Araştırma Makalesi
BibTex RIS Kaynak Göster

NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1009280

Öz

Bu çalışmada, yüksek fototermal aktiviteye sahip azot katkılı grafen kuantum nokta-demir oksit-polipirol (NGKN-Fe3O4@PPy) üçlü nanokompoziti sentezlenmiştir. UV-görünür bölge spektroskopisi (UV-vis), Fourier dönüşümlü kızıl ötesi spektroskopisi (FTIR), X-ışını kırınım yöntemi (XRD), yüksek çözünürlüklü geçirimli elektron mikroskobu (HRTEM), X-Ray fotoelektron spektroskopisi (XPS) ile sentezlenen yapıların morfolojik ve kimyasal yapıları karakterize edilmiştir. Ayrıca fototermal özelikleri farklı derişimlerdeki (0,025 – 0,1 mg/mL) sulu çözeltileri kullanılarak yakın kızılötesi (NIR) bölgesinde (808 nm) farklı lazer güç yoğunluklarında (1,5 – 2,5 W/cm2) incelenmiştir. 808 nm NIR lazer ile 10 dk uyarım sonucunda 0,1 mg/ml derişimli NGKN-Fe3O4@PPy kompozitinin maksimum sıcaklığının 1,5 ve 2,5 W/cm2 güç yoğunluklarında sırasıyla 54,3°C ve 83,1°C’ye ulaştığı saptanmıştır. Sergilediği yüksek fototermal performans ve fototermal kararlılık sayesinde sentezlenen NGKN-Fe3O4@PPy üçlü nanokompozitinin fototermal tedavi uygulamaları için önemli bir potansiyele sahip olduğu düşünülmektedir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

Proje No: 117M232

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK; Proje No: 117M232) tarafından desteklenmiştir.

