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Abstract

In this paper, determining metric lines in Levenberg plane, a special metric line example
which can be represented by a single fixed point is presented. Moreover, we prove nonexistence
of periodic lines in Levenberg plane and give a problem whether there exists a distance space
in which periodic lines represented by a single fixed point?
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Tek Sabit Nokta Yardimiyla Temsil Edilebilen Metrik Dogru Var Midir?
Oz
Bu calismada Levenberg diizleminde metrik dogrularin tanimlanmasiyla tek sabit
nokta ile temsil edilebilen 6zel bir metrik dogru Ornegi verilmistir. Ayrica Levenberg

diizleminde higbir periyodik dogrunun olmadig1 gosterilmis olup, tek sabit noktali periyodik
dogrularin bulundugu uzaklik uzaylariin var olup olmayacagina dair bir problem sunulmustur.

Anahtar Kelimeler: Metrik uzaylar, metrik ve periyodik dogrularin fonksiyonel denklemleri

ve ¢Oziimleri, Levenberg diizlemi

Introduction

A real distance space A = (S,d) isa
non-empty set S together with a mapping
d:S XS — R. The elements of S are called
points and d(x, y) is said to be the distance
of the (ordered pair of) points x,y. The
subset k of S is called a metric line of A =
(S,d) if and only if there exists a bijection
f:k - Rsuch that [1]

dx,y) = 1f(x) = f)I
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forall x,y € k.

In [2], W. Benz proved that the
distance space (k,d) is a metric space for
every metric line k of A=(S,d).
Moreover W. Benz characterized the lines
of Euclidean and hyperbolic geometries as
metric lines in the sense of Blumenthal-
Menger as follows:

Let X be a real inner product space

of dimension >2, that S=X and
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d(x,y) = |lx —y|| for x,y € X. W. Benz
proved that all metric lines in Euclidean
geometry A = (S,d) are given by

{p+tq: teR}

withp, g € X suchthat ||q|| = 1. The metric
lines in Weierstrass model of hyperbolic
geometry A = (S, d) are determined by W.
Benz [2] as
{pcosht + gsinht: t € R}

where S is a a real inner product space of

dimension > 2,

coshd(x,y) = J1+ x2,/1+ y2 — xy,
p,q are arbitrary points of X with pq =
(p,q) =0and qq = 1.

If X is a real inner product space of
dimension > 2, then the metric lines in the
Poincar¢ ball model of hyperbolic geometry
A = (S,d) is defined by O. Demirel et.al.
[3] as
{p®qg®t: t € R}
with ||q|| = tanh1, where
S={pex: lpl<1
and
tanhd(x,y) = llx © yll.

Here, the notations " @ ", " © "and
"® " denote the Mobius addition, Mdbius
subtraction and M&bius scalar product in S,
respectively. For more details, we refer [3].
Moreover, O. Demirel and E.S. Sey-rantepe
[4] compared the cogyrolines of Mobius
gyrovector spaces which are defined by

x()=pQ@tBgq, teR
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(llpll = tanh1) to metric lines of itself,
where
S={XeV:I1XI<1}

and
tanhd(X,Y) = XHY I.

" H " denotes M&bius cosubtraction
in S. The metric lines in de Sitter’s world is
studied by R. Hofer in [5]. It is easy to see
that the representation of the metric lines
above are written by one parameter and one
point (or two points). Clearly this
representations can be written in different
forms, in other words, the representative
point p in the equation of a metric line is not
uniquely determined. The main purpose of
this paper is give a special metric line
example which can be represented by one
parameter and a single fixed point. The
problem to find all metric lines of A =

(S, d) can be expressed as follows:

Problem 1. Determine all injective func-

tions x: R — § such that

d(x(§),x(m) = |§ —nl 1)
holds true for all £, € R, see [1]. This is a
functional equation, see [1], [2].

Suppose that p is a positive number. A
subset k of S isa p —periodic line of the real
distance space A = (S,d) if, and only if,
there exists a bijection

fik— [0,p) ={e¢€R: 0<e<p}
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such that

d(x,y)

QRS ICOl! if [fG) — fO)] < g
p=If)=fOI, if If@ = FO)I > g

holds true for all x,y € k.

The problem to find all periodic
lines of A =(S,d) can be expressed as

follows:

Problem 2. Determine all injective functi-
ons x: [0,p) — S such that

d(x(&),x(m)
1§ —nl,

p—1&—nl,

if |§—nl<

if [§ —nl>

N|ITN[D

)
holds true for all ¢,n € R, see [2].

