Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 10 Sayı: 4, 323 - 329, 31.12.2023
https://doi.org/10.17350/HJSE19030000322

Öz

Kaynakça

  • 1. Xanthos M. Modification of polymer mechanical and rheological properties with functional fillers. Functional Fillers for Plastics. 2005:17-38.
  • 2. Kıralp S, Özkoç G, Çamurlu P, Doğan M, Baydemir Tuncay B. Modern Çağın Malzemesi Plastikler, ODTÜ Yayıncılık, Ankara, 2007.
  • 3. Mazumdar S. Composites Manufacturing: Materials, Product, and Process Engineering: CRC Press; 2001.
  • 4. Billingham N. Plastics additives Edited by R. Gachter and H. Müller, Hanser Verlag, Munich, 1991.
  • 5. Mastura M, Noryani M. Mineral-filled Composite: A Review on Characteristics, Applications, and Potential Materials Selection Process. Mineral-Filled Polymer Composites. 2022:25-43.
  • 6. Liang J-Z. Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Composites part B: engineering. 2013;51:224-32.
  • 7. Dike AS, Yilmazer U. Mechanical, thermal and rheological characterization of polystyrene/organoclay nanocomposites containing aliphatic elastomer modifiers. Materials Research Express. 2020;7(1):015055.
  • 8. Ansari M, Ismail H. Effect of compatibilisers on mechanical properties of feldspar/polypropylene composites. Polymer-Plastics Technology and Engineering. 2009;48(12):1295-303.
  • 9. Donnet J. Nano and microcomposites of polymers elastomers and their reinforcement. Composites Science and Technology. 2003;63(8):1085-8.
  • 10. Drelich J, Miller J. A critical review of wetting and adhesion phenomena in the preparation of polymer-mineral composites. Mining, Metallurgy & Exploration. 1995;12:197-204.
  • 11. Çoban O, Yilmaz T. Volcanic particle materials in polymer composites: a review. Journal of Materials Science. 2022;57(36):16989-7020.
  • 12. Ciullo PA. Industrial minerals and their uses: a handbook and formulary: William Andrew; 1996.
  • 13. Atagür M, Sarikanat M, Uysalman T, Polat O, Elbeyli İY, Seki Y, et al. Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite. Journal of Elastomers & Plastics. 2018;50(8):747-61.
  • 14. Öktem GA, Tincer T. Preparation and characterization of perlitefilled high‐density polyethylenes. I. Mechanical properties. Journal of applied polymer science. 1994;54(8):1103-14.
  • 15. Öktem GA, Tincer T. Preparation and characterization of perlitefilled high‐density polyethylenes. II. Thermal and flow properties. Journal of Applied Polymer Science. 1994;54(8):1115-22.
  • 16. Öktem GA, Tincer T. A study on the yield stress of perlitefilled high-density polyethylenes. Journal of materials science. 1993;28:6313-7.
  • 17. Sahraeian R, Hashemi S, Esfandeh M, Ghasemi I. Preparation of nanocomposites based on LDPE/Perlite: mechanical and morphological studies. Polymers and Polymer Composites. 2012;20(7):639-46.
  • 18. Sahraeian R, Esfandeh M. Mechanical and morphological properties of LDPE/perlite nanocomposite films. Polymer Bulletin. 2017;74:1327-41.
  • 19. Heidari BS, Davachi SM, Sahraeian R, Esfandeh M, Rashedi H, Seyfi J. Investigating thermal and surface properties of lowdensity polyethylene/nanoperlite nanocomposites for packaging applications. Polymer Composites. 2019;40(7):2929-37.
  • 20. Mattausch H, Laske S, Cirar K, Flachberger H, Holzer C, editors. Influence of processing conditions on the morphology of expanded perlite/polypropylene composites. AIP Conference Proceedings; 2014: American Institute of Physics.
  • 21. Özdemir F. Perlit İçeriğinin Odun Plastik Kompozitlerin Yanma Dayanımına Etkisi. Bartın Orman Fakültesi Dergisi. 2020;22(3):852-60.
  • 22. Spoerk M, Sapkota J, Weingrill G, Fischinger T, Arbeiter F, Holzer C. Shrinkage and warpage optimization of expanded‐perlitefilled polypropylene composites in extrusion‐based additive manufacturing. Macromolecular materials and engineering. 2017;302(10):1700143.
  • 23. Mattausch H, Laske S, Hohenwarter D, Holzer C, editors. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/ expandable graphite compounds. AIP Conference Proceedings; 2015: AIP Publishing.
  • 24. de Oliveira AG, Jandorno Jr JC, da Rocha EBD, de Sousa AMF, da Silva ALN. Evaluation of expanded perlite behavior in PS/Perlite composites. Applied Clay Science. 2019;181:105223.
  • 25. de Oliveira AG, da Rocha EBD, Jandorno Jr JC, de Sousa AMF, da Silva ALN. Evaluation of thermoforming potential of polystyrene/ perlite composites. Polymer Bulletin. 2023:1-13.
  • 26. Tian H, Tagaya H. Dynamic mechanical property and photochemical stability of perlite/PVA and OMMT/PVA nanocomposites. Journal of materials science. 2008;43:766-70.
  • 27. Çelen U, Balçik Tamer Y, Berber H. The potential use of natural expanded perlite as a flame retardant additive for acrylonitrilebutadiene‐ styrene based composites. Journal of Vinyl and Additive Technology. 2023.
  • 28. Alghadi AM, Tirkes S, Tayfun U. Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Materials Research Express. 2019;7(1):015301.
  • 29. Angelopoulos PM, Kenanakis G, Viskadourakis Z, Tsakiridis P, Vasilopoulos KC, Karakassides MA, et al. Manufacturing of ABS/expanded perlite filament for 3D printing of lightweight components through fused deposition modeling. Materials Today: Proceedings. 2022;54:14-21.
  • 30. Tian H, Tagaya H. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/ montmorillonite composites. Journal of Materials Science. 2007;42:3244-50.
  • 31. Aksoy E., Tirkeş S., Tayfun U., Tirkeş S., Evaluation of expanded perlite as a natural additive in polylactide biodegradable composites. International Pumice and Perlite Symposium (PuPeS'23 Cappadocia) 2023; Nevşehir, Türkiye.