Kaynakça

  • [1] Han, J.S., Lee, J.Y. dan Lee, D.S., ''A novel thermosensitive soluble polypyrrole composite'', Synthetic Metals, 124: 301-306, (2001).
  • [2] Zhang, M., Wang, T., Zhang, L., Li, L. dan Wang, C., ''Near-Infrared Light and pH-Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo-Photothermal Cancer Therapy'', Chemistry - A European Journal, 21: 16162-16171, (2015).
  • [3] Song, X., Gong, H., Yin, S., Cheng, L., Wang, C., Li, Z., and Liu, Z. ''Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided Photothermal therapy'', Advanced Functional Materials, 24: 1194-1201, (2014).
  • [4] Kim, J., Kim, J., Jeong, C. dan Kim, W.J., ''Synergistic nanomedicine by combined gene and photothermal therapy'', Advanced Drug Delivery Reviews, 98: 99-112, (2016).
  • [5] Karacif, K., Kıyak, T. Dan İnem, B., ''Alüminyumun İletken Polimer İle Kaplanması Ve Kaplama Mikroyapısına Korozyonun Etkisinin İncelenmesi'', J. Fac. Eng. Arch. Gazi Univ., 25: 235–241, (2010).
  • [6] Zhou, L., Geng, J. dan Liu, B., ''Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe3+ and Hydrogen Peroxide'', Part. Part. Syst. Charact, 30: 1086–1092, (2013).
  • [7] Lu, H., Li, W., Dong, H. dan Wei, M., ''Graphene Quantum Dots for Optical Bioimaging'', Small, 15: 1902136, (2019).
  • [8] Zhang, W. dan Gan, J., ''Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for Fe(III) detection'', Applied Surface Science, 372: 145-151, (2016).
  • [9] Sheikh Mohd Ghazali, S.A.I., Fatimah, I., Zamil, Z.N., Zulkifli, N.N. dan Adam, N., ''Graphene quantum dots: A comprehensive overview'', Open Chemistry, 21: 20220285, (2023).
  • [10] Catanio, A. T., Bergmann, E. V., Kimura, N. M., Petrucci, T., Freitas, C. F., Herculano, L. S., Astrath, N. G. ''Spectroscopic and photothermal characterization of graphene quantum dots for antimicrobial applications'', Journal of Applied Physics, 131: 155102, (2022).
  • [11] Kundu, S., Yadav, R. M., Narayanan, T. N., Shelke, M. V., Vajtai, R., Ajayan, P. M., and Pillai, V. K. ''Synthesis of N, F and S co-doped graphene quantum dots'', Nanoscale, 7: 11515-11519, (2015).
  • [12] Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., and Sun, Z. ''Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts'', Nanoscale, 5: 12272-12277, (2013).
  • [13] Tam, T. Van, Trung, N.B., Kim, H.R., Chung, J.S. dan Choi, W.M., ''One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection'', Sensors and Actuators, B: Chemical, 202: 568-573, (2014).
  • [14] Xuan, Y., Zhang, R. Y., Zhang, X. S., An, J., Cheng, K., Li, C., and Zhao, Y. D. Targeting ''N-doped graphene quantum dot with high photothermal conversion efficiency for dual-mode imaging and therapy in vitro'', Nanotechnology, 29: 355101, (2018).
  • [15] Figuerola, A., Di Corato, R., Manna, L. dan Pellegrino, T., ''From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications'', Pharmacological Research, 62: 126-43, (2010).
  • [16] Gökalp, C., Çıplak, Z., Getiren, B. dan Yıldız, N., ''Photoluminescence, photothermal and magnetic properties of nitrogen doped graphene quantum dots based ternary nanocomposite'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605: 125370, (2020).
  • [17] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots'', Scientific Reports, 4: 5294, (2014).
  • [18] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''NIR photothermal therapy using polyaniline nanoparticles'', Biomaterials, 4: 5294, (2013).
  • [19] Iannazzo, D., Pistone, A., Salamò, M., Galvagno, S., Romeo, R., Giofré, S. V., and Di Pietro, A. ''Graphene quantum dots for cancer targeted drug delivery'', International Journal of Pharmaceutics, 518: 185-192, (2017).
  • [20] Pan, D., Zhang, J., Li, Z. dan Wu, M., ''Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots'', Advanced Materials, 22:734-738, (2010).
  • [21] UrRahman, O., Chandra Mohapatra, S. dan Ahmad, S., ''Fe3O4 inverse spinal super paramagnetic nanoparticles'', Materials Chemistry and Physics, 132: 196–202, (2012).
  • [22] Radoń, A., Drygała, A., Hawełek, Ł. dan Łukowiec, D., ''Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers'', Materials Characterization, 131: 148-156, (2017).
  • [23] Alvand, M. dan Shemirani, F., ''A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion'', Microchimica Acta, 184: 1621-1629, (2017).
  • [24] Ju, J. dan Chen, W., ''Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media'', Biosensors and Bioelectronics, 58: 219-225, (2014).
  • [25] Keshipour, S. dan Adak, K., ''Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics'', RSC Advances, 6: 89407-89412, (2016).
  • [26] Ganganboina, A.B., Chowdhury, A.D. dan Doong, R. an, ''Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor'', Electrochimica Acta, 245: 912-923, (2017).
  • [27] Ke, K., Lin, L., Liang, H., Chen, X., Han, C., Li, J., and Yang, H. H., ''Polypyrrole nanoprobes with low non-specific protein adsorption for intracellular mRNA detection and photothermal therapy'', Chemical Communications, 51: 6800-6803, (2015).
  • [28] Lee, B., Stokes, G. A., Valimukhametova, A., Nguyen, S., Gonzalez-Rodriguez, R., Bhaloo, A., and Naumov, A. V., ''Automated Approach to In Vitro Image-Guided Photothermal Therapy with Top-Down and Bottom-Up-Synthesized Graphene Quantum Dots'', Nanomaterials, 13: 805, (2023).
  • [29] Zhang, K., Zhang, J. dan Yang, A., ''Photoheating Effects of CuS@PEI_GQDs Nanoshells under Near-Infrared Laser and Sunlight Irradiation'', Crystal Growth and Design, 23: 1697-1708, (2023).
  • [30] Sheini, A., Taherpour, A. A., Maghsudi, M., Farajmand-Amirabadi, S., Kouchak, M., Rahbar, N., and Alidadi, H., ''N-doped graphene quantum dots from graphene oxide and dendrimer and application in photothermal therapy: An experimental and theoretical study'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636: 128066, (2022).
  • [31] Kim, T. E., Jang, H. J., Park, S. W., Wei, J., Cho, S., Park, W. I., and Jung, Y. K. ''Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy'', ACS Applied Bio Materials, 4: 3453-3461, (2021).
  • [32] Guo, M., Xiang, H. J., Wang, Y., Zhang, Q. L., An, L., Yang, S. P., and Liu, J. G.''Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy'', Chemical Communications, 53: 3253-3256, (2017).
  • [33] Zhang, X., Xu, X., Li, T., Lin, M., Lin, X., Zhang, H., and Yang, B.., ''Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures'', ACS Applied Materials and Interfaces, 6: 14552-14561, (2014).
  • [34] Chen, M., Fang, X., Tang, S. dan Zheng, N., ''Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy'', Chemical Communications, 48: 8934-8936, (2012).