Let X be a real inner product space
of dimension > 2. Define the real distance
spaces A; = (S;,d;) fori = 1,2 as

S ={x € X:(x,x) =1}
and

S, = {{x,—x} c X:(x,x) =1}

with
cosdy (x,y) = (x,y)

for d,(x,y) € [0,2m), where x,y € S; and
cosd, ({x, —x}, {y, —¥}) = [{x, )|
for dy({x,—x},{y,~y}) €[0,5), where

{x,—x},{y,—y} € S,. The distance spaces

A; = (S;,d;) are metric spaces. Spherical
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and elliptic geometries over X are based on
A; and A,, respectively. W. Benz proved
that the 2m — periodic lines in A; =

(S4,d,) are given by

x(&) = pcos& + gsiné, ¢ €[0,2m)

with p,q € S such that (p,q) = 0, and = —

periodic lines in A, = (S,,d,) are given by

x(&) = R(pcosé + gsiné), Ee0,m)
with p, g € X such that (p,p) =1, (q,q) =
1 and (p,q) = 0. In this equation R =

{1,—1}, Rx = {x,—x}.

In [3], O. Demirel et al. proved that
there do not exist periodic lines in Poincaré

ball model of hyperbolic geometry.
Levenberg Plane

The

generalization of the Moulton plane which

Levenberg plane IS
is well known as an example of an affine
plane whose completion to projective plane
does not satisfy the Desargues theorem. The
set of points of Levenberg plane is the same
as Euclidean analytical plane R?. The set of
lines consists of vertical and horizontal

Euclidean lines, and set of the form

2. . _(mx+b,ifx<0
{(x,y) € R y_{cmx+b,ifx> 0’

m € R,c € RY,cis constant }
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Notice that a Levenberg line has a slope m
such that m = 0 or m — oo is the same as

the Euclidean line as shown in Figure 1.

Q1

Q2

Figurel. Levenberg lines have a slope m such
that m = 0 or m — oo are the same as the

Euclidean lines.

On the other hand, a Levenberg line gets
bent as is passed across the y —axis as

shown in Figure 2.

& B,
\K

Figure 2. Levenberg lines get bent as it

passed across the y-axis.

Therefore, the set of the Levenberg line L,

is the union of L,, , and L,, where

mx+b,x<0
Lmp =100y) s vy = cmx +b,x >0

m € R,c € RY,cis constant }

o X
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and
L, ={(x,y) ER%:x =a,a € R}.

Notice that the Levenberg lines are
geodesics in this geometry. As in the
representation of an Euclidean line in a
parametric form, a Levenberg line L,, , can

be expressed by a parametric form via

a(t)_{B+tu, ift >0
B -ty ift<0
where B is a point on y —axis, | u lI=Il v |l

=1, and d;(w,v) =llull +Hllv i (u,veE
R?). Here, |I-ll denotes the Euclidean norm
and d; denotes the Levenberg distance

function which is defined as follows:

The Levenberg distance between the points
P]_ = (xl,yl) and PZ = (xz,yZ) |n RZ |S
defined by

dL(Pli PZ)

dE(P]_,B) + dE(B,Pz), if Pl,Pz,B lie
onalinel € L,
X1Xp <0

dg(Py, Py), otherwise

(3)

where B = (0, b) € R? and dj; is Euclidean
distance. Notice that the point B is defined

uniquely for P, P, € R?.

The distance of two points in Levenberg
plane may not be invariant under Euclidean

translations. More precisely,
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dy(Py, Py) = di (T, (Py), Tw(P2))

holds true for all P, P, € R> (where
T,,: R? > R? such that T,,(u) = w + u) if
and only if w lies on the y —axis. There are
even more interesting properties of
Levenberg plane, for instance, triangle
inequality and Pythagorean theorem are fail
in Levenberg plane. For more details we

refer [6].

Metric and Periodic Lines in Levenberg

Plane

In this section we define the real
distance space S =R? and d(x,y) =
d; (x,y) as in the equation (3) forall x,y €
S.

