Conference Proceedings of Science and Technology, 2(1), 2019, 90-93

Conference Proceeding of International Conference on Mathematical Advances and Applications (ICOMAA 2019).

A New Modular Space Derived by Euler Totient Function

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Merve İlkhan^{1*} *Emrah Evren Kara*² *Fuat Usta*³

¹ Department of Mathematics, Faculty of Science and Arts, Düzce university, Düzce, Turkey, ORCID: 0000-0002-0831-1474

² Department of Mathematics, Faculty of Science and Arts, Düzce university, Düzce, Turkey, ORCID: 0000-0002-6398-4065

³ Department of Mathematics, Faculty of Science and Arts, Düzce university, Düzce, Turkey, ORCID: 0000-0002-7750-6910

* Corresponding Author E-mail: merveilkhan@duzce.edu.tr

Abstract: In this study, we introduce the Euler Totient sequence spaces in generalized Orlicz space and we examine some topological properties of these spaces by using the Luxemburg norm.

Keywords: Euler Totient function, Modular space, Orlicz sequence space, Luxemburg norm

1 Introduction and background

Lindenstrauss and Tzafriri [1] used the idea of Orlicz function M to construct the sequence space ℓ_M of all sequences of scalars (x_k) such that $\sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty$ for some $\rho > 0$. The space ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

is a Banach space and it is called as Orlicz sequence space. The space ℓ_M is closely related to the space $\ell_p = \{(x_k) : \sum_{k=1}^{\infty} |x_k|^p < \infty\}$ which is an Orlicz space with $M(x) = x^p$, for $1 \le p < \infty$.

Definition 1. [2] A function $M : [0, \infty) \to [0, \infty)$ is called an Orlicz function if it is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for all x > 0 and $M(x) \to \infty$ as $x \to \infty$.

An Orlicz function M is said to satisfy the Δ_2 -condition if there exists a constant K > 0 such that $M(2x) \le KM(x)$ for all $x \ge 0$. It is easy to see that always K > 2.

Equivalently, an Orlicz function M is said to satisfy the Δ_2 -condition if $M(lx) \leq K(l)M(x)$ for all $x \geq 0$, where l > 1.

A simple example of an Orlicz function which satisfies the Δ_2 -condition is given by $M(x) = \alpha |x|^{\alpha}$ ($\alpha > 1$), since we have $M(2x) = \alpha 2^{\alpha} |x|^{\alpha} = 2^{\alpha} M(x)$.

Definition 2. [2] Let X be a linear space over \mathbb{R} . A function $\rho : X \to [0, \infty]$ is called a modular if the following conditions hold: (1) $\rho(x) = 0 \Leftrightarrow x = \theta$ (zero vector of X),

 $\begin{aligned} (2)\rho(x) &= \rho(-x) \text{ for all } x \in X, \\ (3)\rho(\alpha x + \beta y) &\leq \rho(x) + \rho(y) \text{ for all } x, y \in X \text{ and } \alpha, \beta \geq 0 \text{ with } \alpha + \beta = 1. \end{aligned}$

 $(3')\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ for all $x, y \in X$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$

holds instead of (3), then ρ is called a convex modular.

If ρ is a modular on X, then the linear space

$$X_{\rho} = \{ x \in X : \lim_{\delta \to 0} \rho(\delta x) = 0 \}$$

is called a modular space.

Definition 3. [2] A sequence (x_n) in X_ρ is called ρ -convergent to $x_0 \in X_\rho$ if $\rho(\delta(x_n - x_0)) \to 0$ as $n \to \infty$ for some $\delta > 0$. A sequence (x_n) in X_ρ is called ρ -Cauchy if $\rho(\delta(x_n - x_m)) \to 0$ as $n, m \to \infty$ for some $\delta > 0$. The space X_ρ is called ρ -complete if every ρ -Cauchy sequence in this space is ρ -convergent. **Definition 4.** Let *E* be a Lebesgue measurable subset of \mathbb{R} . The generalized Orlicz space is defined as follows:

$$L_M = \{f: E \to \mathbb{R} : f \text{ is Lebesgue measurable and } \int_E M(\delta |f(x)|) dx < \infty \text{ for some } \delta > 0 \}$$

The function $\rho_M : L_M \to [0,\infty)$ defined by

$$\rho_M(f) = \int_E M(|f(x)|)dx$$

is a modular on L_M and the space L_M is ρ_M -complete.

The generalized Orlicz space L_M is a Banach space with the Luxemburg norm given by

$$||f||_M = \inf\{\gamma > 0 : \rho_M\left(\frac{f}{\gamma}\right) \le 1\}.$$

Throughout the study, by $\omega(L_M)$, we denote the space of all sequences in L_M .

