Araştırma Makalesi
BibTex RIS Kaynak Göster

Çeşitli Karbonhidratlar ve Tanik Asidin Uresiphita gilvata (Lepidoptera: Crambidae)’nın Besin Tüketimi ve Gelişme Performansına Etkileri

Yıl 2020, Cilt: 13 Sayı: 2, 178 - 186, 15.08.2020
https://doi.org/10.46309/biodicon.2020.739497

Öz

Bu çalışmada, Uresiphita gilvata larvalarının besin tercihi ve gelişiminde karbonhidratların ve tanennin etkisi araştırılmıştır. Ayrıca, tanen ilavesiyle larvaların besin tercihinde bitki-herbivor birlikte evrimleşmesinin önemine değinilmiştir. Bu amaçla, 13 farklı yapay diyet hazırlanmıştır. Herbir diyet aynı konsantrasyonda sükroz, galaktoz, glikoz, maltız, fruktoz, arabinoz, mannoz ya da nişasta içermektedir. Tanenlerin etkisini incelemek için aynı konsantrasyonda sükroz, nişasta, glikoz veya maltoz içeren diyetlere %5 tanen ilavesi yapılmıştır. Çalışma sonuçlarına göre, larvalar sükrozu, glikoz ve maltozdan daha fazla tüketmiştir. Fakat, U. gilvata larvaları en fazla arabinoz içeren diyeti, en az ise mannoz içeren diyeti tüketmiştir. Galaktoz içeren diyet fazla tüketilmesine rağmen larva tarafından dönüştürülememiştir. Diyete tanen ilavesiyle besin tüketim miktarı, pupa kuru ağırlığı, pupa lipit miktarı azalmıştır. Fakat, pupa protein miktarı artmış, gelişim süresi de uzamıştır.