Theorem 3. The metric lines of A = (S, d)

are exactly the classical lines of A.
Proof. Let us consider the Levenberg line

ift=0
ift<o0

_ (B +ty,
a(t) = {B — tv,
where B is a point on y — axis satisfying ||
ul=llvi=1,d,(wv)=lul+lvl for
u,v € R?%. Clearly, forall ¢ > 0andn <0,

we get
dy(a(§), a(n) IEull + llnvll
€1+ Inl
= [&—nl
For the all cases of &neR

satisfying {n > 0, we immediately get
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The other type of Levenberg lines
which have a slope m such that m = 0 or
m — oo are already metric lines, see [2].

Thus, a(t) is a metric line of A.

Suppose that the function x: R — S solves
(1) for all &n e R. If the metric line,
defined by x, does not meet y —axis at any
point, thus we immediately get that the
metric line must be a classical line with

slope m — oo, see [2].

Now assume that the metric line defined by
x meets y — axis. In this case, without loss
of generality, we may assume x(0) = 0.

Since x is a solution of (1), we have

d,(x(©),x(0)) = 1l x(&)—x(0) I
= -0l
= ¢l
forall ¢ € R. Let usassume & > 0. Clearly,
there are two cases such as
d,(x(©),x(1) =N x(©) - B I
+1IB—x(1) Il 4)

where B is a point on y — axis, or

dy(x(©),x() =N x©) —x(DI.  (5)
Now we consider the first case (4). It is not
hard to see that the points x(¢) and x(1)
must be in different sides of y — axis. There

are two subcases:

Subcase 1: Firstly assume B = x(0) = 0,
that is the points x(§), x(1) and x(0) lie on
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the same Levenberg line. Observe by (1),
we get

$—1 = 1x(@)—-BlI+IB—-x()I

E+1
and clearly this is not possible for all £ > 0.

Subcase 2: Now assume B # x(0), i.e. the
points x(£), x(1) and x(0) are not collinear
in the Levenberg sense. Put || B |l= b. Here,
we need to apply Euclidean triangle
inequality to triangles AO0Bx(¢) and
A0x(1)B for six different cases. Notice that
in these six cases
dy(x(€),x(1)) = Ix(E—-BI+

I B—x(1) I
(i) If b < & < 1 holds, then

dp(x(§),x(1)) > [§—b|+|1-b|

= &+1-2b

holds. By (1), we get
|E—1]|>&+1—-2b

which contradicts b < & < 1.

(i) If b <1 < & holds, then the proof is
clear by (i).

(iii) If 1 < b < & holds, then one can easily
get
dp(x($),x(1)) > [§—=b[+|1-D|
= &—1.
By (1), we have [E—1]>¢&—-1

which contradicts 1 < b < ¢.

(1v) If 1 < & < b holds, then we get
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dy(x($),x(1)) > [§—b|+|1-b|
= —£—1+2b.
By (1), [E—1]>—-&—1+2b

which contradicts 1 < & < b.

(v) If £ < b < 1 holds, then obviously
dp(x(§),x(1)) > [§—b|+[1-b|

= —={+1
and by (1), we get |£ — 1] > —& + 1 which

contradicts § < b < 1.

(v1) If £ <1 < b holds, then
dp(x(§),x(1)) > [§—=b|+[1-b|

= —&—-1+4+2b
is satisfied. Clearly, by (1), this yields |§ —
1| > =& — 1+ 2b which contradicts ¢ <
1<b.

Therefore, (5) must be valid for x(1) and
x(&€) with & > 0. In this case, we get

x(§) = @(§) - x(1) for £ >0 (6)
with @(&) = ¢, see [2].

If & <0, following the same way above,

one can easily get

x(§) = @(&) - x(=1) for§ <0 (7)

with ¢ () = =¢.

Clearly, the equations (6) and (7) define two
different rays in R? start at x(0) and goes

off in a certain direction forever, to infinity.
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Naturally, one may wonder whether
these rays lie on a common Levenberg line?
In order to see this, we need to check that
the collinearity property of the points
x(—1), x(0) and x(1) in the Levenberg
sense. It is easy to see that the points x(—1)
and x(1) must be lie on different sides of
y —axis; otherwise, by using Euclidean
triangle inequality to Ax(—1)x(0)x(1) and
by (1), we get

2 =1 (=D =l x(1) — x(=1) II<
(D) I +1 x(—=1) lI= 2.