Synthesis of NIR Responsive NGQDs-Fe3O4@PPy Nanocomposite and Investigation of Its Photothermal Performance

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1009280

Öz

In this work, magnetic nitrogen doped graphene quantum dots iron oxide-polypyrrole (NGQDs-Fe3O4@PPy) ternary nanocomposite having perfect photothermal activity was synthesized. The chemical structure and morphological of the synthesized nanocomposites were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction spectroscopy (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS). Photothermal properties of the synthesized nanocomposites were examined at different laser power densities (1.5 - 2.5 W/cm2) in the near infrared (NIR) region (808 nm) using aqueous solutions of different concentrations (0.025 - 0.1 mg / mL). The maximum temperature (Tmax) of NGQDs-Fe3O4@PPy composite reached up to 54.3°C and 83.1°C under irradiation of the 808 nm NIR laser at 1.5 and 2.5 W/cm2 power density for 10 min at 0.1 mg/ml concentration. The synthesized NGQDs-Fe3O4@PPy triple nanocomposite with high photothermal performance and photothermal stability is thought to have an important potential for photothermal treatment applications.

Proje Numarası

Proje No: 117M232

Kaynakça

  • [1] Han, J.S., Lee, J.Y. dan Lee, D.S., ''A novel thermosensitive soluble polypyrrole composite'', Synthetic Metals, 124: 301-306, (2001).
  • [2] Zhang, M., Wang, T., Zhang, L., Li, L. dan Wang, C., ''Near-Infrared Light and pH-Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo-Photothermal Cancer Therapy'', Chemistry - A European Journal, 21: 16162-16171, (2015).
  • [3] Song, X., Gong, H., Yin, S., Cheng, L., Wang, C., Li, Z., and Liu, Z. ''Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided Photothermal therapy'', Advanced Functional Materials, 24: 1194-1201, (2014).
  • [4] Kim, J., Kim, J., Jeong, C. dan Kim, W.J., ''Synergistic nanomedicine by combined gene and photothermal therapy'', Advanced Drug Delivery Reviews, 98: 99-112, (2016).
  • [5] Karacif, K., Kıyak, T. Dan İnem, B., ''Alüminyumun İletken Polimer İle Kaplanması Ve Kaplama Mikroyapısına Korozyonun Etkisinin İncelenmesi'', J. Fac. Eng. Arch. Gazi Univ., 25: 235–241, (2010).
  • [6] Zhou, L., Geng, J. dan Liu, B., ''Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe3+ and Hydrogen Peroxide'', Part. Part. Syst. Charact, 30: 1086–1092, (2013).
  • [7] Lu, H., Li, W., Dong, H. dan Wei, M., ''Graphene Quantum Dots for Optical Bioimaging'', Small, 15: 1902136, (2019).
  • [8] Zhang, W. dan Gan, J., ''Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for Fe(III) detection'', Applied Surface Science, 372: 145-151, (2016).
  • [9] Sheikh Mohd Ghazali, S.A.I., Fatimah, I., Zamil, Z.N., Zulkifli, N.N. dan Adam, N., ''Graphene quantum dots: A comprehensive overview'', Open Chemistry, 21: 20220285, (2023).
  • [10] Catanio, A. T., Bergmann, E. V., Kimura, N. M., Petrucci, T., Freitas, C. F., Herculano, L. S., Astrath, N. G. ''Spectroscopic and photothermal characterization of graphene quantum dots for antimicrobial applications'', Journal of Applied Physics, 131: 155102, (2022).
  • [11] Kundu, S., Yadav, R. M., Narayanan, T. N., Shelke, M. V., Vajtai, R., Ajayan, P. M., and Pillai, V. K. ''Synthesis of N, F and S co-doped graphene quantum dots'', Nanoscale, 7: 11515-11519, (2015).
  • [12] Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., and Sun, Z. ''Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts'', Nanoscale, 5: 12272-12277, (2013).
  • [13] Tam, T. Van, Trung, N.B., Kim, H.R., Chung, J.S. dan Choi, W.M., ''One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection'', Sensors and Actuators, B: Chemical, 202: 568-573, (2014).
  • [14] Xuan, Y., Zhang, R. Y., Zhang, X. S., An, J., Cheng, K., Li, C., and Zhao, Y. D. Targeting ''N-doped graphene quantum dot with high photothermal conversion efficiency for dual-mode imaging and therapy in vitro'', Nanotechnology, 29: 355101, (2018).