Kaynakça

  • [1] Stam, J. M., Kroes, A., Li, Y., Gols, R., van Loon, J. J. A., Poelman, E. H. & Dicke, M. (2014). Plant interactions with multiple insect herbivores: from the community to genes. Annual Review of Plant Biology, 65 (1), 689-713. [2] Coyle, D.R., Clark, K.E., Raffa, K.F. & Johnson, S.N. (2011). Prior host feeding experience influences ovipositional but not feeding preference in a polyphagous insect herbivore. Entomologia Experimentalis et Applicata, 138 (2), 137-145. [3] Rockstein, M. (1978). Biochemistry of Insects. 1-55. NewYork: Academic Press. [4] Gündüz, E. A., Gl, A., Varer Işıtan, Ö., Boz, A. & Cesur, Ö. (2010). Effects of sugar feeding on lipid, glycogen, and total sugar levels of a female parasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae): Turkish Journal of Agriculture and Forestry, 34, 343-347. [5] Sarwar, M. (2009). Populations’ synchronization of aphids (Homoptera: Aphididae) and ladybird beetles (Coleoptera: Coccinellidae) and exploitation of food attractants for predator: Biological Diversity and Conservation, 2, 85-89. [6] Kaufmann, C., Mathis, A. & Vorburger, C. (2015). Sugar-feeding behaviour and longevity of European Culicoides biting midges: Medical and Veterinary Entomology, 29, 17-25. https: // doi: 10.1111/mve.12086. [7] Bernklau, E. J., Hibbard, B. E. & Bjostad, L. B. (2018). Sugar preferences of western corn rootworm larvae in a feeding stimulant blend: Journal of Applied Entomology, 142, 947-958. [8] Barbehenn, R.V. & Constabel, P.C. (2011). Tannins in plant-herbivore interactions: Phytochemistry, 72 (13), 1551-1564. [9] Monteys, V. S. (2002). Nueva planta alimenticia para Uresiphita gilvata (Lep. Crambidae) y nuevo parasitoide bracónido (Hym.) de ésta : Phytoma, 138, 43-45. [10] Can, Ö. & Taş, B. (2012). Ecological and socio-economic importance of Cernek Lake and wetland area (Kızılırmak Delta, Samsun) located in Ramsar area: TÜBAV Bilim Dergisi 5 (2), 1-11. [11] Yamamoto, R. T. (1969). Mass rearing of tobacco hornworm. II. Larval rearing and pupation: Journal of Economical Entomology, 62, 1427-1431. [12] Lee, K. P., Behmer, S. T., Simpson, S. J. & Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). Journal of Insect Physiology, 48 (6), 655-665. [13] Simpson, S. J. & Raubenheimer, D. (2001). The geometric analysis of nutrient–allelochemical interactions: a case study using locusts. Ecology, 82, 422–439. [14] Yi, L., Lakemonda, C. M. M., Sagisb, L. M. C., Eisner-Schadlerc, V., van Huisd, A. & van Boekela, M. A. J. S. (2013). Extraction and characterization of protein fractions from five insect species. Food Chemistry, 141, 3341-3348. [15] Oonincx, D. A. G. B., Van Broekhoven, S., Van Huis, A. & Van Loon, J. J. A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One, 10 (12), 1-20. https:// doi:10.1371/ journal.pone.0144601. [16] Cornelius, M.L., Grace, J.K. & Yates, J.R. (1996). Acceptability of different sugars and oils to three tropical ant species (Hymen.: Formicidae). Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 69, 41 – 43. [17] Blüthgen, N. & Fiedler, K. (2004). Preferences for sugars and amino acids and their conditionality in a diverse nectar‐feeding ant community. Journal of Animal Ecology, 73 (1), 155-166. [18] Juma, G., Thiongo, M., Dutaur, L., Rharrabe, K., Marion-Poll, F., Le, Ru. B., Magoma, G., Silvain, J. F. & Calatayud, P. A. (2013). Two sugar isomers influence host plant acceptance by a cereal caterpillar pest. Bulletin of Entomological Research, 103, 20-28. [19] Bernays, E.A., Chapman, R.F. & Singer, M.S. (2004). Changes in taste receptor cell sensitivity in a polyphagous caterpillar reflect carbohydrate but not protein imbalance. Journal of Comparative Physiology A, 190 (1), 39-48. [20] Jiang, X.J., Ning, C., Guo, H., Jia, Y. Y., Huang, L.Q., Qu, M. J. & Wang, L. Q. (2015). A gustatory receptor tuned to D-Fructose in antennal sensilla chaetica of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, (60), 39-46. [21] Thompson, S. N. (1981). Effects of Dietary Carbohydrate and Lipid on Nutrition and Metabolism of Metazoan Parasites with Special Reference to Parasitic Hymenoptera. In: Bashkaran, G., Friedman, S. & Rodriguez, J. G. (Eds), Current Topics in Insect Endocrinology and Nutrition (1 st ed., pp. 215-252). New York and London: Plenum Press [22] Hu, J. S., Gelman, D. B., Salvucci, M. E., Chen, Y. P. & Blackburn, M. B. (2010). Insecticidal activity of some reducing sugars against the sweet potato whitefly, Bemisia tabaci, Biotype B. Insect Science, 10 (203), 1-22. [23] Puterka, G.J., Farone, W., Palmer, T. & Barrington, A. (2003). Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters. Journal of Economical Entomology, 96, 636-644. [24] Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F. & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, 330, 160-163. [25] Price, D. R. G., Tibbles, K., Shigenobu, S., Smertenko, A., Russell, C. W., Douglas, A. E., Fitches, E., Gatehouse, A. M. R. & Gatehouse, J. A. (2010). Sugar transporters of the major facilitator superfamily in aphids; from gene prediction to functional characterization. Insect Molecular Biology, 19, 97-112. [26] Arrese, E. L. & Soulages, J. L. (2010). Insect fat body: Energy, Metabolism and Regulation. Annual Review of Entomology, 55, 207-225. [27] Raubenheimer, D. (1992). Tannic asit, protein and digestible carbohydrate: dietary imbalance and nutritional compensation in the African migratory locust: Ecology, 73, 1012-1927. [28] Nash, W. J. & Chapman, T. (2014). Effect of dietary components on larval life history characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae): PLoS One, 9(1), e86029. [29] Mole, S. & Waterman, P. G. (1987). Tannins as antifeedants to mammalian herbivores—still an open question, In Waller, G. R. (Eds), Allelochemicals: role in agriculture and forestry (72–587). Washington, D.C., USA: ACS Symposium Series, American Chemical Society. [30] Kubo, I., Hori, I., Nihei, K-I., Satooka, H., Cѐspedes, C. L. & Calderon, J. (2008). Insect growth inhibitory activity and cytotoxicity of tannic acid from Gallae rhois. Biopesticides International, 4 (1), 6-14. [31] Liu, W., Xue, C. B., Zhang, J. J., Yu, J. F. & Luo, W. C. (2010). Inhibitory effect of tannic acid on growth, development and phenoloxidase activity of Spodoptera exigua larva. Journal of Plant Resources and Environment, 19 (1), 32–37. [32] Barbehenn, R. V., Jaros, A., Lee, G., Mozola, C., Weir, Q. & Salminen, J. P. (2009). Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. Journal of Insect Physiology, 55, 297–304. https://doi: 10.1016/j.jinsphys.2008.12.001. [33] Hemming, J. D.C. & Lindroth, R. L. (1995). Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 103, 79–88. [34] Mrkadovic, M., Peric Mataruga, V., Ilijin, L., Vlahovic, M., Jankovic Tomanic, M., Mircic, D. & Lazarevic, J. (2013). Response of Lymantria dispar (Lepidoptera: Lymantriidae) larvae from differently adapted populations to allelochemical stress: Effects of tannic acid. European Journal of Entomology, 110 (1), 55-63. [35] Bernays, E.A. (1998). Evolution of feeding behaviour in insect herbivores. Bioscience, 48 (1), 35-44.

