Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Removal of Methylene Blue with SiCl@AgNP Nanocomposite

Yıl 2021, Cilt: 25 Sayı: 3, 721 - 730, 30.12.2021
https://doi.org/10.19113/sdufenbed.938832

Öz

In this study; SiCl@AgNP nanocomposite was synthesized by biosynthesis method using water extract of bay leaf (Laurus nobilis). The structure of the produced nanocomposite was characterized by UV-Vis., FTIR, XRD and SEM techniques. Then, the produced nanocomposite adsorbent was evaluated in the removal of methylene blue (MM), which is a cationic dye, from the aqueous solution. First, the effects of solution pH, initial MM concentration, contact time, adsorbent dose and ambient temperature were investigated among the parameters that may affect the adsorption process. The suitability of the experimental data to the Langmuir, Freundlich and D-R isotherms was analyzed and it was observed that it was compatible with the Langmuir isotherm model. Thermodynamic parameters of Gibbs free energy, entropy and enthalpy change were calculated and the values obtained showed the applicability of MM adsorption and its endothermic character. It has been determined that low-cost SiCl@AgNP nanocomposite produced by biosynthesis method is an effective adsorbent in MM dyestuff removal from aqueous solution. In addition, it has been suggested that the produced nanocomposite adsorbent can be used in the removal of other cationic dyestuffs.

