Derleme
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 1 Sayı: 1, 30 - 39, 25.12.2019

Öz

Kaynakça

  • Adams, S., Klobodu, E. K. M. ve Apio, A. (2018). Renewable and non-renewable energy, regime type and economic growth. Renewable Energy, 125, 755–767. doi:10.1016/j.renene.2018.02.135
  • Blazquez, J., Fuentes-Bracamontes, R., Bollino, C. A. and Nezamuddin, N. (2018). The renewable energy policy Paradox. Renewable and Sustainable Energy Reviews, 82(October 2017), 1–5. doi:10.1016/j.rser.2017.09.002
  • Bouman, E. A., Lindstad, E., Rialland, A. I. and Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52, 408–421. doi:10.1016/j.trd.2017.03.022
  • Breyer, C., Afanasyeva, S., Brakemeier, D., Engelhard, M., Giuliano, S., Puppe, M., Moser, M. (2017). Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings (C. 1850, s. 160001). AIP Publishing LLC. doi:10.1063/1.4984535
  • Burke, M. J. and Stephens, J. C. (2018). Political power and renewable energy futures: A critical review. Energy Research and Social Science, 35(November 2017), 78–93. doi:10.1016/j.erss.2017.10.018
  • Cabrera, P., Lund, H. and Carta, J. A. (2018). Smart renewable energy penetration strategies on islands: The case of Gran Canaria. Energy, 162, 421–443. doi:10.1016/j.energy.2018.08.020
  • Calleya, J. N. (2014). Ship Design Decision Support for a Carbon Dioxide Constrained Future, 125.
  • Cames, M., Graichen, J., Siemons, A. and Cook, V. (2015). Emission Reduction Targets for International Aviation and Shipping. European Parliament - Policy Department, (1), 1–52. http://www.europarl.europa.eu/RegData/etudes/STUD/2015/569964/IPOL_STU%282015%29569964_EN.pdf accessed from this website.
  • Chen, Y., Wang, Z. and Zhong, Z. (2019). CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renewable Energy, 131, 208–216. doi:10.1016/j.renene.2018.07.047
  • Chong, W. W. F. F., Ng, J. H., Rajoo, S. and Chong, C. T. (2018). Sector of Passenger transportation gasoline consumption due to friction in Southeast Asian countries. Energy Conversion and Management, 158 (November 2017), 346–358. doi:10.1016/j.enconman.2017.12.083
  • Clean North Sea Shipping Project. (2014). Clean North Sea Shipping Final Report: Key Findings and Recommendations, (March), 92. http://cnss.no/wp-content/uploads/2014/03/CNSS_Final_Report_web.pdf accessed from website.
  • Connolly, D., Mathiesen, B. V. and Ridjan, I. (2014). A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy, 73, 110–125. doi:10.1016/j.energy.2014.05.104
  • Deniz, C. and Zincir, B. (2016). Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production, 113(X), 438–449. doi:10.1016/j.jclepro.2015.11.089
  • DNV, (2015), DNV Annual report, 2015 https://issuu.com/dnvgl/docs/dnv_gl_annual_report_2015 Accessed 01.09.2019
  • DNV-GL, (2019), Maritime Impact report of Carbon Emissions, https://www.dnvgl.com/expert-story/maritime-impact/alternative-fuels.html , accessed 18.09.2019
  • Ertay, T., Kahraman, C. and Kaya, İ. (2013). Evaluation of Renewable Energy Alternatives Using Macbeth and Fuzzy Ahp Multicriteria Methods: The Case of Turkey. Technological and Economic Development of Economy, 19(1), 38–62. doi:10.3846/20294913.2012.762950
  • Eyring, V., Köhler, H. W., Lauer, A. ve Lemper, B. (2005). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research D: Atmospheres, 110(17), 183–200. doi:10.1029/2004JD005620
  • Faber, J., Markowska, A., Nelissen, D., Davidson, M., Eyring, V., Cionni, I. Schwarz, W. (2009). Technical support for European action to reducing Greenhouse Gas Emissions from international maritime transport. Accessed from http://ec.europa.eu/clima/policies/transport/shipping/docs/ghg_ships_report_en.pdf.
  • Freese, N. (2017). International Maritime Shipping CO 2 Emissions CO2 Emissions from International Maritime Shipping-regulations, challenges and possibilities.
  • García-Olivares, A., Solé, J. and Osychenko, O. (2018). Transportation in a 100% renewable energy system. Energy Conversion and Management, 158(August 2017), 266–285. doi:10.1016/j.enconman.2017.12.053
  • Haas, J., Nowak, W. ve Palma-Behnke, R. (2019). Multi-objective planning of energy storage technologies for a fully renewable system: Implications for the main stakeholders in Chile. Energy Policy, 126(December 2018), 494–506. doi:10.1016/j.enpol.2018.11.034
  • Haifeng Wang ve Lutsey, N. (2013). Long-term potential for increased shipping efficiency through the adoption of industry-leading practices, (July), 32.
  • Hakan Pekşen, N., Pekşen, D. Y. ve Ölçer, A. (2014). Cold Ironing Yöntemi; Marport Limanı Uygulaması Shipping & Port Management 2. Journal of ETA Maritime Science Cold Ironing Yöntemi Journal of ETA Maritime Science, 2(1), 11–30. http://www.journalagent.com/jems/pdfs/JEMS_2_1_11_30.pdf accessed from website.
  • Hua, J., Cheng, C. W. ve Hwang, D. S. (2019). Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas. Journal of the Air and Waste Management Association, 69(2), 131–144. doi:10.1080/10962247.2018.1505675
  • Hughes, E. (2016). Recent developments at IMO to address GHG emissions from ships. International Maritime Organization (IMO), (November). http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/UN accessed from website.
  • IMarEST ve Colfax. (2015a). Making the Green Agenda Pay, 16.