  • 32. Zhang X, Wen R, Tang C, Wu B, Huang Z, Min X, et al. Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. Energy and Buildings. 2016;130:113-21.
  • 33. Güngör SK. Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization. MANAS Journal of Engineering. 2020;8(2):132-7.
  • 34. Karip E, Muratoğlu M. A study on using expanded perlite with hydroxyapatite: Reinforced bio-composites. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2021;235(5):574-82.
  • 35. Arsalani N, Hayatifar M. Preparation and characterization of novel conducting polyaniline–perlite composites. polymer international. 2005;54(6):933-8.
  • 36. Masłowski M, Miedzianowska J, Strzelec K. Hybrid straw/perlite reinforced natural rubber biocomposites. Journal of Bionic Engineering. 2019;16:1127-42.
  • 37. Rattanaplome T, Pornprasit P, Chantaramee N, editors. The Potential of Perlite as an Odour‐Adsorbing Fillers in Natural Rubber Vulcanizates. Macromolecular Symposia; 2015: Wiley Online Library.
  • 38. Karaca E, Omeroglu S, Akcam O. Investigation of the effects of perlite additive on some comfort and acoustical properties of polyester fabrics. Journal of Applied Polymer Science. 2016;133(16).
  • 39. Sahin AE, Cetin B, Sinmazcelik T. Investigation of mechanical and tribological behaviour of expanded perlite particle reinforced polyphenylene sulphide. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2021;235(10):2356-67.
  • 40. Ai MX, Cao LQ, Zhao XL, Xiang ZY, Guo XY. Preparation and characterization of polyurethane rigid foam/expanded perlite thermal insulation composites. Advanced Materials Research. 2010;96:141-4.
  • 41. Li T-T, Chuang Y-C, Huang C-H, Lou C-W, Lin J-H. Applying vermiculite and perlite fillers to sound-absorbing/thermalinsulating resilient PU foam composites. Fibers and Polymers. 2015;16:691-8.
  • 42. Członka S, Kairytė A, Miedzińska K, Strąkowska A. Polyurethane composites reinforced with walnut shell filler treated with perlite, montmorillonite and halloysite. International Journal of Molecular Sciences. 2021;22(14):7304.
  • 43. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy conversion and management. 2017;134:373-81.
  • 44. Karaıpeklı A, Sarı A, Kaygusuz K. Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage. Energy Sources, Part A. 2009;31(10):814-23.
  • 45. Kucharczyk W, Dusiński D, Żurowski W, Gumiński R. Effect of composition on ablative properties of epoxy composites modified with expanded perlite. Composite Structures. 2018;183:654-62.
  • 46. Rolon B, Flores J, Gutierrez V. Design and manufacture of a fiber pyro expanded perlite/epoxy composite for thermal insulation. International Journal of Advancements in Technology. 2017;8(03).
  • 47. Allameh-Haery H, Kisi E, Fiedler T. Novel cellular perlite–epoxy foams: Effect of density on mechanical properties. Journal of Cellular Plastics. 2017;53(4):425-42.
  • 48. Alsaadi M, Erkliğ A. Effect of perlite particle contents on delamination toughness of S-glass fiber reinforced epoxy matrix composites. Composites Part B: Engineering. 2018;141:182-90.
  • 49. Singh T. Tribological performance of volcanic rock (perlite)-filled phenolic-based brake friction composites. Journal of King Saud University-Engineering Sciences. 2021.
  • 50. Doğan M, Yüksel H, Kizilduman BK. Characterization and thermal properties of chitosan/perlite nanocomposites. International Journal of Materials Research. 2021;112(5):405-14.
  • 51. Mahkam M, Vakhshouri L. Colon-specific drug delivery behavior of pH-responsive PMAA/perlite composite. International Journal of Molecular Sciences. 2010;11(4):1546-56.
  • 52. Edres N, Buniyat-zadeh I, Turp SM, Soylak M, Aliyeva S, Binnetova N, Guliyeva N, Mammadyarova S, Alosmanov R. Structural characterization composites based on butadiene rubber and expanded perlite. Preprints 2023, 2023101338. https://doi. org/10.20944/preprints202310.1338.v1
  • 53. Dike AS, Yilmazer U. Improvement of organoclay dispersion into polystyrene-based nanocomposites by incorporation of SBS and maleic anhydride-grafted SBS. Journal of Thermoplastic Composite Materials. 2020;33(4):554-74.
  • 54. Luna CB, Siqueira DD, Araújo EM, Wellen RM, Jeferson Alves de Melo T. Approaches on the acrylonitrile‐butadiene‐styrene functionalization through maleic anhydride and dicumyl peroxide. Journal of Vinyl and Additive Technology. 2021;27(2):308-18.
  • 55. Tayfun Ü, Kanbur Y. Asidik ve basik pomza içeren polipropilen kompozitlerinin mekanik, fiziksel ve morfolojik özellikleri. Sakarya University Journal of Science. 2018;22(2): 333-339.
  • 56. Feng J, Yuan Q, Sun X, Yang F, Cui K, Li W, et al. Improving the properties of ABS by blending with PP and using PP-g-PS as a compatibilizer. Polymer-Plastics Technology and Materials. 2021;60(7):798-806.
  • 57. Goodarzi V, Jafari SH, Khonakdar HA, Seyfi J. Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. Journal of Polymer Research. 2011;18:1829-39.
  • 58. Yildirimkaraman O, Yildiz UH, Akar AO, Tayfun U. Evaluation of water repellency in bentonite filled polypropylene composites via physical and mechanical methods. IOP SciNotes. 2020;1(2):024804.
  • 59. Premphet K, Horanont P. Phase structure of ternary polypropylene/ elastomer/filler composites: effect of elastomer polarity. Polymer. 2000;41(26):9283-90.
  • 60. Kanbur Y, Tayfun Ü. Polipropilen/huntit kompozitlerinin mekanik, fiziksel ve morfolojik özellikleri. Sakarya University Journal of Science. 2017; 21(5): 1045-1050.