The Effects of Various Carbohydrates and Tannic Acid on the Food Consumption and Growth Performance of Uresiphita gilvata (Lepidoptera: Crambidae)

Yıl 2020, Cilt: 13 Sayı: 2, 178 - 186, 15.08.2020
https://doi.org/10.46309/biodicon.2020.739497

Öz

The effects of carbohydrates and tannen on the development and food preferences of Uresiphita gilvata larvae were investigated in this study. In addition, with the addition of tannin, the importance of plant-herbivore co-evolution in the food choice of the larvae was mentioned. For this reason, thirteen different artificial diets were prepared. Each diet contains sucrose, glucose, galactose, maltose, fructose, arabinose, mannose, or starch at the same concentration. To investigate the effect of tannic acid, 5 % tannic acid was added to the diets each containing sucrose, starch, glucose or maltose at the same concentration. According to the results of the study, sucrose was consumed by larvae more than glucose and fructose. However, the maximum food consumption of U. gilvata larvae was on the diet containing arabinose and their minimum consumption was on the diet containing mannose. Galactose is more consumed by larvae. However, intake galactose can not converted to pupal lipid by larvae. The addition of tannin to the diet reduced the amount of consumption of diet the dry pupal weight and lipid amount of pupae. However, the addition of tannin to the diet increased the amount of protein and extended the development time of pupae.