  • IMarEST ve Colfax. (2015b). Making the Green Agenda Pay, 16. https://www.imarest.org/all-docman-documents/representation/green-agenda/551-making-the-green-agenda-pay/file accessed from website..
  • IMO. (2009). No Title. Environment, Marine Committee, Protection Of, Reduction Emissions, G H G Ships, From Abatement, Marginal Effectiveness, Cost Submitted, Energy-efficiency Measures Engineering, Marine, 61.
  • IMO. (2018). Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue, (International Maritime Organisation), 27. Accessed from https://unfccc.int/sites/default/files/resource/250_IMO
  • IMO, (2015) Control, A., Technologies, A., Reduce, T. O., Carbon, B., Shipping, I. (2015). IMO - Black Carbon. Accessed from www.imo.org.
  • (IMO, 2019) Air Pollution Prevention Regulations http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-–-Regulation-14.aspx
  • IPCC. (2006). Volume 2: Energy - Chapter 2: Stationary Combustion, 2006. IPCC Guidelines for National Greenhouse Gas Inventories, 2.1 2.47. doi:10.1016/S0166-526X(06)47021-5
  • Jain, S. ve Jain, P. K. (2017). The rise of Renewable Energy implementation in South Africa. Energy Procedia, 143, 721–726. doi:10.1016/j.egypro.2017.12.752
  • Kinto, O. T., De Oliveira Bernal, J. L., Veiga Gimenes, A. L. and Morales Udaeta, M. E. (2017). Sustainable Energy Technologies in the Industry Using Integrated Energy Resources Planning. Energy Procedia, 118, 4–14. doi:10.1016/j.egypro.2017.07.002
  • Lindstad, H. E. (2014). Hydrogen the Next Maritime Fuel, 12pp. Lindstad, H., Eskeland, G. S., Psaraftis, H., Sandaas, I. ve Strømman, A. H. (2015). Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 110, 94–101. doi:10.1016/j.oceaneng.2015.09.029
  • Mander, S. (2017). Slow steaming and a new dawn for wind propulsion: A multi-level analysis of two low carbon-shipping transitions. Marine Policy, 75, 210–216. doi:10.1016/j.marpol.2016.03.018Maritime, G. ve Monitor, I. (2018). Global Maritime Issues Monit o r.
  • Matulić, N., Radica, G., Barbir, F. and Nižetić, S. (2019). Commercial vehicle auxiliary loads powered by PEM fuel cell. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.12.121
  • Michalski, J., Poltrum, M. ve Bünger, U. (2018). The role of renewable fuel supply in the transport sector in a future decarbonized energy system. International Journal of Hydrogen Energy, 2018, 1–12. doi:10.1016/j.ijhydene.2018.10.110
  • Mofor, L., Nuttal, P. ve Alison, N. (2015). Renewable energy: Options for scrutiny, (July).
  • Morsy El-Gohary, M. (2013). Overview of past, present and future marine power plants. Journal of Marine Science and Application, 12(2), 219–227. doi:10.1007/s11804-013-1188-8
  • Mosácula, C., Chaves-Ávila, J. P. ve Reneses, J. (2019). Reviewing the design of natural gas network charges considering regulatory principles as guiding criteria in the context of the increasing interrelation of energy carriers. Energy Policy, 126(December 2018), 545–557. doi:10.1016/j.enpol.2018.10.069
  • Pata, U. K. (2018). Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. Journal of Cleaner Production, 187, 770–779. doi:10.1016/j.jclepro.2018.03.236
  • Pierru, A., Wu, K., Murphy, F., Galkin, P., Feijoo, F., Rioux, B.Malov, A. (2019). The economic impact of price controls on China’s natural gas supply chain. Energy Economics, 80(2019), 394–410. doi:10.1016/j.eneco.2018.12.026
  • Psaraftis, H. N. (2016). Green Maritime Logistics: The Quest for Win-win Solutions. Transportation Research Procedia, 14, 133–142. doi:10.1016/j.trpro.2016.05.049Rahim, M. M., Islam, M. T. ve Kuruppu, S. (2016). Regulating global shipping corporations’ accountability for reducing greenhouse gas emissions in the seas. Marine Policy, 69, 159–170. doi:10.1016/j.marpol.2016.04.018
  • Rehmatulla, N., Calleya, J. and Smith, T. (2017). The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, 139 (June 2016), 184–197. doi:10.1016/j.oceaneng.2017.04.029
  • Rehmatulla, N., Parker, S., Smith, T. and Stulgis, V. (2017). Wind technologies: Opportunities and barriers to a low carbon shipping industry. Marine Policy, 75, 217–226. doi:10.1016/j.marpol.2015.12.021
  • Rehmatulla, N. and Smith, T. (2015). Barriers to energy efficient and low carbon shipping. Ocean Engineering, 110, 102–112. doi:10.1016/j.oceaneng.2015.09.030
  • Robles Algarín, C., Llanos, A. P. and Castro, A. O. (2017). An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy |, 7(4), 38–47. Accessed from http:www.econjournals.com.
  • Tanç, B., Arat, H. T., Baltacıoğlu, E. and Aydın, K. (2018). Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.10.112
  • Technical, N. (2012). This document is downloaded from DR-NTU Nanyang Technological OPERATOR ’ S PERSPECTIVE IN THE CONTAINER SHIPPING.
  • Tronstad, T., Åstrand, H. H., Haugom, G. P. and Langfeldt, L. (2017). Study on the use of Fuel Cells in Shipping, 1–108.Wan, Z., el Makhloufi, A., Chen, Y. ve Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine Pollution Bulletin, 126(December), 428–435. doi:10.1016/j.marpolbul.2017.11.064
  • Wärtsilä. (2009). Boosting energy efficiency, (February), 1–68.
  • Xu, H., Li, Y. and Huang, H. (2017). Spatial Research on the Effect of Financial Structure on CO2 Emission. Energy Procedia, 118, 179–183. doi:10.1016/j.egypro.2017.07.037
  • Zhang, Y., Lin, Z. ve Liu, Q. (2014). Marine renewable energy in China: Current status and perspectives. Water Science and Engineering, 7(3), 288–305. doi:10.3882/j.issn.1674-2370.2014.03.005

INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION

Yıl 2019, Cilt: 1 Sayı: 1, 30 - 39, 25.12.2019

Öz

One of the most
important actors of maritime transport is cargo ships where cargo is
transported. Nowadays, the expansion of the maritime trade volume with
increasing acceleration, the increase in the size and quantity of ships in the world’s
merchant navy fleet cause transportation costs to decrease per ton while to
bring some negative effects such as air pollution. The major cause of
ship-source air pollution is the conventional fuel used in propulsion systems.
As of 2006, serious steps are being taken in the context of air pollution
prevention measures that have been on the agenda in the sector on a global
scale. In this study, recent academic literature conducted on this subject
reviewed in recent years, renewable energy and other fuel types that can be
used in efficiency equivalent to conventional fuel were evaluated. As a result
of this thematic review, although the ship projects carried out with renewable
energy in the project phase are exciting, the most powerful alternative in the
short term seems liquefied natural gas (LNG) which is not accepted as renewable
but found to be successful in terms of emissions. It can be used in ships with
tonnage nearby coastal voyages, while in the offshore vessels which constitute
the main emission problem; renewable energy is evaluated within the scope of
additional measures that increase efficiency in the short term. In addition, as
a fuel alternative, hydrogen is a candidate for future ship fuel in the medium
and long term.