Examination Of Perlite-Polymer Interface Interactions in Polypropylene-Based Composites via Several Compatibilizers

Yıl 2023, Cilt: 10 Sayı: 4, 323 - 329, 31.12.2023
https://doi.org/10.17350/HJSE19030000322

Öz

The surface interaction between the polymer and the mineral additive is one of the most significant aspects influencing the efficiency of mineral-filled polymeric composites. In this work, three distinct compatibilizers were introduced to composites based on polypropylene (PP) and perlite to improve interactions between the constituents. On composites comprising 10% expanded perlite content, three different ratios of ethylene vinyl acetate copolymer (EVA), thermoplastic polyurethane elastomer (TPU), and maleic anhydride grafted polypropylene (MA-PP) compatibilizers were employed. Composites were produced using an approach designated melt blending followed by injection molding. The composites containing MA-PP compatibilizer possessed the most outstanding performance, according to the results of mechanical, physical, and dynamic mechanical evaluations and morphological characterizations. The investigated aspects indicated a rise in the composites containing 10 percent compatibilizer with the lowest adding amount, whereas performances declined at high compatibilizer contents. Along with these results, it was determined that the compatibilizers included in the PP/perlite composite system assisted in the fabrication of the composites by promoting the force values and melt flow rates identified during melt mixing. Following the test outcomes, MA-PP performed better than TPU and EVA in terms of compatibilizer efficiency. In general, it has been revealed that the selection of MA-PP compatibilizer in the manufacturing stages would offer benefits in terms of both simplicity of processing and mechanical strength where expanded perlite will be adopted as a natural filler for PP-based composites.