  • [15] Figuerola, A., Di Corato, R., Manna, L. dan Pellegrino, T., ''From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications'', Pharmacological Research, 62: 126-43, (2010).
  • [16] Gökalp, C., Çıplak, Z., Getiren, B. dan Yıldız, N., ''Photoluminescence, photothermal and magnetic properties of nitrogen doped graphene quantum dots based ternary nanocomposite'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605: 125370, (2020).
  • [17] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots'', Scientific Reports, 4: 5294, (2014).
  • [18] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''NIR photothermal therapy using polyaniline nanoparticles'', Biomaterials, 4: 5294, (2013).
  • [19] Iannazzo, D., Pistone, A., Salamò, M., Galvagno, S., Romeo, R., Giofré, S. V., and Di Pietro, A. ''Graphene quantum dots for cancer targeted drug delivery'', International Journal of Pharmaceutics, 518: 185-192, (2017).
  • [20] Pan, D., Zhang, J., Li, Z. dan Wu, M., ''Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots'', Advanced Materials, 22:734-738, (2010).
  • [21] UrRahman, O., Chandra Mohapatra, S. dan Ahmad, S., ''Fe3O4 inverse spinal super paramagnetic nanoparticles'', Materials Chemistry and Physics, 132: 196–202, (2012).
  • [22] Radoń, A., Drygała, A., Hawełek, Ł. dan Łukowiec, D., ''Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers'', Materials Characterization, 131: 148-156, (2017).
  • [23] Alvand, M. dan Shemirani, F., ''A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion'', Microchimica Acta, 184: 1621-1629, (2017).
  • [24] Ju, J. dan Chen, W., ''Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media'', Biosensors and Bioelectronics, 58: 219-225, (2014).
  • [25] Keshipour, S. dan Adak, K., ''Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics'', RSC Advances, 6: 89407-89412, (2016).
  • [26] Ganganboina, A.B., Chowdhury, A.D. dan Doong, R. an, ''Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor'', Electrochimica Acta, 245: 912-923, (2017).
  • [27] Ke, K., Lin, L., Liang, H., Chen, X., Han, C., Li, J., and Yang, H. H., ''Polypyrrole nanoprobes with low non-specific protein adsorption for intracellular mRNA detection and photothermal therapy'', Chemical Communications, 51: 6800-6803, (2015).
  • [28] Lee, B., Stokes, G. A., Valimukhametova, A., Nguyen, S., Gonzalez-Rodriguez, R., Bhaloo, A., and Naumov, A. V., ''Automated Approach to In Vitro Image-Guided Photothermal Therapy with Top-Down and Bottom-Up-Synthesized Graphene Quantum Dots'', Nanomaterials, 13: 805, (2023).
  • [29] Zhang, K., Zhang, J. dan Yang, A., ''Photoheating Effects of CuS@PEI_GQDs Nanoshells under Near-Infrared Laser and Sunlight Irradiation'', Crystal Growth and Design, 23: 1697-1708, (2023).
  • [30] Sheini, A., Taherpour, A. A., Maghsudi, M., Farajmand-Amirabadi, S., Kouchak, M., Rahbar, N., and Alidadi, H., ''N-doped graphene quantum dots from graphene oxide and dendrimer and application in photothermal therapy: An experimental and theoretical study'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636: 128066, (2022).
  • [31] Kim, T. E., Jang, H. J., Park, S. W., Wei, J., Cho, S., Park, W. I., and Jung, Y. K. ''Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy'', ACS Applied Bio Materials, 4: 3453-3461, (2021).
  • [32] Guo, M., Xiang, H. J., Wang, Y., Zhang, Q. L., An, L., Yang, S. P., and Liu, J. G.''Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy'', Chemical Communications, 53: 3253-3256, (2017).
  • [33] Zhang, X., Xu, X., Li, T., Lin, M., Lin, X., Zhang, H., and Yang, B.., ''Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures'', ACS Applied Materials and Interfaces, 6: 14552-14561, (2014).
  • [34] Chen, M., Fang, X., Tang, S. dan Zheng, N., ''Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy'', Chemical Communications, 48: 8934-8936, (2012).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ceren Gökalp 0000-0002-4537-6330