Kaynakça

  • [1] Kadıoğlu, S. 2016. Metal bezeli silika partiküllerinin yarı-biyosentezle üretimi, yapısal analizi ve özelliklerinin incelenmesi. Muğla Sıtkı Koçman Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 226s, Muğla.
  • [2] Khajeh, M., Kaykhaii, M., Sharafi, A. 2013. Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silvernanoparticles from water samples. Journal of Industrial and Engineering Chemistry, 5, 1624–1630.
  • [3] Salem, M. A., Elsharkawy, R. G., Hablas, M. F. 2012. Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium and thermodynamic studies. European Polymer Journal, 75, 577-590.
  • [4] Ghaedi, M., Sadeghian, B., Pebdani, A. A., Sahraei, R., Daneshfar, A., Duran, C. 2012. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chemical Engineering Journal, 187, 133– 141.
  • [5] Vilchis-Nestor, A. R., Trujillo-Reyes, J., Colı´n-Molina, J. A., Sa´nchez-Mendieta, V., Avalos-Borja, M. 2014. Biogenic silver nanoparticles on carbonaceous material from sewage sludge for degradation of methylene blue in aqueous solution. International Journal of Environmental Science and Technology, 11, 977–986.
  • [6] Satapathy, M. K., Banerjee, P., Das, P. 2015. Plant-mediated synhesis of silver-nanocomposite as novel effective azo dye adsorbent. Applied Nanoscience, 5(1), 1-9.
  • [7] Devi, T. A., Ananthi, N., Amaladhas, T. P. 2016. Photobiological synthesis of noble metal nanoparticles using Hydrocotyle asiatica and application as catalyst for the photodegradation of cationic dyes. Journal of Nanostructure in Chemistry, 6, 75–92.
  • [8] Saha, J., Begum, A., Mukherjee, A., Kumar, S. 2017. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environment Research, 27, 245-250.
  • [9] Nguyen, T. D., Dang, C. H., Mai, D. T. 2018. Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-βcyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydrate Polymers, 197, 29–37.
  • [10] Joseph, S., Mathew, B. 2015. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. Journal of Molecular Liquids, 204, 184–191.
  • [11] Edison, T. N. J. I., Atchudan, R., Kamal, C., Lee, Y. R. 2016. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess and Biosystems Engineering, 39, 1401–1408.
  • [12] Bordbar, M. 2017. Biosynthesis of Ag/almond shell nanocomposite as a cost-effective and efficient catalyst for degradation of 4-nitrophenol and organic dyes. Royal Society of Chemistry, 7, 180-189.
  • [13] Sadeghi, S., Sheikhzadeh, E. 2009. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples. Journal of Hazardous Material, 163, 861–868.
  • [14] Sreekanth, T. V. M., Pandurangan, M., Jung, M. J., Lee, Y. R., Eom, I. Y. 2016. Eco-friendly decoration of graphene oxide with green synthesized silver nanoparticles: cytotoxic activity. Research on Chemical Intermediates, 42, 5665–5676.
  • [15] Ding, J., Bu, Y., Ou, M., Yu, Y., Zhong, Q., Fan, M. 2017. Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 202, 314–325.
  • [16] Liu, X., Liang, M., Liu, M., Su, R., Wang, M., Qi, W., He, Z. 2016. Highly efficient catalysis of azo dyes using recyclable silver nanoparticles immobilized on Tannic acid-grafted eggshell membrane. Nanoscale Research Letters, 11(440), 1-9.
  • [17] Liu, Y., Liu, Y .J. 2008. Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229-242.
  • [18] Gök, C. 2010. Uranyum ve Toryumun Adsorpsiyonu için Aljinat Biyopolimerlerinin Hazırlanması ve Çeşitli Uygulama Alanlarının İncelenmesi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 136s, İzmir.
  • [19] Kırkan, B. 2012. Yatağan Termik Santrali Kül Dağındaki Toryumun Kül ve Topraktaki Davranışının ve Yeraltı Sularına Geçişinin İncelenmesi, Katı Faz Ekstraksiyonu ile Deriştirilmesi. Muğla Sıtkı Koçman Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 204s, Muğla.
  • [20] Uğurlu, M. 2009. Adsorption of a textile dye onto activated sepiolite. Microporous and Mesoporous Materials, 119, 276-283.
  • [21] Uğurlu, M., Karaoğlu, M. H. 2011. Adsorption of ammonium from an aqueous solution by fly ash and sepiolite: Isotherm, kinetic and thermodynamic analysis. Microporous and Mesoporous Materials, 139, 173-178.
  • [22] Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinium. Journal of American Chemical Society, 40, 1361–1403.
  • [23] Freundlich, H. M. F. 1906. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie (Leipzig), 57A, 385–470.
  • [24] Dubinin, M. M., Zaverina, E. D., Radushkevich, L. V. 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.
  • [25] Ghaedi, M., Heidarpour, S., Kokhdan, S. N., Sahraie, R., Daneshfar, A., Brazesh, B., 2012. Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of Methylene blue: Kinetic and isotherm study of removal process. Powder Technology, 228, 18–25.
  • [26] Van, H. T., Nguyen, T. M. P., Thao, V. T., Vu, X. H., Nguyen, T. V., Nguyen, L. H., 2018. Applying activated carbon derived from coconut shell loaded by silver nanoparticles to remove methylene blue in aqueous solution. Water Air Soil Pollution, 229(393), 1-14.
  • [27] Hu, M., Yan, X., Hu, X., Feng, R., Zhou, M. 2019. Synthesis of silver decorated silica nanoparticles with rough surfaces as adsorbent and catalyst for methylene blue removal. Journal of Sol-Gel Science and Technology, 89, 754–763.
  • [28] Guzel Kaya, G., Yilmaz, E., Deveci, H. 2019. A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high-efficient removal of methylene blue: Parameter optimization using Taguchi experimental design. Journal of Chemical Technology & Biotechnology, 94, 2729–2737.
  • [29] Jabbari, R., Ghasemi, N. 2021. Investigating methylene blue dye adsorption ısotherms using silver nano particles provided by aqueous extract of tragopogon buphthalmoides. Chemical Methodologies, 5, 21-29.
  • [30] Ghaedi, M., Roosta, M. A., Ghaedi, M., Ostovan, A., Tyagi, I., Agarwal, S., Gupta, V. K. 2018. Removal of methylene blue by silver nanoparticles loaded on activated carbon by an ultrasound-assisted device: optimization by experimental design methodology. Research on Chemical Intermediates, 44, 2929-2950.

Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi

Yıl 2021, Cilt: 25 Sayı: 3, 721 - 730, 30.12.2021
https://doi.org/10.19113/sdufenbed.938832

Öz

Bu çalışmada; defne yaprağı (Laurus nobilis) su özütü kullanılarak biyosentez yöntemi ile SiCl@AgNP nanokompozit sentezlenmiştir. Üretilmiş olan nanokompozitin yapısı UV-Vis., FTIR, XRD ve SEM teknikleri ile karakterize edilmiştir. Daha sonra üretilmiş olan nanokompozit adsorbent, sulu çözeltiden bir katyonik boyar madde olan metilen mavisinin (MM) gideriminde değerlendirilmiştir. İlk olarak adsorpsiyon sürecine etki edebilecek parametrelerden, çözelti pH'ı, başlangıç MM konsantrasyonu, temas süresi, adsorbent dozu ve ortam sıcaklığının etkisi incelenmiştir. Deneysel verilerin Langmuir, Freundlich ve D-R izotermlerine uygunluğu analiz edilmiş ve Langmuir izoterm modeli ile uyum sağladığı gözlemlenmiştir. Gibbs serbest enerjisi, entropi ve entalpi değişikliği termodinamik parametreleri hesaplanmış ve elde edilen değerler MM adsorpsiyonunun uygulanabilirliğini ve endotermik karakterli olduğunu göstermiştir. Biyosentez yöntemi ile üretilmiş olan düşük maliyetli SiCl@AgNP nanokompozitinin sulu çözeltiden MM boyar madde gideriminde etkili bir adsorbent olduğu belirlenmiştir. Ayrıca üretilmiş olan nanokompozit adsorbentin diğer katyonik boyar maddelerin gideriminde de kullanılabileceği önerilmiştir.

