Araştırma Makalesi
BibTex RIS Kaynak Göster

Lityum iyon pil negatif elektrotlar için kabuk/çekirdek yapılı karbon kaplanmış silisyum tozların sentezi, karakterizasyonu ve elektrokimyasal performansı

Yıl 2017, Cilt: 21 Sayı: 3, 489 - 495, 01.06.2017
https://doi.org/10.16984/saufenbilder.272254

Öz

Silisyum nanotoz yüzeyleri, poliakrilonitril (PAN) polimerinin pirolizi ile amorf karbon ile kaplanmıştır. Amorf
karbon kaplanmış siliyum tozların (Si-C) mikroyapı incelemeleri taramalı elektron mikroskobu (SEM) ile
gerçekleştirilmiş ve geçirimli elektron mikroskobu (TEM) ile karbon kaplama kalınlığı tayin edilmiştir. Enerji dağılım
X-ışınları spektroskopisi (EDS) ile Si-C tozlarının elementel analizleri yapılmıştır. Si-C tozlarının yapısal ve faz
analizleri X-ışınları difraktometresi (XRD) ve Raman spektroskopisi ile incelenmiştir. Üretilen Si-C tozlar bakır akım
toplayıcı üzerinde elektrot olarak hazırlanmış ve CR2016 düğme tipi hücreler kullanılarak 200 mA/g sabit akım
yoğunluğunda elektrokimyasal testleri gerçekleştirilmiştir. Elektrokimyasal test sonuçlarına göre, karbon kaplama
işlemi silisyum anotların hacim genleşmesinden kaynaklı problemleri azaltarak elektrokimyasal davranışlarını
iyileştirmiş ve 30 çevrim sonunda yaklaşık 770 mAh/g deşarj kapasitesi göstermiştir.