Teşekkür

The authors wish to thank Prof. Teoman Tinçer for his permission to work in his laboratory at the Chemistry Department of Middle East Technical University.

Kaynakça

  • 1. Xanthos M. Modification of polymer mechanical and rheological properties with functional fillers. Functional Fillers for Plastics. 2005:17-38.
  • 2. Kıralp S, Özkoç G, Çamurlu P, Doğan M, Baydemir Tuncay B. Modern Çağın Malzemesi Plastikler, ODTÜ Yayıncılık, Ankara, 2007.
  • 3. Mazumdar S. Composites Manufacturing: Materials, Product, and Process Engineering: CRC Press; 2001.
  • 4. Billingham N. Plastics additives Edited by R. Gachter and H. Müller, Hanser Verlag, Munich, 1991.
  • 5. Mastura M, Noryani M. Mineral-filled Composite: A Review on Characteristics, Applications, and Potential Materials Selection Process. Mineral-Filled Polymer Composites. 2022:25-43.
  • 6. Liang J-Z. Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Composites part B: engineering. 2013;51:224-32.
  • 7. Dike AS, Yilmazer U. Mechanical, thermal and rheological characterization of polystyrene/organoclay nanocomposites containing aliphatic elastomer modifiers. Materials Research Express. 2020;7(1):015055.
  • 8. Ansari M, Ismail H. Effect of compatibilisers on mechanical properties of feldspar/polypropylene composites. Polymer-Plastics Technology and Engineering. 2009;48(12):1295-303.
  • 9. Donnet J. Nano and microcomposites of polymers elastomers and their reinforcement. Composites Science and Technology. 2003;63(8):1085-8.
  • 10. Drelich J, Miller J. A critical review of wetting and adhesion phenomena in the preparation of polymer-mineral composites. Mining, Metallurgy & Exploration. 1995;12:197-204.
  • 11. Çoban O, Yilmaz T. Volcanic particle materials in polymer composites: a review. Journal of Materials Science. 2022;57(36):16989-7020.
  • 12. Ciullo PA. Industrial minerals and their uses: a handbook and formulary: William Andrew; 1996.
  • 13. Atagür M, Sarikanat M, Uysalman T, Polat O, Elbeyli İY, Seki Y, et al. Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite. Journal of Elastomers & Plastics. 2018;50(8):747-61.
  • 14. Öktem GA, Tincer T. Preparation and characterization of perlitefilled high‐density polyethylenes. I. Mechanical properties. Journal of applied polymer science. 1994;54(8):1103-14.
  • 15. Öktem GA, Tincer T. Preparation and characterization of perlitefilled high‐density polyethylenes. II. Thermal and flow properties. Journal of Applied Polymer Science. 1994;54(8):1115-22.
  • 16. Öktem GA, Tincer T. A study on the yield stress of perlitefilled high-density polyethylenes. Journal of materials science. 1993;28:6313-7.
  • 17. Sahraeian R, Hashemi S, Esfandeh M, Ghasemi I. Preparation of nanocomposites based on LDPE/Perlite: mechanical and morphological studies. Polymers and Polymer Composites. 2012;20(7):639-46.
  • 18. Sahraeian R, Esfandeh M. Mechanical and morphological properties of LDPE/perlite nanocomposite films. Polymer Bulletin. 2017;74:1327-41.
  • 19. Heidari BS, Davachi SM, Sahraeian R, Esfandeh M, Rashedi H, Seyfi J. Investigating thermal and surface properties of lowdensity polyethylene/nanoperlite nanocomposites for packaging applications. Polymer Composites. 2019;40(7):2929-37.
  • 20. Mattausch H, Laske S, Cirar K, Flachberger H, Holzer C, editors. Influence of processing conditions on the morphology of expanded perlite/polypropylene composites. AIP Conference Proceedings; 2014: American Institute of Physics.
  • 21. Özdemir F. Perlit İçeriğinin Odun Plastik Kompozitlerin Yanma Dayanımına Etkisi. Bartın Orman Fakültesi Dergisi. 2020;22(3):852-60.
  • 22. Spoerk M, Sapkota J, Weingrill G, Fischinger T, Arbeiter F, Holzer C. Shrinkage and warpage optimization of expanded‐perlitefilled polypropylene composites in extrusion‐based additive manufacturing. Macromolecular materials and engineering. 2017;302(10):1700143.