Kaynakça

  • [1] Kadıoğlu, S. 2016. Metal bezeli silika partiküllerinin yarı-biyosentezle üretimi, yapısal analizi ve özelliklerinin incelenmesi. Muğla Sıtkı Koçman Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 226s, Muğla.
  • [2] Khajeh, M., Kaykhaii, M., Sharafi, A. 2013. Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silvernanoparticles from water samples. Journal of Industrial and Engineering Chemistry, 5, 1624–1630.
  • [3] Salem, M. A., Elsharkawy, R. G., Hablas, M. F. 2012. Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium and thermodynamic studies. European Polymer Journal, 75, 577-590.
  • [4] Ghaedi, M., Sadeghian, B., Pebdani, A. A., Sahraei, R., Daneshfar, A., Duran, C. 2012. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chemical Engineering Journal, 187, 133– 141.
  • [5] Vilchis-Nestor, A. R., Trujillo-Reyes, J., Colı´n-Molina, J. A., Sa´nchez-Mendieta, V., Avalos-Borja, M. 2014. Biogenic silver nanoparticles on carbonaceous material from sewage sludge for degradation of methylene blue in aqueous solution. International Journal of Environmental Science and Technology, 11, 977–986.
  • [6] Satapathy, M. K., Banerjee, P., Das, P. 2015. Plant-mediated synhesis of silver-nanocomposite as novel effective azo dye adsorbent. Applied Nanoscience, 5(1), 1-9.
  • [7] Devi, T. A., Ananthi, N., Amaladhas, T. P. 2016. Photobiological synthesis of noble metal nanoparticles using Hydrocotyle asiatica and application as catalyst for the photodegradation of cationic dyes. Journal of Nanostructure in Chemistry, 6, 75–92.
  • [8] Saha, J., Begum, A., Mukherjee, A., Kumar, S. 2017. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environment Research, 27, 245-250.
  • [9] Nguyen, T. D., Dang, C. H., Mai, D. T. 2018. Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-βcyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydrate Polymers, 197, 29–37.
  • [10] Joseph, S., Mathew, B. 2015. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. Journal of Molecular Liquids, 204, 184–191.
  • [11] Edison, T. N. J. I., Atchudan, R., Kamal, C., Lee, Y. R. 2016. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess and Biosystems Engineering, 39, 1401–1408.
  • [12] Bordbar, M. 2017. Biosynthesis of Ag/almond shell nanocomposite as a cost-effective and efficient catalyst for degradation of 4-nitrophenol and organic dyes. Royal Society of Chemistry, 7, 180-189.
  • [13] Sadeghi, S., Sheikhzadeh, E. 2009. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples. Journal of Hazardous Material, 163, 861–868.
  • [14] Sreekanth, T. V. M., Pandurangan, M., Jung, M. J., Lee, Y. R., Eom, I. Y. 2016. Eco-friendly decoration of graphene oxide with green synthesized silver nanoparticles: cytotoxic activity. Research on Chemical Intermediates, 42, 5665–5676.
  • [15] Ding, J., Bu, Y., Ou, M., Yu, Y., Zhong, Q., Fan, M. 2017. Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 202, 314–325.
  • [16] Liu, X., Liang, M., Liu, M., Su, R., Wang, M., Qi, W., He, Z. 2016. Highly efficient catalysis of azo dyes using recyclable silver nanoparticles immobilized on Tannic acid-grafted eggshell membrane. Nanoscale Research Letters, 11(440), 1-9.
  • [17] Liu, Y., Liu, Y .J. 2008. Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229-242.
  • [18] Gök, C. 2010. Uranyum ve Toryumun Adsorpsiyonu için Aljinat Biyopolimerlerinin Hazırlanması ve Çeşitli Uygulama Alanlarının İncelenmesi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 136s, İzmir.
  • [19] Kırkan, B. 2012. Yatağan Termik Santrali Kül Dağındaki Toryumun Kül ve Topraktaki Davranışının ve Yeraltı Sularına Geçişinin İncelenmesi, Katı Faz Ekstraksiyonu ile Deriştirilmesi. Muğla Sıtkı Koçman Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 204s, Muğla.
  • [20] Uğurlu, M. 2009. Adsorption of a textile dye onto activated sepiolite. Microporous and Mesoporous Materials, 119, 276-283.
  • [21] Uğurlu, M., Karaoğlu, M. H. 2011. Adsorption of ammonium from an aqueous solution by fly ash and sepiolite: Isotherm, kinetic and thermodynamic analysis. Microporous and Mesoporous Materials, 139, 173-178.
  • [22] Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinium. Journal of American Chemical Society, 40, 1361–1403.
  • [23] Freundlich, H. M. F. 1906. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie (Leipzig), 57A, 385–470.
  • [24] Dubinin, M. M., Zaverina, E. D., Radushkevich, L. V. 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.
  • [25] Ghaedi, M., Heidarpour, S., Kokhdan, S. N., Sahraie, R., Daneshfar, A., Brazesh, B., 2012. Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of Methylene blue: Kinetic and isotherm study of removal process. Powder Technology, 228, 18–25.
  • [26] Van, H. T., Nguyen, T. M. P., Thao, V. T., Vu, X. H., Nguyen, T. V., Nguyen, L. H., 2018. Applying activated carbon derived from coconut shell loaded by silver nanoparticles to remove methylene blue in aqueous solution. Water Air Soil Pollution, 229(393), 1-14.
  • [27] Hu, M., Yan, X., Hu, X., Feng, R., Zhou, M. 2019. Synthesis of silver decorated silica nanoparticles with rough surfaces as adsorbent and catalyst for methylene blue removal. Journal of Sol-Gel Science and Technology, 89, 754–763.
  • [28] Guzel Kaya, G., Yilmaz, E., Deveci, H. 2019. A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high-efficient removal of methylene blue: Parameter optimization using Taguchi experimental design. Journal of Chemical Technology & Biotechnology, 94, 2729–2737.
  • [29] Jabbari, R., Ghasemi, N. 2021. Investigating methylene blue dye adsorption ısotherms using silver nano particles provided by aqueous extract of tragopogon buphthalmoides. Chemical Methodologies, 5, 21-29.
  • [30] Ghaedi, M., Roosta, M. A., Ghaedi, M., Ostovan, A., Tyagi, I., Agarwal, S., Gupta, V. K. 2018. Removal of methylene blue by silver nanoparticles loaded on activated carbon by an ultrasound-assisted device: optimization by experimental design methodology. Research on Chemical Intermediates, 44, 2929-2950.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bülent Kırkan 0000-0003-3462-0681