Kaynakça

  • Adams, S., Klobodu, E. K. M. ve Apio, A. (2018). Renewable and non-renewable energy, regime type and economic growth. Renewable Energy, 125, 755–767. doi:10.1016/j.renene.2018.02.135
  • Blazquez, J., Fuentes-Bracamontes, R., Bollino, C. A. and Nezamuddin, N. (2018). The renewable energy policy Paradox. Renewable and Sustainable Energy Reviews, 82(October 2017), 1–5. doi:10.1016/j.rser.2017.09.002
  • Bouman, E. A., Lindstad, E., Rialland, A. I. and Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52, 408–421. doi:10.1016/j.trd.2017.03.022
  • Breyer, C., Afanasyeva, S., Brakemeier, D., Engelhard, M., Giuliano, S., Puppe, M., Moser, M. (2017). Assessment of mid-term growth assumptions and learning rates for comparative studies of CSP and hybrid PV-battery power plants. AIP Conference Proceedings (C. 1850, s. 160001). AIP Publishing LLC. doi:10.1063/1.4984535
  • Burke, M. J. and Stephens, J. C. (2018). Political power and renewable energy futures: A critical review. Energy Research and Social Science, 35(November 2017), 78–93. doi:10.1016/j.erss.2017.10.018
  • Cabrera, P., Lund, H. and Carta, J. A. (2018). Smart renewable energy penetration strategies on islands: The case of Gran Canaria. Energy, 162, 421–443. doi:10.1016/j.energy.2018.08.020
  • Calleya, J. N. (2014). Ship Design Decision Support for a Carbon Dioxide Constrained Future, 125.
  • Cames, M., Graichen, J., Siemons, A. and Cook, V. (2015). Emission Reduction Targets for International Aviation and Shipping. European Parliament - Policy Department, (1), 1–52. http://www.europarl.europa.eu/RegData/etudes/STUD/2015/569964/IPOL_STU%282015%29569964_EN.pdf accessed from this website.
  • Chen, Y., Wang, Z. and Zhong, Z. (2019). CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renewable Energy, 131, 208–216. doi:10.1016/j.renene.2018.07.047
  • Chong, W. W. F. F., Ng, J. H., Rajoo, S. and Chong, C. T. (2018). Sector of Passenger transportation gasoline consumption due to friction in Southeast Asian countries. Energy Conversion and Management, 158 (November 2017), 346–358. doi:10.1016/j.enconman.2017.12.083
  • Clean North Sea Shipping Project. (2014). Clean North Sea Shipping Final Report: Key Findings and Recommendations, (March), 92. http://cnss.no/wp-content/uploads/2014/03/CNSS_Final_Report_web.pdf accessed from website.
  • Connolly, D., Mathiesen, B. V. and Ridjan, I. (2014). A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy, 73, 110–125. doi:10.1016/j.energy.2014.05.104
  • Deniz, C. and Zincir, B. (2016). Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production, 113(X), 438–449. doi:10.1016/j.jclepro.2015.11.089
  • DNV, (2015), DNV Annual report, 2015 https://issuu.com/dnvgl/docs/dnv_gl_annual_report_2015 Accessed 01.09.2019
  • DNV-GL, (2019), Maritime Impact report of Carbon Emissions, https://www.dnvgl.com/expert-story/maritime-impact/alternative-fuels.html , accessed 18.09.2019
  • Ertay, T., Kahraman, C. and Kaya, İ. (2013). Evaluation of Renewable Energy Alternatives Using Macbeth and Fuzzy Ahp Multicriteria Methods: The Case of Turkey. Technological and Economic Development of Economy, 19(1), 38–62. doi:10.3846/20294913.2012.762950
  • Eyring, V., Köhler, H. W., Lauer, A. ve Lemper, B. (2005). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research D: Atmospheres, 110(17), 183–200. doi:10.1029/2004JD005620
  • Faber, J., Markowska, A., Nelissen, D., Davidson, M., Eyring, V., Cionni, I. Schwarz, W. (2009). Technical support for European action to reducing Greenhouse Gas Emissions from international maritime transport. Accessed from http://ec.europa.eu/clima/policies/transport/shipping/docs/ghg_ships_report_en.pdf.