which is not correct. Now, assume that these
rays do not lie on acommon Levenberg line.
Therefore, the line which passes through
x(—1) and x(1) intersect y —axis at a point,
say K, different from 0. By using Euclidean
triangle inequality for the triangles
Ax(—1)Kx(0) and Ax(1),x(0),K, we

immediately get

lx(=D—-KI < IKI+lx(=DI
= IIKI+1

and

Ix(D)—KI < [IKI+Ix()I
I K Il +1

respectively. Thus, we have

lx(=1)—x(DI = Ix(-1)—-KI+
Il x(1)—K Il
< 242I1KI

ISSN: 2536-4383
lx(=1) —x(D)N<2+2 1K lI# 2

which contradicts (1). Consequently, the
points x(—1),x(0) and x(1) must be
collinear, i.e. the rays mentioned above are
lie on a common Levenberg line. Then by
(6) and (7),

-Gy, 12 o

must be a classical line. Clearly, if

dg(x(=1),x(1)) = 2

holds where d denotes Euclidean distance,
then (8) is a Euclidean line with slope m =
0 which is also a Levenberg line.

Remark 4. In the proof of the theorem we
have assumed x(0) = 0. If we remove this
condition, one can easily find an
appropriate translation g which sends x(t,)
to 0, where x(t,) lies on the y —axis.

Therefore, x o g is a solution of (1).

Remark 5. As we mentioned before, the
triangle inequality is fail in Levenberg
plane, however this situation is not valid for
some triangles. More precisely, if AABC is
a triangle whose vertices are lie on the same
side of y —axis (including being on), then

triangle inequality is valid.

Theorem 6. For all p > 0, then there do not
exist p —periodic lines in A = (S, d).

Proof. Let us assume x:[0,p) = S be a

solution of (2) for a certain p > 0. Without
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loss of generality, we may assume x(0) =
0. By (2), we get

||x(§) I = ||x(§)_x(0) I
p
= E_()|
]
2

Clearly, forall 0 < & <2 we have [| x(¢) |
=& f0<En< g following the way in

the proof of the Theorem 3 and by (2), we
immediately obtain

dy (x(&),x(m) =1l x(&) — x(n) | (9)

Obviously, (9) implies that x(¢), x(0) and
x(n) must be lie on the same Levenberg

plane. Thus, we get

5

(O = 0©x(3), §el0]

with ¢(t) = % see [2].
|f§ < { < p, then, by (2),

I x(9) 1= d(x(9), x(0))
=p—1{ =0
=p—<
For { € (g,p), there are two cases such as

(05 -

Il x({)—B Il +

1B -x(2)1
(10)
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where B is a point on y —axis, or

d(x@.x(9)=1x@-x(&)1 v

First, let us assume (10). It is not hard to see

that the points x(¢) and x (g) must be on
different sides of y — axis. There are two

subcases:

Subcase 1: Firstly assume B = x(0) = 0,

i.e. the points x((),x(p) and x(0) are

2
collinear in the Levenberg sense. Observe
by (2), we get

g-51= d(x@,x(g))

=l x(@) I+l x (2) 1
=(p-O+%
which is not possible for all { € (g,p).

Subcase 2: Now assume B # x(0), i.e. the
points x({), x (g) and x(0) are not collinear

in the Levenberg sense. Put || B |l= b. Asin
the proof of Theorem 3, we need to apply

Euclidean triangle inequality for the

triangles AOBx({) and AOx (E)B in three

different cases. Notice that in these cases

a(@x) = Nx@-BI+

I B —x(g) I
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(i) Ifb < p—¢ <%, then

ax@,x5) > |b=p+3l+15-b|

3p
= ——{-2b

and by (2), we have |C—§|>3?p—(—2b

which contradicts b < p — { < g.

(mwp—55b<§mm

ax(@,xG) > 1b=p+3+I5—b|

= ¢-F
_(2

is satisfied. By (2), we get |{ — §| > —g

which contradicts p — { < b < g.

(iii) If p — ¢ <~ < b, then one get

ax@,x5) > |b=p+3l+15-b|

3p
= 2b — —
{+2b——

By (2), this yields |{ —2| > +2b -2
which contradicts p — ¢ < g < b. Hence,

(11) must be valid for all ¢ € (£, p) and this

implies x({), x (g) and x(0) are collinear

points in the Levenberg sense. Moreover,

@ =¢@x(5), ceEp
with ¢(t) = %(p —t), see [2]. Notice that

x (g) =x (%”) but this contradicts
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3p p, . (P 3p
Z-21=ix(8)-x(2)

Hence, there do not exist p —periodic lines
inA=(S,d).

Problem 3 Is there any distance space A =
(S,d) in which p —periodic lines can be

represented by a single fixed point?
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