Let φ denote the Euler function. For every $m \in \mathbb{N}$ with m > 1, $\varphi(m)$ is the number of positive integers less than m which are coprime with m and $\varphi(1) = 1$. If $p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ is the prime factorization of a natural number m > 1, then

$$\varphi(m) = m(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})...(1 - \frac{1}{p_r})$$

Also, the equality

$$m=\sum_{k\mid m}\varphi(k)$$

holds for every $m \in \mathbb{N}$ and $\varphi(m_1m_2) = \varphi(m_1)\varphi(m_2)$, where $m_1, m_2 \in \mathbb{N}$ are coprime [4]. One can consult to [5] for more details related to these functions.

The Φ -summability was introduced by Schoenberg [3] for the purpose of studying the Riemann integrability of a generalized Dirichlet function in the range [0, 1]. This method is called φ -convergence which is a weaker form of usual convergence. The infinite matrix $\Phi = (\phi_{ij})$ is defined as

$$\phi_{ij} = \begin{cases} \frac{\varphi(j)}{i} &, & \text{if } j \mid i \\ 0 &, & \text{if } j \nmid i \end{cases}$$

The matrix Φ satisfies the following conditions:

- $\begin{array}{ll} 1. \; \sup_{i \in \mathbb{N}} (\sum_{j=1}^{\infty} |\phi_{ij}|) < \infty, \\ 2. \; \lim_{i \to \infty} \phi_{ij} = 0 \text{ for each fixed } j \in \mathbb{N}, \\ 3. \; \lim_{i \to \infty} \sum_{j=1}^{\infty} \phi_{ij} = 1 \end{array}$

and so it is a regular matrix.

By using this matrix, Ilkhan and Kara [6] have introduced the sequence spaces $\ell_p(\Phi)$ and $\ell_{\infty}(\Phi)$ as

$$\ell_p(\Phi) = \left\{ u = (u_n) \in \omega : \sum_n \left| \frac{1}{n} \sum_{k|n} \varphi(k) u_k \right|^p < \infty \right\} \quad (1 \le p < \infty)$$

and

$$\ell_{\infty}(\Phi) = \left\{ u = (u_n) \in \omega : \sup_{n} \left| \frac{1}{n} \sum_{k|n} \varphi(k) u_k \right| < \infty \right\}.$$

In the literature, there are many papers on sequence spaces using Orlicz function. Later these spaces are generalized by using the Lebesgue integral with Orlicz function. In [7], the authors have generalized the Cesàro sequence spaces in the classical Banach space L_p to the generalized Orlicz space L_M . In this paper, we generalize Euler sequence spaces to the generalized Orlicz space and obtain a modular space. Also, we examine some topological properties of these spaces by using the Luxemburg norm.

2 Main results

Now, we introduce the Euler Totient sequence spaces in generalized Orlicz space as follows:

$$W(M,\Phi) = \{(f_k) \in \omega(L_M) : \lim_{n \to \infty} \frac{1}{n} \sum_{k|n} \varphi(k) \rho_M(\lambda | f_k - f_0|) = 0 \text{ for some } \lambda > 0, f_0 \in L_M\},$$

$$W^{\infty}(M,\Phi) \quad = \quad \{(f_k) \in \omega(L_M) : \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k|n} \varphi(k) \rho_M(\lambda |f_k|) = 0 \text{ for some } \lambda > 0 \}.$$

Theorem 1. If the Orlicz function M satisfies the Δ_2 -condition, then the following equalities hold:

$$W(M, \Phi) = \{ (f_k) \in \omega(L_M) : \lim_{n \to \infty} \frac{1}{n} \sum_{k|n} \varphi(k) \rho_M(|f_k - f_0|) = 0, f_0 \in L_M \},\$$

$$W^{\infty}(M,\Phi) = \{(f_k) \in \omega(L_M) : \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k|n} \varphi(k)\rho_M(|f_k|) = 0\}.$$

Proof: Denote the right hand side of the first equality by $W_0(\rho_M, \Phi)$. It is clear that $W_0(\rho_M, \Phi) \subset W(M, \Phi)$. Now, choose $(f_k) \in W(M, \Phi)$. If $\lambda \ge 1$, we have $(f_k) \in W_0(\rho_M, \Phi)$ since M is a non-decreasing function. If $\lambda < 1$, there exists $K(\lambda) > 0$ such that $M(\frac{x}{\lambda}) \le K(\lambda)M(x)$ for all $x \ge 0$ since M satisfies Δ_2 -condition. Hence, we deduce that

$$\begin{aligned} \frac{1}{n} \sum_{k|n} \varphi(k) \rho_M(|f_k - f_0|) &= \frac{1}{n} \sum_{k|n} \varphi(k) \int_E M\left(\frac{\lambda}{\lambda} |f_k(x) - f_0(x)|\right) dx \\ &\leq \frac{K(\lambda)}{n} \sum_{k|n} \varphi(k) \int_E M\left(\lambda |f_k(x) - f_0(x)|\right) dx \to 0 \end{aligned}$$

as $n \to \infty$. This proves that $(f_k) \in W_0(\rho_M, \Phi)$. Hence, we conclude that $W(M, \Phi) = W_0(\rho_M, \Phi)$.