  • Freese, N. (2017). International Maritime Shipping CO 2 Emissions CO2 Emissions from International Maritime Shipping-regulations, challenges and possibilities.
  • García-Olivares, A., Solé, J. and Osychenko, O. (2018). Transportation in a 100% renewable energy system. Energy Conversion and Management, 158(August 2017), 266–285. doi:10.1016/j.enconman.2017.12.053
  • Haas, J., Nowak, W. ve Palma-Behnke, R. (2019). Multi-objective planning of energy storage technologies for a fully renewable system: Implications for the main stakeholders in Chile. Energy Policy, 126(December 2018), 494–506. doi:10.1016/j.enpol.2018.11.034
  • Haifeng Wang ve Lutsey, N. (2013). Long-term potential for increased shipping efficiency through the adoption of industry-leading practices, (July), 32.
  • Hakan Pekşen, N., Pekşen, D. Y. ve Ölçer, A. (2014). Cold Ironing Yöntemi; Marport Limanı Uygulaması Shipping & Port Management 2. Journal of ETA Maritime Science Cold Ironing Yöntemi Journal of ETA Maritime Science, 2(1), 11–30. http://www.journalagent.com/jems/pdfs/JEMS_2_1_11_30.pdf accessed from website.
  • Hua, J., Cheng, C. W. ve Hwang, D. S. (2019). Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas. Journal of the Air and Waste Management Association, 69(2), 131–144. doi:10.1080/10962247.2018.1505675
  • Hughes, E. (2016). Recent developments at IMO to address GHG emissions from ships. International Maritime Organization (IMO), (November). http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/UN accessed from website.
  • IMarEST ve Colfax. (2015a). Making the Green Agenda Pay, 16.
  • IMarEST ve Colfax. (2015b). Making the Green Agenda Pay, 16. https://www.imarest.org/all-docman-documents/representation/green-agenda/551-making-the-green-agenda-pay/file accessed from website..
  • IMO. (2009). No Title. Environment, Marine Committee, Protection Of, Reduction Emissions, G H G Ships, From Abatement, Marginal Effectiveness, Cost Submitted, Energy-efficiency Measures Engineering, Marine, 61.
  • IMO. (2018). Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue, (International Maritime Organisation), 27. Accessed from https://unfccc.int/sites/default/files/resource/250_IMO
  • IMO, (2015) Control, A., Technologies, A., Reduce, T. O., Carbon, B., Shipping, I. (2015). IMO - Black Carbon. Accessed from www.imo.org.
  • (IMO, 2019) Air Pollution Prevention Regulations http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-–-Regulation-14.aspx
  • IPCC. (2006). Volume 2: Energy - Chapter 2: Stationary Combustion, 2006. IPCC Guidelines for National Greenhouse Gas Inventories, 2.1 2.47. doi:10.1016/S0166-526X(06)47021-5
  • Jain, S. ve Jain, P. K. (2017). The rise of Renewable Energy implementation in South Africa. Energy Procedia, 143, 721–726. doi:10.1016/j.egypro.2017.12.752
  • Kinto, O. T., De Oliveira Bernal, J. L., Veiga Gimenes, A. L. and Morales Udaeta, M. E. (2017). Sustainable Energy Technologies in the Industry Using Integrated Energy Resources Planning. Energy Procedia, 118, 4–14. doi:10.1016/j.egypro.2017.07.002
  • Lindstad, H. E. (2014). Hydrogen the Next Maritime Fuel, 12pp. Lindstad, H., Eskeland, G. S., Psaraftis, H., Sandaas, I. ve Strømman, A. H. (2015). Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 110, 94–101. doi:10.1016/j.oceaneng.2015.09.029
  • Mander, S. (2017). Slow steaming and a new dawn for wind propulsion: A multi-level analysis of two low carbon-shipping transitions. Marine Policy, 75, 210–216. doi:10.1016/j.marpol.2016.03.018Maritime, G. ve Monitor, I. (2018). Global Maritime Issues Monit o r.