Zafer Çıplak 0000-0003-2449-5274

Bengü Getiren 0000-0002-9551-7082

Nuray Yıldız 0000-0003-2428-3474

Proje Numarası Proje No: 117M232
Erken Görünüm Tarihi 18 Mart 2024
Yayımlanma Tarihi
Gönderilme Tarihi 13 Ekim 2021
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Gökalp, C., Çıplak, Z., Getiren, B., Yıldız, N. (2024). NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1009280
AMA Gökalp C, Çıplak Z, Getiren B, Yıldız N. NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi. Politeknik Dergisi. Published online 01 Mart 2024:1-1. doi:10.2339/politeknik.1009280
Chicago Gökalp, Ceren, Zafer Çıplak, Bengü Getiren, ve Nuray Yıldız. “NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi Ve Fototermal Performansının İncelenmesi”. Politeknik Dergisi, Mart (Mart 2024), 1-1. https://doi.org/10.2339/politeknik.1009280.
EndNote Gökalp C, Çıplak Z, Getiren B, Yıldız N (01 Mart 2024) NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi. Politeknik Dergisi 1–1.
IEEE C. Gökalp, Z. Çıplak, B. Getiren, ve N. Yıldız, “NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi”, Politeknik Dergisi, ss. 1–1, Mart 2024, doi: 10.2339/politeknik.1009280.
ISNAD Gökalp, Ceren vd. “NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi Ve Fototermal Performansının İncelenmesi”. Politeknik Dergisi. Mart 2024. 1-1. https://doi.org/10.2339/politeknik.1009280.
JAMA Gökalp C, Çıplak Z, Getiren B, Yıldız N. NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi. Politeknik Dergisi. 2024;:1–1.
MLA Gökalp, Ceren vd. “NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi Ve Fototermal Performansının İncelenmesi”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1009280.
Vancouver Gökalp C, Çıplak Z, Getiren B, Yıldız N. NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.