Kaynakça

  • A. C. Zhang, Y. A. Ruixiang, Z. A. Tengfei, C. C. Zhixin, L. A. Huakun, G. Zaiping, “Mass Production Of Three Dimensional Hierarchical Microfibers Constructed From Silicon-Carbon Core-Shell Architectures With High-Performance Lithium Storage”, Carbon, cilt 72, pp. 169-175, Jun. 2014.
  • W. Junxiong, Q. Xianying, M. Cui, H. Yan-Bing, L. Gemeng, Z. Dong, L. Ming, H. Cuiping, L. Baohua, K. Feiyu, “Honeycomb-Cobweb Inspired Hierarchical Core-Shell Structure Design For Electrospun Silicon/Carbon Fibers As Lithium-Ion Battery Anodes”, Carbon, cilt 98, pp. 582-591, Mar. 2016.
  • Z. Xiang-Yang, T. Jing-Jing, Y. Juan, X. Jing, M. Lu-Lu, “Silicon@Carbon Hollow Core–Shell Heterostructures Novel Anode Materials For Lithium Ion Batteries”, Electrochim. Acta, cilt 87 pp. 663- 668, Jan. 2013.
  • T. Cetinkaya, M. Tokur, S. Ozcan, M. Uysal, H. Akbulut, “Graphene Supported -Mno2 Nanocomposite Cathodes For Lithium Ion Batteries”, Int. J. of Hydrogen Energ., cilt 41, pp. 6945-6953, May. 2016.
  • R. Yi , F. Dai , M. L. Gordin , H. Sohn, D. Wang, “Influence Of Silicon Nanoscale Building Blocks Size And Carbon Coating On The Performance Of Micro-Sized Si-C Composite Li-Ion Anodes”, Adv. Energy Mater., cilt 3, pp. 1507-1515, Jul. 2013.
  • L. Y. Yang, H. Z. Li, J. Liu, Z. Q. Sun, S. S. Tang, M. Lei, “Dual Yolk-Shell Structure Of Carbon and Silica-Coated Silicon For Highperformance Lithium-Ion Batteries”, Nature Scientific Reports, cilt 5, pp. 10908, Jun. 2015.
  • N. Liu, H. Wu, M. T. Mcdowell, Y. Yao, C. Wang, Y. Cui, “A Yolk-Shell Design For Stabilized And Scalable Li Ion Battery Alloy Anodes”, Nano Lett., cilt 12, pp. 3315-3321, May. 2012.
  • Y. Hwa, W. S. Kim, S. H. Hong, H. J. Sohn, “High Capacity And Rate Capability Of Core–Shell Structured Nano Si/C Anode For Li-Ion Batteries”, Electrochim. Acta, cilt 71, pp. 201-205, Jun. 2012.
  • J. Song, S. Chen, M. Zhou, T. Xu, D. Lv, M. L. Gordin, T. Long, M. Melnyk, D. Wang, “Micro-Sized Silicon– Carbon Composites Composed Of Carbon-Coated Sub-10 Nm Si Primary Particles As High-Performance Anode Materials For Lithium-Ion Batteries”, J. Mater. Chem. A, cilt 2, pp. 1257–1262, Jan. 2014.
  • S. Chen, M. L. Gordin, R. Yi, G. Howlett, H. Sohn, D. Wang, “Silicon Core–Hollow Carbon Shell Nanocomposites With Tunable Buffer Voids For High Capacity Anodes Of Lithium-Ion Batteries”, Phys. Chem. Chem. Phys., cilt 14, pp.12741-12745, Jul. 2012 .
  • S. A. Klankowski, R. A. Rojeski, B. A. Cruden, J. Liu, J. Wud, J. Li, “A High-Performance Lithium-Ion Battery Anode Based On The Core–Shell Heterostructure Of Silicon-Coated Vertically Aligned Carbon Nanofibers”, J.Mater. Chem. A, cilt 1, pp. 1055-1064, Apr. 2013.
  • Y. Chen, Y. Hu, J. Shao, Z. Shen, R. Chen, X. Zhang, X. He, Y. Song, X. Xing, “Pyrolytic Carbon-Coated Silicon/Carbon Nanofiber Composite Anodes For High-Performance Lithium-Ion Batteries”, J. Power Sources, cilt 298, pp. 130-137, Dec. 2015.
  • A. Weiqunli, A. Qianwang, B. Kecao, A. Jingjingtang, C. Hongtaowang, A. N. Liminzhou, Y. Haimin, “Mechanics-Based Optimization Of Yolk-Shell Carbon-Coated Silicon Nanoparticle As Electrode Materials For High Capacity Lithium Ion Battery”, Composites Communications, cilt 1, pp. 1-5, Oct. 2016.
  • K. W. Kim, H. Park, J. G. Lee, J. Kim, Y. U. Kim, J. H. Ryu, J. J. Kim, S. M. Oh, “Capacity Variation Of Carbon-Coated Silicon Monoxide Negative Electrode For Lithium-Ion Batteries”, Electrochim. Acta, cilt 103, pp. 226-230, Jul. 2013.
  • M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang, S. Guan, “Graphene/Carbon-Coated Si Nanoparticle Hybrids As High-Performance Anode Materials For Li-Ion Batteries”, ACS Appl. Mater. Interfaces, cilt 5, pp. 3449-3455, Mar., 2013