  • Matulić, N., Radica, G., Barbir, F. and Nižetić, S. (2019). Commercial vehicle auxiliary loads powered by PEM fuel cell. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.12.121
  • Michalski, J., Poltrum, M. ve Bünger, U. (2018). The role of renewable fuel supply in the transport sector in a future decarbonized energy system. International Journal of Hydrogen Energy, 2018, 1–12. doi:10.1016/j.ijhydene.2018.10.110
  • Mofor, L., Nuttal, P. ve Alison, N. (2015). Renewable energy: Options for scrutiny, (July).
  • Morsy El-Gohary, M. (2013). Overview of past, present and future marine power plants. Journal of Marine Science and Application, 12(2), 219–227. doi:10.1007/s11804-013-1188-8
  • Mosácula, C., Chaves-Ávila, J. P. ve Reneses, J. (2019). Reviewing the design of natural gas network charges considering regulatory principles as guiding criteria in the context of the increasing interrelation of energy carriers. Energy Policy, 126(December 2018), 545–557. doi:10.1016/j.enpol.2018.10.069
  • Pata, U. K. (2018). Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. Journal of Cleaner Production, 187, 770–779. doi:10.1016/j.jclepro.2018.03.236
  • Pierru, A., Wu, K., Murphy, F., Galkin, P., Feijoo, F., Rioux, B.Malov, A. (2019). The economic impact of price controls on China’s natural gas supply chain. Energy Economics, 80(2019), 394–410. doi:10.1016/j.eneco.2018.12.026
  • Psaraftis, H. N. (2016). Green Maritime Logistics: The Quest for Win-win Solutions. Transportation Research Procedia, 14, 133–142. doi:10.1016/j.trpro.2016.05.049Rahim, M. M., Islam, M. T. ve Kuruppu, S. (2016). Regulating global shipping corporations’ accountability for reducing greenhouse gas emissions in the seas. Marine Policy, 69, 159–170. doi:10.1016/j.marpol.2016.04.018
  • Rehmatulla, N., Calleya, J. and Smith, T. (2017). The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, 139 (June 2016), 184–197. doi:10.1016/j.oceaneng.2017.04.029
  • Rehmatulla, N., Parker, S., Smith, T. and Stulgis, V. (2017). Wind technologies: Opportunities and barriers to a low carbon shipping industry. Marine Policy, 75, 217–226. doi:10.1016/j.marpol.2015.12.021
  • Rehmatulla, N. and Smith, T. (2015). Barriers to energy efficient and low carbon shipping. Ocean Engineering, 110, 102–112. doi:10.1016/j.oceaneng.2015.09.030
  • Robles Algarín, C., Llanos, A. P. and Castro, A. O. (2017). An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy |, 7(4), 38–47. Accessed from http:www.econjournals.com.
  • Tanç, B., Arat, H. T., Baltacıoğlu, E. and Aydın, K. (2018). Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy, (xxxx). doi:10.1016/j.ijhydene.2018.10.112
  • Technical, N. (2012). This document is downloaded from DR-NTU Nanyang Technological OPERATOR ’ S PERSPECTIVE IN THE CONTAINER SHIPPING.
  • Tronstad, T., Åstrand, H. H., Haugom, G. P. and Langfeldt, L. (2017). Study on the use of Fuel Cells in Shipping, 1–108.Wan, Z., el Makhloufi, A., Chen, Y. ve Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine Pollution Bulletin, 126(December), 428–435. doi:10.1016/j.marpolbul.2017.11.064
  • Wärtsilä. (2009). Boosting energy efficiency, (February), 1–68.
  • Xu, H., Li, Y. and Huang, H. (2017). Spatial Research on the Effect of Financial Structure on CO2 Emission. Energy Procedia, 118, 179–183. doi:10.1016/j.egypro.2017.07.037
  • Zhang, Y., Lin, Z. ve Liu, Q. (2014). Marine renewable energy in China: Current status and perspectives. Water Science and Engineering, 7(3), 288–305. doi:10.3882/j.issn.1674-2370.2014.03.005
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz Mühendisliği (Diğer), İşletme
Bölüm Research Articles
Yazarlar