Kaynakça

  • [1] Stam, J. M., Kroes, A., Li, Y., Gols, R., van Loon, J. J. A., Poelman, E. H. & Dicke, M. (2014). Plant interactions with multiple insect herbivores: from the community to genes. Annual Review of Plant Biology, 65 (1), 689-713. [2] Coyle, D.R., Clark, K.E., Raffa, K.F. & Johnson, S.N. (2011). Prior host feeding experience influences ovipositional but not feeding preference in a polyphagous insect herbivore. Entomologia Experimentalis et Applicata, 138 (2), 137-145. [3] Rockstein, M. (1978). Biochemistry of Insects. 1-55. NewYork: Academic Press. [4] Gündüz, E. A., Gl, A., Varer Işıtan, Ö., Boz, A. & Cesur, Ö. (2010). Effects of sugar feeding on lipid, glycogen, and total sugar levels of a female parasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae): Turkish Journal of Agriculture and Forestry, 34, 343-347. [5] Sarwar, M. (2009). Populations’ synchronization of aphids (Homoptera: Aphididae) and ladybird beetles (Coleoptera: Coccinellidae) and exploitation of food attractants for predator: Biological Diversity and Conservation, 2, 85-89. [6] Kaufmann, C., Mathis, A. & Vorburger, C. (2015). Sugar-feeding behaviour and longevity of European Culicoides biting midges: Medical and Veterinary Entomology, 29, 17-25. https: // doi: 10.1111/mve.12086. [7] Bernklau, E. J., Hibbard, B. E. & Bjostad, L. B. (2018). Sugar preferences of western corn rootworm larvae in a feeding stimulant blend: Journal of Applied Entomology, 142, 947-958. [8] Barbehenn, R.V. & Constabel, P.C. (2011). Tannins in plant-herbivore interactions: Phytochemistry, 72 (13), 1551-1564. [9] Monteys, V. S. (2002). Nueva planta alimenticia para Uresiphita gilvata (Lep. Crambidae) y nuevo parasitoide bracónido (Hym.) de ésta : Phytoma, 138, 43-45. [10] Can, Ö. & Taş, B. (2012). Ecological and socio-economic importance of Cernek Lake and wetland area (Kızılırmak Delta, Samsun) located in Ramsar area: TÜBAV Bilim Dergisi 5 (2), 1-11. [11] Yamamoto, R. T. (1969). Mass rearing of tobacco hornworm. II. Larval rearing and pupation: Journal of Economical Entomology, 62, 1427-1431. [12] Lee, K. P., Behmer, S. T., Simpson, S. J. & Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). Journal of Insect Physiology, 48 (6), 655-665. [13] Simpson, S. J. & Raubenheimer, D. (2001). The geometric analysis of nutrient–allelochemical interactions: a case study using locusts. Ecology, 82, 422–439. [14] Yi, L., Lakemonda, C. M. M., Sagisb, L. M. C., Eisner-Schadlerc, V., van Huisd, A. & van Boekela, M. A. J. S. (2013). Extraction and characterization of protein fractions from five insect species. Food Chemistry, 141, 3341-3348. [15] Oonincx, D. A. G. B., Van Broekhoven, S., Van Huis, A. & Van Loon, J. J. A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One, 10 (12), 1-20. https:// doi:10.1371/ journal.pone.0144601. [16] Cornelius, M.L., Grace, J.K. & Yates, J.R. (1996). Acceptability of different sugars and oils to three tropical ant species (Hymen.: Formicidae). Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 69, 41 – 43. [17] Blüthgen, N. & Fiedler, K. (2004). Preferences for sugars and amino acids and their conditionality in a diverse nectar‐feeding ant community. Journal of Animal Ecology, 73 (1), 155-166. [18] Juma, G., Thiongo, M., Dutaur, L., Rharrabe, K., Marion-Poll, F., Le, Ru. B., Magoma, G., Silvain, J. F. & Calatayud, P. A. (2013). Two sugar isomers influence host plant acceptance by a cereal caterpillar pest. Bulletin of Entomological Research, 103, 20-28. [19] Bernays, E.A., Chapman, R.F. & Singer, M.S. (2004). Changes in taste receptor cell sensitivity in a polyphagous caterpillar reflect carbohydrate but not protein imbalance. Journal of Comparative Physiology A, 190 (1), 39-48. [20] Jiang, X.J., Ning, C., Guo, H., Jia, Y. Y., Huang, L.Q., Qu, M. J. & Wang, L. Q. (2015). A gustatory receptor tuned to D-Fructose in antennal sensilla chaetica of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, (60), 