  • 23. Mattausch H, Laske S, Hohenwarter D, Holzer C, editors. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/ expandable graphite compounds. AIP Conference Proceedings; 2015: AIP Publishing.
  • 24. de Oliveira AG, Jandorno Jr JC, da Rocha EBD, de Sousa AMF, da Silva ALN. Evaluation of expanded perlite behavior in PS/Perlite composites. Applied Clay Science. 2019;181:105223.
  • 25. de Oliveira AG, da Rocha EBD, Jandorno Jr JC, de Sousa AMF, da Silva ALN. Evaluation of thermoforming potential of polystyrene/ perlite composites. Polymer Bulletin. 2023:1-13.
  • 26. Tian H, Tagaya H. Dynamic mechanical property and photochemical stability of perlite/PVA and OMMT/PVA nanocomposites. Journal of materials science. 2008;43:766-70.
  • 27. Çelen U, Balçik Tamer Y, Berber H. The potential use of natural expanded perlite as a flame retardant additive for acrylonitrilebutadiene‐ styrene based composites. Journal of Vinyl and Additive Technology. 2023.
  • 28. Alghadi AM, Tirkes S, Tayfun U. Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Materials Research Express. 2019;7(1):015301.
  • 29. Angelopoulos PM, Kenanakis G, Viskadourakis Z, Tsakiridis P, Vasilopoulos KC, Karakassides MA, et al. Manufacturing of ABS/expanded perlite filament for 3D printing of lightweight components through fused deposition modeling. Materials Today: Proceedings. 2022;54:14-21.
  • 30. Tian H, Tagaya H. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/ montmorillonite composites. Journal of Materials Science. 2007;42:3244-50.
  • 31. Aksoy E., Tirkeş S., Tayfun U., Tirkeş S., Evaluation of expanded perlite as a natural additive in polylactide biodegradable composites. International Pumice and Perlite Symposium (PuPeS'23 Cappadocia) 2023; Nevşehir, Türkiye.
  • 32. Zhang X, Wen R, Tang C, Wu B, Huang Z, Min X, et al. Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. Energy and Buildings. 2016;130:113-21.
  • 33. Güngör SK. Pumice and perlite co-substituted hydroxyapatite: Fabrication and characterization. MANAS Journal of Engineering. 2020;8(2):132-7.
  • 34. Karip E, Muratoğlu M. A study on using expanded perlite with hydroxyapatite: Reinforced bio-composites. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2021;235(5):574-82.
  • 35. Arsalani N, Hayatifar M. Preparation and characterization of novel conducting polyaniline–perlite composites. polymer international. 2005;54(6):933-8.
  • 36. Masłowski M, Miedzianowska J, Strzelec K. Hybrid straw/perlite reinforced natural rubber biocomposites. Journal of Bionic Engineering. 2019;16:1127-42.
  • 37. Rattanaplome T, Pornprasit P, Chantaramee N, editors. The Potential of Perlite as an Odour‐Adsorbing Fillers in Natural Rubber Vulcanizates. Macromolecular Symposia; 2015: Wiley Online Library.
  • 38. Karaca E, Omeroglu S, Akcam O. Investigation of the effects of perlite additive on some comfort and acoustical properties of polyester fabrics. Journal of Applied Polymer Science. 2016;133(16).
  • 39. Sahin AE, Cetin B, Sinmazcelik T. Investigation of mechanical and tribological behaviour of expanded perlite particle reinforced polyphenylene sulphide. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2021;235(10):2356-67.
  • 40. Ai MX, Cao LQ, Zhao XL, Xiang ZY, Guo XY. Preparation and characterization of polyurethane rigid foam/expanded perlite thermal insulation composites. Advanced Materials Research. 2010;96:141-4.
  • 41. Li T-T, Chuang Y-C, Huang C-H, Lou C-W, Lin J-H. Applying vermiculite and perlite fillers to sound-absorbing/thermalinsulating resilient PU foam composites. Fibers and Polymers. 2015;16:691-8.
  • 42. Członka S, Kairytė A, Miedzińska K, Strąkowska A. Polyurethane composites reinforced with walnut shell filler treated with perlite, montmorillonite and halloysite. International Journal of Molecular Sciences. 2021;22(14):7304.
  • 43. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy conversion and management. 2017;134:373-81.