Volkan Efecan 0000-0002-8450-0445

Ender Gürgen 0000-0002-1654-3005

Yayımlanma Tarihi 25 Aralık 2019
Gönderilme Tarihi 13 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Efecan, V., & Gürgen, E. (2019). INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. Mersin University Journal of Maritime Faculty, 1(1), 30-39.
AMA Efecan V, Gürgen E. INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. MEUJMAF. Aralık 2019;1(1):30-39.
Chicago Efecan, Volkan, ve Ender Gürgen. “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty 1, sy. 1 (Aralık 2019): 30-39.
EndNote Efecan V, Gürgen E (01 Aralık 2019) INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. Mersin University Journal of Maritime Faculty 1 1 30–39.
IEEE V. Efecan ve E. Gürgen, “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”, MEUJMAF, c. 1, sy. 1, ss. 30–39, 2019.
ISNAD Efecan, Volkan - Gürgen, Ender. “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty 1/1 (Aralık 2019), 30-39.
JAMA Efecan V, Gürgen E. INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. MEUJMAF. 2019;1:30–39.
MLA Efecan, Volkan ve Ender Gürgen. “INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION”. Mersin University Journal of Maritime Faculty, c. 1, sy. 1, 2019, ss. 30-39.
Vancouver Efecan V, Gürgen E. INVESTIGATION OF THE USABILITY OF RENEWABLE ENERGY IN MARITIME TRANSPORTATION. MEUJMAF. 2019;1(1):30-9.

download

Mersin University Journal of Maritime Faculty is licenced under a Creative Commons Attribution-ShareAlike 4.0 International License.