39-46. [21] Thompson, S. N. (1981). Effects of Dietary Carbohydrate and Lipid on Nutrition and Metabolism of Metazoan Parasites with Special Reference to Parasitic Hymenoptera. In: Bashkaran, G., Friedman, S. & Rodriguez, J. G. (Eds), Current Topics in Insect Endocrinology and Nutrition (1 st ed., pp. 215-252). New York and London: Plenum Press [22] Hu, J. S., Gelman, D. B., Salvucci, M. E., Chen, Y. P. & Blackburn, M. B. (2010). Insecticidal activity of some reducing sugars against the sweet potato whitefly, Bemisia tabaci, Biotype B. Insect Science, 10 (203), 1-22. [23] Puterka, G.J., Farone, W., Palmer, T. & Barrington, A. (2003). Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters. Journal of Economical Entomology, 96, 636-644. [24] Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F. & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, 330, 160-163. [25] Price, D. R. G., Tibbles, K., Shigenobu, S., Smertenko, A., Russell, C. W., Douglas, A. E., Fitches, E., Gatehouse, A. M. R. & Gatehouse, J. A. (2010). Sugar transporters of the major facilitator superfamily in aphids; from gene prediction to functional characterization. Insect Molecular Biology, 19, 97-112. [26] Arrese, E. L. & Soulages, J. L. (2010). Insect fat body: Energy, Metabolism and Regulation. Annual Review of Entomology, 55, 207-225. [27] Raubenheimer, D. (1992). Tannic asit, protein and digestible carbohydrate: dietary imbalance and nutritional compensation in the African migratory locust: Ecology, 73, 1012-1927. [28] Nash, W. J. & Chapman, T. (2014). Effect of dietary components on larval life history characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae): PLoS One, 9(1), e86029. [29] Mole, S. & Waterman, P. G. (1987). Tannins as antifeedants to mammalian herbivores—still an open question, In Waller, G. R. (Eds), Allelochemicals: role in agriculture and forestry (72–587). Washington, D.C., USA: ACS Symposium Series, American Chemical Society. [30] Kubo, I., Hori, I., Nihei, K-I., Satooka, H., Cѐspedes, C. L. & Calderon, J. (2008). Insect growth inhibitory activity and cytotoxicity of tannic acid from Gallae rhois. Biopesticides International, 4 (1), 6-14. [31] Liu, W., Xue, C. B., Zhang, J. J., Yu, J. F. & Luo, W. C. (2010). Inhibitory effect of tannic acid on growth, development and phenoloxidase activity of Spodoptera exigua larva. Journal of Plant Resources and Environment, 19 (1), 32–37. [32] Barbehenn, R. V., Jaros, A., Lee, G., Mozola, C., Weir, Q. & Salminen, J. P. (2009). Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. Journal of Insect Physiology, 55, 297–304. https://doi: 10.1016/j.jinsphys.2008.12.001. [33] Hemming, J. D.C. & Lindroth, R. L. (1995). Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 103, 79–88. [34] Mrkadovic, M., Peric Mataruga, V., Ilijin, L., Vlahovic, M., Jankovic Tomanic, M., Mircic, D. & Lazarevic, J. (2013). Response of Lymantria dispar (Lepidoptera: Lymantriidae) larvae from differently adapted populations to allelochemical stress: Effects of tannic acid. European Journal of Entomology, 110 (1), 55-63. [35] Bernays, E.A. (1998). Evolution of feeding behaviour in insect herbivores. Bioscience, 48 (1), 35-44.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Koruma ve Biyolojik Çeşitlilik
Bölüm Araştırma Makaleleri
Yazarlar

Ender Altun Bu kişi benim 0000-0001-6072-2302

Mahmut Bilgener Bu kişi benim 0000-0001-7883-6973

Nurver Altun 0000-0002-2657-9263

Yayımlanma Tarihi 15 Ağustos 2020
Gönderilme Tarihi 18 Mayıs 2020
Kabul Tarihi 3 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 2

Kaynak Göster

APA Altun, E., Bilgener, M., & Altun, N. (2020). The Effects of Various Carbohydrates and Tannic Acid on the Food Consumption and Growth Performance of Uresiphita gilvata (Lepidoptera: Crambidae). Biological Diversity and Conservation, 13(2), 178-186. https://doi.org/10.46309/biodicon.2020.739497

18385183861838718388183892276122760