Remark 1. Note that if the Orlicz function M is defined by $M(x) = |x|^p$ for 1 , then the space is reduced to the following space

$$W(p,\Phi) = \{(f_k) \in \omega(L_p) : \lim_{n \to \infty} \frac{1}{n} \sum_{k|n} \varphi(k) \int_E |f_k(x) - f_0(x)|^p dx = 0, f_0 \in L_p\},\$$

where $L_p = \{f : E \to \mathbb{R} : \int_E |f(x)|^p dx < \infty\}.$

Using the fact that ρ_M is a convex modular on L_M , we obtain the following results.

Theorem 2. The function $\rho: \omega(L_M) \to [0, \infty)$ given by

$$\rho(f) = \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k|n} \rho_M(f_k)$$

is a convex modular, where $f = (f_k) \in \omega(L_M)$.

Theorem 3. The space

$$W^{\infty}(M, \Phi) = \{ f \in \omega(L_M) : \rho(\lambda f) < \infty, \lambda > 0 \}$$

is a modular space.

Proof: Clearly, the space $W^{\infty}(M, \Phi)$ is linear. Also, $(\omega(L_M))_{\rho} = \{f \in \omega(L_M) : \lim_{\lambda \to 0} \rho(\lambda f) = 0\} \subset W^{\infty}(M, \Phi)$ holds. To prove the inverse inclusion, choose $f \in W^{\infty}(M, \Phi)$ which means $\rho(\lambda f) < \infty$ for some $\lambda > 0$. By convexity of ρ , for $|\frac{\alpha}{\lambda}| < 1$, we have

$$\lim_{\alpha \to 0} \rho(\alpha f) = \lim_{\alpha \to 0} \frac{\alpha}{\lambda} \rho(\lambda f) = 0$$

This implies that $f \in (\omega(L_M))_{\rho}$.

Since ρ is a modular, we can define the Luxemburg norm $\|.\|_{\rho}$ on $W^{\infty}(M, \Phi)$ as

$$||f||_{\rho} = \inf\{\gamma > 0 : \rho\left(\frac{f}{\gamma}\right) \le 1, f \in W^{\infty}(M, \Phi)\}.$$

Definition 5. Let (f^n) be a sequence in $W^{\infty}(M, \Phi)$.

It is said to be ρ -convergent or modular convergent to $f \in W^{\infty}(M, \Phi)$ if there exists $\lambda > 0$ such that $\lim_{n\to\infty} \rho(\lambda(f^n - f)) = 0$. It is said to be ρ -Cauchy if there exists $\lambda > 0$ such that $\lim_{n\to\infty} \rho(\lambda(f^n - f^m)) = 0$.

Theorem 4. The space $W^{\infty}(M, \Phi)$ is ρ -complete.

Theorem 5. The space $W^{\infty}(M, \Phi)$ is complete with the Luxemburg norm $\|.\|_{\rho}$.

Theorem 6. If the Orlicz function M satisfies Δ_2 -condition, then the norm convergence and modular convergence are equivalent.

Proof: It is clear that $W(M, \Phi)$ is a linear subspace of $W^{\infty}(M, \Phi)$. Now, let (f^m) be a convergent sequence in $W(M, \Phi)$. Since $f^m \in W(M, \Phi)$ for each $m \in \mathbb{N}$, then there exists $f_0^m \in L_M$ and $\lambda > 0$ such that $\lim_n \frac{1}{n} \sum_{k|n} \varphi(k) \rho_M(\lambda(f_k^m - f_0^m)) = 0$. Also, since (f^m) is convergent, then $\rho(\lambda(f^m - f)) \to 0$ as $m \to \infty$ for some $f = (f_k) \in W^{\infty}(M, \Phi)$. Hence, we have

$$\frac{1}{n}\sum_{k|n}\varphi(k)\rho_M(\lambda(f_k^m-f_k))\to 0$$

. It follows that

$$\frac{1}{n}\sum_{k|n}\varphi(k)\rho_M(\lambda(f_k-f_0^m))\to 0$$

as $n \to \infty$ which implies that $f = (f_k) \in W(M, \Phi)$. Thus the space $W(M, \Phi)$ is closed.

References 3

- J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390. [1]
- J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983. [2] [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
- E. Kovac, On φ convergence and φ density, Math. Slovaca 55 (2005), 329-351. [4]
- I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991. [5]
- [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
 [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020.