphology in response to size- selective predation: A new hypothesis of cyclomorphosis. Limnol Oceanogr 19: 721–729.
  • Dodson SI (1989). The ecological role of chemical stimuli for the zooplankton: predator induced morphology in Daphnia. Oecologia (Berl.) 78: 361–367.
  • Engel K, Schreder T, Tollrian R (2014). Morphological defences of invasive Daphnia lumholtzi protect against vertebrate and invertebrate predators. J Plankton Res 36(4): 1140–1145.
  • Florkin M (2012). Metabolism and growth, 2012 - books.google.com. Erişim Tarihi: 15.04.2016
  • Gilbert JJ (1966). Rotifer ecology and embryological induction. Science 151: 1234–1237.
  • Gilbert JJ (1967). Asplanchna and posterolateral spine production in Brachionus calyciflorus. Arch Hydrobiol 64: 1–62.
  • Gilbert JJ (1988). Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology 69: 1826–1838.
  • Gilbert JJ, Waage JK (1967). Asplanchna, Asplanchna-substance, and posterolateral spine length variation of the rotifer Brachionus calyciflorus in a natural environment. Ecology 48: 1027–1031.
  • Gilbert JJ, Williamson CE (1978). Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 37: 13–22.
  • Gilbert JJ (2011). Induction of different defenses by two enemies in the rotifer Keratella tropica: response priority and sensitivity to enemy density. Freshwater Biology 56: 926–938.
  • Gliwicz ZM, Lampert W (1990). Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71(2): 691–702.
  • Green J, Lan OB (1974) Asplanchna and the spines of Brachionus calydflorus in two Javanese sewage ponds. Fresh Water Biology 4: 223–226.
  • Havel JE (2009). Stanley Ivan Dodson: a distinguished ecologist, naturalist, and teacher. Hydrobiologia 636: 1–6.
  • Hessen DO, Van Donk E (1993). Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch Hydrobiol 127: 129–140.
  • Hutchinson GE (1957). A treatise on limnology, 1st ed. Chapman and Hall, 1015, London.
  • Hutchinson GE (1967). A treatiseo n limnology, vol. II. Introduction to lake biology and the limnoplankton. John Wiley ve Sons, New York.
  • Hutchinson TC (1967). Comparative studies of the ability of species to withstand prolonged periods of darkness. J Ecol 55: 291-299.
  • Jacobs J (1966). Predation and rate of evolution in cyclomorphic Daphnia. Int Ver Theor Angew Limnol Verh 16: 1645-1652.
  • Jacobs J (1967). Untersuchungen zur funktion and evolution der zyklomorphose bei Daphnia mit besonderer berucksichtigung der selektion durch Fische. Arch Hydrobiol 62: 467-541.
  • Karsten G (1907). Das indische phytoplankton. Nach dem Material der Deutschen Tiesee-Expedition 1898-1899. Deutsche Tiefsee- Expedition 1898-1899, 2, 1-328, Taf. 35–54.
  • Kerfoot WC (1975). The divergence of adjacent populations. Ecology 56: 1298–1313.
  • Korosi BJ, Kurek J, Smol PJ (2013). A review on utilizing Bosmina size structure archived in Lake sediments to infer historic shifts in predation regimes. Journal of Plankton Research 35: 444–460.
  • Laforsch C, Tollrian R (2004). Extreme helmet formation in Daphnia cucullata induced by small-scale turbulence. Limnol Oceanogr 29(5): 1127–1131.
  • Long JD, Smalley GW, Barsby T, Anderson JT, Hay ME (2007). Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. Proc Natl Acad Sci 104: 10512–10517.
  • Nunn AD, Harvey JP, Cowx IG (2007). The food and feding relationships of larval and 0+ year juvenile fishes in lowland rivers and connected waterbodies. II. Prey selection and the influence of gape. J Fish Biol 70: 743–757.
  • O’Donnell DR, Fey SB, Cottingham KL (2013). Nutrient availability influences kairomone induced defenses in Scenedesmus acutus (Chlorophyceae). J Plankton Res 35(1): 191–200.
  • Rabus M, Sollradl T, Schaumann HC, Laforsch C (2013). Uncovering ultrastructural defences in Daphnia magna an interdisciplinary approach to assess the predator-induced fortification of the carapace. Plos One 8: e67856.
  • Razak AS, Saisho T (2011). Cyclomorphism in Bosmina longirostris (Crustacea: Cladocera) from Lake Ikeda, Japan. Sains Malaysiana 40(6): 543–547.
  • Riessen HP (1984). The other side of cyclomorphosis: why Daphnia lose their helmets. Limnol Oceanogr 29: 1123–1127.
  • Riessen HP (2012). Costs of predator-induced morphological defences in Daphnia. Freshwater Biology 57: 1422–1433.
  • Riessen HP, Linleyb RD, Altshulerd L, Rabus M, Söllradl T, Schaumannf HC, Laforsche C, Yan NB (2012). Changes in water chemistry can disable plankton prey defenses. Pnas 109: 15377–15382.
  • Rossi V, Maurone C, Benassi G, Ferrari I (2014). Reproduction of Daphnia pulex in a Northern Italy pond. J Limnol 73(3): 459–467.
  • Sakamoto M, Hanazato T (2008). Antennule shape and body size of Bosmina: key factors determining its vulnerability to predacious Copepoda. Limnology 9: 27–34.
  • Sakamoto M, Chang KH, Hanazato T (2007). Plastic phenotypes of antennule shape in Bosmina longirostris controlled by physical stimuli from predators. Limnol Oceanogr 52: 2072–2078.
  • Sommer U, Sommer F, Santer B, Zollner E, Jurgens K, Jamieson C, Boersma M, Gocke K (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.
  • Sprules WG, Carter JCH, Ramcharan CW (1984). Phenotypic associations in the Bosminidae (Cladocera): zoogeographic patterns. Limnol Oceanogr 29: 161–169.
  • Tanyolaç J (2011). Limnoloji. Tatlı su bilimi. 6.Baskı. Hatipoğlu Yayınları.
  • Tollrian R (1995). Predator-induced morphological defences: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76: 1691–1705.
  • Tollrian R, Dodson SI (1999). Inducible defenses in Cladocera: constraints, costs, and multipredator environments. In: The Ecology and Evolution of Inducible Defenses (Eds R. Tollrian & C.D. Harvell), pp. 177–202.
  • Toumi H, Bejaoui M, Boumaiza M (2015). Cyclomorphosis in Daphnia magna and Ceriodaphnia reticulate (Cladocera) from northern Tunisian groundwater: influence of temperature and invertebrates? Crustaceana 88: 1139–1148.
  • Wetzel RG (1983). Limnology, 2nd ed. Saunders. College Publisher, Philadelphia.
  • Wetzel RG (2001). Limnological analyses, 3rd Limnology: lake and river ecosystems.
  • Wojtal A, Frankiewicz P, Lotkowska WI (2004). The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir. Hydrobiologia 515: 123–135.
  • Wong CK, Sprules WG (1985). Size-selective feeding by the predatory copepod Epischura lacustris Forbes. Can J Fish Aquat Sci 42: 189–193.
  • Xie P, Iwakuma T, Fujii K (1998). Changes in the structure of a zooplankton community during a Ceratium (Dinoflagellate) bloom in a eutrophic fishless pond. J Plankton Res 20: 1663–1678.
  • Yurista PM (2000). Cyclomorphosis in Daphnia lumholtzi induced by temperature. Fresh Water Biology 43: 207–213.
  • Zaret TM (1980). Predation and freshwater communities. Yale University Press, New Haven, London, 155–180.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Duygu Berdi