  • 44. Karaıpeklı A, Sarı A, Kaygusuz K. Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage. Energy Sources, Part A. 2009;31(10):814-23.
  • 45. Kucharczyk W, Dusiński D, Żurowski W, Gumiński R. Effect of composition on ablative properties of epoxy composites modified with expanded perlite. Composite Structures. 2018;183:654-62.
  • 46. Rolon B, Flores J, Gutierrez V. Design and manufacture of a fiber pyro expanded perlite/epoxy composite for thermal insulation. International Journal of Advancements in Technology. 2017;8(03).
  • 47. Allameh-Haery H, Kisi E, Fiedler T. Novel cellular perlite–epoxy foams: Effect of density on mechanical properties. Journal of Cellular Plastics. 2017;53(4):425-42.
  • 48. Alsaadi M, Erkliğ A. Effect of perlite particle contents on delamination toughness of S-glass fiber reinforced epoxy matrix composites. Composites Part B: Engineering. 2018;141:182-90.
  • 49. Singh T. Tribological performance of volcanic rock (perlite)-filled phenolic-based brake friction composites. Journal of King Saud University-Engineering Sciences. 2021.
  • 50. Doğan M, Yüksel H, Kizilduman BK. Characterization and thermal properties of chitosan/perlite nanocomposites. International Journal of Materials Research. 2021;112(5):405-14.
  • 51. Mahkam M, Vakhshouri L. Colon-specific drug delivery behavior of pH-responsive PMAA/perlite composite. International Journal of Molecular Sciences. 2010;11(4):1546-56.
  • 52. Edres N, Buniyat-zadeh I, Turp SM, Soylak M, Aliyeva S, Binnetova N, Guliyeva N, Mammadyarova S, Alosmanov R. Structural characterization composites based on butadiene rubber and expanded perlite. Preprints 2023, 2023101338. https://doi. org/10.20944/preprints202310.1338.v1
  • 53. Dike AS, Yilmazer U. Improvement of organoclay dispersion into polystyrene-based nanocomposites by incorporation of SBS and maleic anhydride-grafted SBS. Journal of Thermoplastic Composite Materials. 2020;33(4):554-74.
  • 54. Luna CB, Siqueira DD, Araújo EM, Wellen RM, Jeferson Alves de Melo T. Approaches on the acrylonitrile‐butadiene‐styrene functionalization through maleic anhydride and dicumyl peroxide. Journal of Vinyl and Additive Technology. 2021;27(2):308-18.
  • 55. Tayfun Ü, Kanbur Y. Asidik ve basik pomza içeren polipropilen kompozitlerinin mekanik, fiziksel ve morfolojik özellikleri. Sakarya University Journal of Science. 2018;22(2): 333-339.
  • 56. Feng J, Yuan Q, Sun X, Yang F, Cui K, Li W, et al. Improving the properties of ABS by blending with PP and using PP-g-PS as a compatibilizer. Polymer-Plastics Technology and Materials. 2021;60(7):798-806.
  • 57. Goodarzi V, Jafari SH, Khonakdar HA, Seyfi J. Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. Journal of Polymer Research. 2011;18:1829-39.
  • 58. Yildirimkaraman O, Yildiz UH, Akar AO, Tayfun U. Evaluation of water repellency in bentonite filled polypropylene composites via physical and mechanical methods. IOP SciNotes. 2020;1(2):024804.
  • 59. Premphet K, Horanont P. Phase structure of ternary polypropylene/ elastomer/filler composites: effect of elastomer polarity. Polymer. 2000;41(26):9283-90.
  • 60. Kanbur Y, Tayfun Ü. Polipropilen/huntit kompozitlerinin mekanik, fiziksel ve morfolojik özellikleri. Sakarya University Journal of Science. 2017; 21(5): 1045-1050.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler, Polimerler ve Plastikler
Bölüm Research Articles
Yazarlar

Çağrıalp Arslan 0000-0002-5993-2983

Ümit Tayfun 0000-0001-5978-5162

Mehmet Doğan 0000-0001-9157-6504

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 12 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 4

Kaynak Göster

Vancouver Arslan Ç, Tayfun Ü, Doğan M. Examination Of Perlite-Polymer Interface Interactions in Polypropylene-Based Composites via Several Compatibilizers. Hittite J Sci Eng. 2023;10(4):323-9.

Hittite Journal of Science and Engineering Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.