  • X. Cao , X. Chuan , S. Li , D. Huang ,G. Cao, “Hollow Silica Spheres Embedded In A Porous Carbon Matrix And Its Superior Performance As The Anode For Lithium-Ion Batteries”, Part. Part. Syst. Charact., cilt 33, pp. 110-117. Feb. 2016.
  • Z. Zhang, Y. Wang, W. Ren, Q. Tan, Y. Chen, H. Li, Z. Zhong, F. Su, “Scalable Synthesis Of Interconnected Porous Silicon/Carbon Composites By The Rochow Reaction As High-Performance Anodes of Lithium Ion Batteries”, Angew. Chem., cilt 126, 5265-5269, May 2014.
  • T. Cetinkaya, M. Uysal, H. Akbulut, “Electrochemical Performance Of Electroless Nickel Plated Siliconelectrodes For Li-Ion Batteries”, Appl. Surf. Sci., cilt 334, pp. 94-101, April 2015.
  • T. Cetinkaya, M. Uysal, M. O. Guler, H. Akbulut, A. Alp, “Improvement Cycleability Of Core–Shell Silicon/Copper Composite Electrodes For Li-Ion Batteries By Using Electroless Deposition Of Copper On Silicon Powders”, Powder Technol., cilt 253, pp. 63-69, Feb. 2014.
  • T. Cetinkaya, M.O. Guler, H. Akbulut, “Enhancing Electrochemical Performance Of Silicon Anodes By Dispersing MWCNTs Using Planetary Ball Milling”, Microelectron. Eng., cilt 108, pp.169-176, Aug. 2013.
  • M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, H. Akbulut, “Closing To Scaling-Up High Reversible Si/rGO Nanocomposite Anodes For Lithium Ion Batteries”, Electrochim. Acta, cilt 216, pp. 312–319, Oct. 2016
  • L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, “Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode”, Nano Energy, cilt 2, pp. 361-367, May 2013
  • J. Li, J. Wang, J. Yang, X. Ma, S. Lu, “Scalable synthesis of a novel structured graphite/silicon/pyrolyzedcarbon composite as anode material for high-performance lithium-ion batteries”, Journal of Alloys and Compounds, cilt 688, pp. 1072-1079, Dec. 2016.
  • J. Wang, H. Y. Lü, C. Y. Fan, F. Wan, J. Z. Guo, Y.Y. Wang, X. L. Wu, “Ultrafine nano-Si material prepared from NaCl-assisted magnesiothermic reduction of scalable silicate: graphene-enhanced Li-storage properties as advanced anode for lithium-ion batteries”, J. Alloy Compd., cilt 694, pp. 208-216, Feb. 2017.
  • W. Ren, Y. Wang, Q. Tan, Z. Zhong, F. Su, “Novel silicon/carbon nano-branches synthesized by reacting silicon with methyl chloride: A high performing anode material in lithium ion battery”, J. Power Sources, cilt 332, pp. 88-95, Nov. 2016.
  • Z. Liu, X. Qin, H. Xu, G. Chen, “One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries”, J. Power Sources, cilt 293, pp. 562 – 269, Oct. 2015.
  • X. Yue, W. Sun, J. Zhang, F. Wang, K. Sun, “Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries”, J. Power Sources, cilt 329, pp. 422 – 427, Oct. 2016.
  • Y. C. Zhang, Y. You, S. Xin, Y. X. Yin, J. Zhang, P. Wang, X. S. Zheng, F. F. Cao, Y. G. Guo, “Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries”, Nano Energy, cilt 25, pp. 120-127, Jul. 2016.
  • J. Wu, X. Qin, H. Zhang, Y. B. He, B. Li, L. Ke, W. Lv, H. Du, Q. H. Yang, F. Kang, “Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode”, Carbon, cilt 84, pp. 434-443, Apr. 2015 .
  • H. Taghinejad, M. Taghinejad, M. Abdolahad, S. Rajabali, A. Rostamian, S. Mohajerzadeh, E. Hosseinian, The conformal silicon deposition on carbon nanotubes as enabled by hydrogenated carbon coatings for synthesis of carbon/silicon core/Shell heterostructure photodiodes, Carbon, vol. 87, 299-308, cilt 2015.
  • R. Wang, G. Zhou, Y. Liu, S. Pan, H. Zhang, D. Yu, Z. Zhang “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects”, Physıcal Rev. B, cilt 61 (24), pp. 16827-16831, Jun. 2000.

Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes

Yıl 2017, Cilt: 21 Sayı: 3, 489 - 495, 01.06.2017
https://doi.org/10.16984/saufenbilder.272254

Öz

Surface of nano silicon powders were coated with amorphous carbon by pyrolysis of polyacronitrile (PAN) polymer.
Microstructural characterization of amorphous carbon coated silicon powders (Si-C) were carried out using scanning
electron microscopy (SEM) and thickness of carbon coating is defined by transmission electron microscopy (TEM).
Elemental analyses of Si-C powders were performed using energy dispersive X-ray spectroscopy (EDS). Structural
and phase characterization of Si-C composite powders were investigated using X-ray diffractometer (XRD) and Raman
spectroscopy. Produced Si-C powders were prepared as an electrode on the copper current collector and
electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to
electrochemical test results, carbon coating process enhanced the electrochemical performance by reducing the
problems stem from volume change and showed 770 mAh/g discharge capacity after 30 cycles.


Kaynakça

  • A. C. Zhang, Y. A. Ruixiang, Z. A. Tengfei, C. C. Zhixin, L. A. Huakun, G. Zaiping, “Mass Production Of Three Dimensional Hierarchical Microfibers Constructed From Silicon-Carbon Core-Shell Architectures With High-Performance Lithium Storage”, Carbon, cilt 72, pp. 169-175, Jun. 2014.
  • W. Junxiong, Q. Xianying, M. Cui, H. Yan-Bing, L. Gemeng, Z. Dong, L. Ming, H. Cuiping, L. Baohua, K. Feiyu, “Honeycomb-Cobweb Inspired Hierarchical Core-Shell Structure Design For Electrospun Silicon/Carbon Fibers As Lithium-Ion Battery Anodes”, Carbon, cilt 98, pp. 582-591, Mar. 2016.
  • Z. Xiang-Yang, T. Jing-Jing, Y. Juan, X. Jing, M. Lu-Lu, “Silicon@Carbon Hollow Core–Shell Heterostructures Novel Anode Materials For Lithium Ion Batteries”, Electrochim. Acta, cilt 87 pp. 663- 668, Jan. 2013.
  • T. Cetinkaya, M. Tokur, S. Ozcan, M. Uysal, H. Akbulut, “Graphene Supported -Mno2 Nanocomposite Cathodes For Lithium Ion Batteries”, Int. J. of Hydrogen Energ., cilt 41, pp. 6945-6953, May. 2016.
  • R. Yi , F. Dai , M. L. Gordin , H. Sohn, D. Wang, “Influence Of Silicon Nanoscale Building Blocks Size And Carbon Coating On The Performance Of Micro-Sized Si-C Composite Li-Ion Anodes”, Adv. Energy Mater., cilt 3, pp. 1507-1515, Jul. 2013.
  • L. Y. Yang, H. Z. Li, J. Liu, Z. Q. Sun, S. S. Tang, M. Lei, “Dual Yolk-Shell Structure Of Carbon and Silica-Coated Silicon For Highperformance Lithium-Ion Batteries”, Nature Scientific Reports, cilt 5, pp. 10908, Jun. 2015.
  • N. Liu, H. Wu, M. T. Mcdowell, Y. Yao, C. Wang, Y. Cui, “A Yolk-Shell Design For Stabilized And Scalable Li Ion Battery Alloy Anodes”, Nano Lett., cilt 12, pp. 3315-3321, May. 2012.
  • Y. Hwa, W. S. Kim, S. H. Hong, H. J. Sohn, “High Capacity And Rate Capability Of Core–Shell Structured Nano Si/C Anode For Li-Ion Batteries”, Electrochim. Acta, cilt 71, pp. 201-205, Jun. 2012.
  • J. Song, S. Chen, M. Zhou, T. Xu, D. Lv, M. L. Gordin, T. Long, M. Melnyk, D. Wang, “Micro-Sized Silicon– Carbon Composites Composed Of Carbon-Coated Sub-10 Nm Si Primary Particles As High-Performance Anode Materials For Lithium-Ion Batteries”, J. Mater. Chem. A, cilt 2, pp. 1257–1262, Jan. 2014.
  • S. Chen, M. L. Gordin, R. Yi, G. Howlett, H. Sohn, D. Wang, “Silicon Core–Hollow Carbon Shell Nanocomposites With Tunable Buffer Voids For High Capacity Anodes Of Lithium-Ion Batteries”, Phys. Chem. Chem. Phys., cilt 14, pp.12741-12745, Jul. 2012 .
  • S. A. Klankowski, R. A. Rojeski, B. A. Cruden, J. Liu, J. Wud, J. Li, “A High-Performance Lithium-Ion Battery Anode Based On The Core–Shell Heterostructure Of Silicon-Coated Vertically Aligned Carbon Nanofibers”, J.Mater. Chem. A, cilt 1, pp. 1055-1064, Apr. 2013.
  • Y. Chen, Y. Hu, J. Shao, Z. Shen, R. Chen, X. Zhang, X. He, Y. Song, X. Xing, “Pyrolytic Carbon-Coated Silicon/Carbon Nanofiber Composite Anodes For High-Performance Lithium-Ion Batteries”, J. Power Sources, cilt 298, pp. 130-137, Dec. 2015.
  • A. Weiqunli, A. Qianwang, B. Kecao, A. Jingjingtang, C. Hongtaowang, A. N. Liminzhou, Y. Haimin, “Mechanics-Based Optimization Of Yolk-Shell Carbon-Coated Silicon Nanoparticle As Electrode Materials For High Capacity Lithium Ion Battery”, Composites Communications, cilt 1, pp. 1-5, Oct. 2016.