Evren Yıldıztugay

Mustafa Küçüködük Bu kişi benim

Ahmet Altındağ Bu kişi benim

Yayımlanma Tarihi 11 Ekim 2018
Gönderilme Tarihi 25 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 44 Sayı: 2

Kaynak Göster

APA Berdi, D., Yıldıztugay, E., Küçüködük, M., Altındağ, A. (2018). Planktonlarda Siklomorfozis Üzerine Derleme. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 44(2), 187-202.
AMA Berdi D, Yıldıztugay E, Küçüködük M, Altındağ A. Planktonlarda Siklomorfozis Üzerine Derleme. sufefd. Ekim 2018;44(2):187-202.
Chicago Berdi, Duygu, Evren Yıldıztugay, Mustafa Küçüködük, ve Ahmet Altındağ. “Planktonlarda Siklomorfozis Üzerine Derleme”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 44, sy. 2 (Ekim 2018): 187-202.
EndNote Berdi D, Yıldıztugay E, Küçüködük M, Altındağ A (01 Ekim 2018) Planktonlarda Siklomorfozis Üzerine Derleme. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 44 2 187–202.
IEEE D. Berdi, E. Yıldıztugay, M. Küçüködük, ve A. Altındağ, “Planktonlarda Siklomorfozis Üzerine Derleme”, sufefd, c. 44, sy. 2, ss. 187–202, 2018.
ISNAD Berdi, Duygu vd. “Planktonlarda Siklomorfozis Üzerine Derleme”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 44/2 (Ekim 2018), 187-202.
JAMA Berdi D, Yıldıztugay E, Küçüködük M, Altındağ A. Planktonlarda Siklomorfozis Üzerine Derleme. sufefd. 2018;44:187–202.
MLA Berdi, Duygu vd. “Planktonlarda Siklomorfozis Üzerine Derleme”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, c. 44, sy. 2, 2018, ss. 187-02.
Vancouver Berdi D, Yıldıztugay E, Küçüködük M, Altındağ A. Planktonlarda Siklomorfozis Üzerine Derleme. sufefd. 2018;44(2):187-202.

Dergi Sahibi: Selçuk Üniversitesi Fen Fakültesi Adına Rektör Prof. Dr. Metin AKSOY
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi temel bilimlerde ve diğer uygulamalı bilimlerde özgün sonuçları olan Türkçe ve İngilizce makaleleri kabul eder. Dergide ayrıca güncel yenilikleri içeren derlemelere de yer verilebilir.
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi;
İlk olarak 1981 yılında S.Ü. Fen-Edebiyat Fakültesi Dergisi olarak yayın hayatına başlamış; 1984 yılına kadar (Sayı 1-4) bu adla yayınlanmıştır.
1984 yılında S.Ü. Fen-Edeb. Fak. Fen Dergisi olarak adı değiştirilmiş 5. sayıdan itibaren bu isimle yayınlanmıştır.
3 Aralık 2008 tarih ve 27073 sayılı Resmi Gazetede yayımlanan 2008/4344 sayılı Bakanlar Kurulu Kararı ile Fen-Edebiyat Fakültesi; Fen Fakültesi ve Edebiyat Fakültesi olarak ayrılınca 2009 yılından itibaren dergi Fen Fakültesi Fen Dergisi olarak çıkmıştır.
2016 yılından itibaren DergiPark’ta taranmaktadır.


88x31.png

Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.