Burcu Akyol Bu kişi benim 0000-0003-0543-0264

Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 3

Kaynak Göster

APA Kırkan, B., & Akyol, B. (2021). Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 721-730. https://doi.org/10.19113/sdufenbed.938832
AMA Kırkan B, Akyol B. Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi. SDÜ Fen Bil Enst Der. Aralık 2021;25(3):721-730. doi:10.19113/sdufenbed.938832
Chicago Kırkan, Bülent, ve Burcu Akyol. “Metilen Mavisinin SiCl@AgNP Nanokompoziti Ile Gideriminin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 3 (Aralık 2021): 721-30. https://doi.org/10.19113/sdufenbed.938832.
EndNote Kırkan B, Akyol B (01 Aralık 2021) Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 3 721–730.
IEEE B. Kırkan ve B. Akyol, “Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi”, SDÜ Fen Bil Enst Der, c. 25, sy. 3, ss. 721–730, 2021, doi: 10.19113/sdufenbed.938832.
ISNAD Kırkan, Bülent - Akyol, Burcu. “Metilen Mavisinin SiCl@AgNP Nanokompoziti Ile Gideriminin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (Aralık 2021), 721-730. https://doi.org/10.19113/sdufenbed.938832.
JAMA Kırkan B, Akyol B. Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi. SDÜ Fen Bil Enst Der. 2021;25:721–730.
MLA Kırkan, Bülent ve Burcu Akyol. “Metilen Mavisinin SiCl@AgNP Nanokompoziti Ile Gideriminin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 3, 2021, ss. 721-30, doi:10.19113/sdufenbed.938832.
Vancouver Kırkan B, Akyol B. Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi. SDÜ Fen Bil Enst Der. 2021;25(3):721-30.

e-ISSN: 1308-6529