  • K. W. Kim, H. Park, J. G. Lee, J. Kim, Y. U. Kim, J. H. Ryu, J. J. Kim, S. M. Oh, “Capacity Variation Of Carbon-Coated Silicon Monoxide Negative Electrode For Lithium-Ion Batteries”, Electrochim. Acta, cilt 103, pp. 226-230, Jul. 2013.
  • M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang, S. Guan, “Graphene/Carbon-Coated Si Nanoparticle Hybrids As High-Performance Anode Materials For Li-Ion Batteries”, ACS Appl. Mater. Interfaces, cilt 5, pp. 3449-3455, Mar., 2013
  • X. Cao , X. Chuan , S. Li , D. Huang ,G. Cao, “Hollow Silica Spheres Embedded In A Porous Carbon Matrix And Its Superior Performance As The Anode For Lithium-Ion Batteries”, Part. Part. Syst. Charact., cilt 33, pp. 110-117. Feb. 2016.
  • Z. Zhang, Y. Wang, W. Ren, Q. Tan, Y. Chen, H. Li, Z. Zhong, F. Su, “Scalable Synthesis Of Interconnected Porous Silicon/Carbon Composites By The Rochow Reaction As High-Performance Anodes of Lithium Ion Batteries”, Angew. Chem., cilt 126, 5265-5269, May 2014.
  • T. Cetinkaya, M. Uysal, H. Akbulut, “Electrochemical Performance Of Electroless Nickel Plated Siliconelectrodes For Li-Ion Batteries”, Appl. Surf. Sci., cilt 334, pp. 94-101, April 2015.
  • T. Cetinkaya, M. Uysal, M. O. Guler, H. Akbulut, A. Alp, “Improvement Cycleability Of Core–Shell Silicon/Copper Composite Electrodes For Li-Ion Batteries By Using Electroless Deposition Of Copper On Silicon Powders”, Powder Technol., cilt 253, pp. 63-69, Feb. 2014.
  • T. Cetinkaya, M.O. Guler, H. Akbulut, “Enhancing Electrochemical Performance Of Silicon Anodes By Dispersing MWCNTs Using Planetary Ball Milling”, Microelectron. Eng., cilt 108, pp.169-176, Aug. 2013.
  • M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, H. Akbulut, “Closing To Scaling-Up High Reversible Si/rGO Nanocomposite Anodes For Lithium Ion Batteries”, Electrochim. Acta, cilt 216, pp. 312–319, Oct. 2016
  • L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, “Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode”, Nano Energy, cilt 2, pp. 361-367, May 2013
  • J. Li, J. Wang, J. Yang, X. Ma, S. Lu, “Scalable synthesis of a novel structured graphite/silicon/pyrolyzedcarbon composite as anode material for high-performance lithium-ion batteries”, Journal of Alloys and Compounds, cilt 688, pp. 1072-1079, Dec. 2016.
  • J. Wang, H. Y. Lü, C. Y. Fan, F. Wan, J. Z. Guo, Y.Y. Wang, X. L. Wu, “Ultrafine nano-Si material prepared from NaCl-assisted magnesiothermic reduction of scalable silicate: graphene-enhanced Li-storage properties as advanced anode for lithium-ion batteries”, J. Alloy Compd., cilt 694, pp. 208-216, Feb. 2017.
  • W. Ren, Y. Wang, Q. Tan, Z. Zhong, F. Su, “Novel silicon/carbon nano-branches synthesized by reacting silicon with methyl chloride: A high performing anode material in lithium ion battery”, J. Power Sources, cilt 332, pp. 88-95, Nov. 2016.
  • Z. Liu, X. Qin, H. Xu, G. Chen, “One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries”, J. Power Sources, cilt 293, pp. 562 – 269, Oct. 2015.
  • X. Yue, W. Sun, J. Zhang, F. Wang, K. Sun, “Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries”, J. Power Sources, cilt 329, pp. 422 – 427, Oct. 2016.
  • Y. C. Zhang, Y. You, S. Xin, Y. X. Yin, J. Zhang, P. Wang, X. S. Zheng, F. F. Cao, Y. G. Guo, “Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries”, Nano Energy, cilt 25, pp. 120-127, Jul. 2016.
  • J. Wu, X. Qin, H. Zhang, Y. B. He, B. Li, L. Ke, W. Lv, H. Du, Q. H. Yang, F. Kang, “Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode”, Carbon, cilt 84, pp. 434-443, Apr. 2015 .
  • H. Taghinejad, M. Taghinejad, M. Abdolahad, S. Rajabali, A. Rostamian, S. Mohajerzadeh, E. Hosseinian, The conformal silicon deposition on carbon nanotubes as enabled by hydrogenated carbon coatings for synthesis of carbon/silicon core/Shell heterostructure photodiodes, Carbon, vol. 87, 299-308, cilt 2015.
  • R. Wang, G. Zhou, Y. Liu, S. Pan, H. Zhang, D. Yu, Z. Zhang “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects”, Physıcal Rev. B, cilt 61 (24), pp. 16827-16831, Jun. 2000.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tuğrul Çetinkaya

Yayımlanma Tarihi 1 Haziran 2017
Gönderilme Tarihi 5 Aralık 2016
Kabul Tarihi 21 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 21 Sayı: 3

Kaynak Göster

APA Çetinkaya, T. (2017). Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. Sakarya University Journal of Science, 21(3), 489-495. https://doi.org/10.16984/saufenbilder.272254
AMA Çetinkaya T. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. SAUJS. Haziran 2017;21(3):489-495. doi:10.16984/saufenbilder.272254
Chicago Çetinkaya, Tuğrul. “Synthesis, Characterization and Electrochemical Performance of core/Shell Structured Carbon Coated Silicon Powders for Lithium Ion Battery Negative Electrodes”. Sakarya University Journal of Science 21, sy. 3 (Haziran 2017): 489-95. https://doi.org/10.16984/saufenbilder.272254.
EndNote Çetinkaya T (01 Haziran 2017) Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. Sakarya University Journal of Science 21 3 489–495.
IEEE T. Çetinkaya, “Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes”, SAUJS, c. 21, sy. 3, ss. 489–495, 2017, doi: 10.16984/saufenbilder.272254.
ISNAD Çetinkaya, Tuğrul. “Synthesis, Characterization and Electrochemical Performance of core/Shell Structured Carbon Coated Silicon Powders for Lithium Ion Battery Negative Electrodes”. Sakarya University Journal of Science 21/3 (Haziran 2017), 489-495. https://doi.org/10.16984/saufenbilder.272254.
JAMA Çetinkaya T. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. SAUJS. 2017;21:489–495.
MLA Çetinkaya, Tuğrul. “Synthesis, Characterization and Electrochemical Performance of core/Shell Structured Carbon Coated Silicon Powders for Lithium Ion Battery Negative Electrodes”. Sakarya University Journal of Science, c. 21, sy. 3, 2017, ss. 489-95, doi:10.16984/saufenbilder.272254.
Vancouver Çetinkaya T. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. SAUJS. 2017;21(3):489-95.