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Abstract 

In this paper, determining metric lines in Levenberg plane, a special metric line example 

which can be represented by a single fixed point is presented. Moreover, we prove nonexistence 

of periodic lines in Levenberg plane and give a problem whether there exists a distance space 

in which periodic lines represented by a single fixed point? 
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Tek Sabit Nokta Yardımıyla Temsil Edilebilen Metrik Doğru Var Mıdır? 

 Öz  

 Bu çalışmada Levenberg düzleminde metrik doğruların tanımlanmasıyla tek sabit 

nokta ile temsil edilebilen özel bir metrik doğru örneği verilmiştir. Ayrıca Levenberg 

düzleminde hiçbir periyodik doğrunun olmadığı gösterilmiş olup, tek sabit noktalı periyodik 

doğruların bulunduğu uzaklık uzaylarının var olup olmayacağına dair bir problem sunulmuştur. 

Anahtar Kelimeler: Metrik uzaylar, metrik ve periyodik doğruların fonksiyonel denklemleri 

ve çözümleri, Levenberg düzlemi 

 

Introduction 

A real distance space Δ = (𝕊, 𝑑) is a 

non-empty set 𝕊 together with a mapping 

𝑑: 𝕊 × 𝕊 → ℝ. The elements of 𝕊 are called 

points and 𝑑(𝑥, 𝑦) is said to be the distance 

of the (ordered pair of) points 𝑥, 𝑦. The 

subset 𝑘 of 𝕊 is called a metric line of Δ =

(𝕊, 𝑑) if and only if there exists a bijection 

𝑓: 𝑘 → ℝ such that [1]  

𝑑(𝑥, 𝑦) = |𝑓(𝑥) − 𝑓(𝑦)| 
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for all 𝑥, 𝑦 ∈ 𝑘.  

In [2], W. Benz proved that the 

distance space (𝑘, 𝑑) is a metric space for 

every metric line 𝑘 of  Δ = (𝕊, 𝑑). 

Moreover W. Benz characterized the lines 

of Euclidean and hyperbolic geometries as 

metric lines in the sense of Blumenthal-

Menger as follows: 

Let 𝑋 be a real inner product space 

of dimension ≥ 2, that 𝕊 = 𝑋 and 
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𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ for 𝑥, 𝑦 ∈ 𝑋.  W. Benz 

proved that all metric lines in Euclidean 

geometry Δ = (𝕊, 𝑑)  are given by  

{𝑝 + 𝑡𝑞:    𝑡 ∈ ℝ} 

with 𝑝, 𝑞 ∈ 𝑋 such that ‖𝑞‖ = 1. The metric 

lines in Weierstrass model of hyperbolic 

geometry Δ = (𝕊, 𝑑)  are determined by W. 

Benz [2] as  

{𝑝𝑐𝑜𝑠ℎ𝑡 + 𝑞𝑠𝑖𝑛ℎ𝑡:    𝑡 ∈ ℝ} 

where 𝕊 is a a real inner product space of 

dimension ≥ 2,  

𝑐𝑜𝑠ℎ𝑑(𝑥, 𝑦) = √1 + 𝑥2√1 + 𝑦2 − 𝑥𝑦, 

𝑝, 𝑞 are arbitrary points of 𝑋 with 𝑝𝑞 =

〈𝑝, 𝑞〉 = 0 and  𝑞𝑞 = 1.  

If 𝑋 is a real inner product space of 

dimension ≥ 2,  then the metric lines in the 

Poincaré ball model of hyperbolic geometry 

Δ = (𝕊, 𝑑) is defined by O. Demirel et.al. 

[3] as  

{𝑝⨁𝑞⨂𝑡:  𝑡 ∈ ℝ} 

with  ‖𝑞‖ = 𝑡𝑎𝑛ℎ1, where 

𝕊 = {𝑝 ∈ 𝑋:   ‖𝑝‖ < 1} 

and 

𝑡𝑎𝑛ℎ𝑑(𝑥, 𝑦) = ‖𝑥 ⊝ 𝑦‖. 

Here, the notations " ⊕ ", " ⊖ "and 

" ⊗ " denote the Möbius addition, Möbius 

subtraction and Möbius scalar product in 𝕊, 

respectively. For more details, we refer [3]. 

Moreover, O. Demirel and E.S. Sey-rantepe 

[4] compared the cogyrolines of Möbius 

gyrovector spaces which are defined by  

𝑥(𝑡) = 𝑝 ⊗ 𝑡 ⊕ 𝑞,    𝑡 ∈ ℝ 

 

(‖𝑝‖ = 𝑡𝑎𝑛ℎ1) to metric lines of itself, 

where  

𝕊 = {𝑋 ∈ 𝑉: ∥ 𝑋 ∥< 1}   

and 

𝑡𝑎𝑛ℎ𝑑(𝑋, 𝑌) =∥ 𝑋 ⊟ 𝑌 ∥. 

" ⊟ " denotes Möbius cosubtraction 

in 𝕊. The metric lines in de Sitter’s world is 

studied by R. Höfer in [5]. It is easy to see 

that the representation of the metric lines 

above are written by one parameter and one 

point (or two points). Clearly this 

representations can be written in different 

forms, in other words, the representative 

point 𝑝 in the equation of a metric line is not 

uniquely determined. The main purpose of 

this paper is give a special metric line 

example which can be represented by one 

parameter and a single fixed point. The 

problem to find all metric lines of Δ =

(𝕊, 𝑑) can be expressed as follows:  

Problem 1. Determine all injective func-

tions 𝑥: ℝ → 𝕊 such that  

𝑑(𝑥(𝜉), 𝑥(𝜂)) = |𝜉 − 𝜂|                          (1) 

holds true for all 𝜉, 𝜂 ∈ 𝑅, see [1]. This is a 

functional equation, see [1], [2]. 

Suppose that 𝜌 is a positive number. A 

subset 𝑘 of 𝕊 is a 𝜌 −periodic line of the real 

distance space Δ = (𝕊, 𝑑) if, and only if, 

there exists a bijection  

𝑓: 𝑘 →   [0, 𝜌)  = {𝜀 ∈ 𝑅:   0 ≤ 𝜀 < 𝜌} 
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such that  

𝑑(𝑥, 𝑦)

= {
|𝑓(𝑥) − 𝑓(𝑦)|, if  |𝑓(𝑥) − 𝑓(𝑦)| ≤

𝜌

2

𝜌 − |𝑓(𝑥) − 𝑓(𝑦)|, if  |𝑓(𝑥) − 𝑓(𝑦)| >
𝜌

2

  

holds true for all 𝑥, 𝑦 ∈ 𝑘.                        

The problem to find all periodic 

lines of Δ = (𝕊, 𝑑) can be expressed as 

follows:  

Problem 2.  Determine all injective functi-

ons 𝑥: [0, 𝜌)   → 𝕊 such that 

𝑑(𝑥(𝜉), 𝑥(𝜂))

=  {
|𝜉 − 𝜂|, if  |𝜉 − 𝜂| ≤

𝜌

2

𝜌 − |𝜉 − 𝜂|, if  |𝜉 − 𝜂| >
𝜌

2

 

(2) 

holds true for all 𝜉, 𝜂 ∈ ℝ, see [2]. 

Let 𝑋 be a real inner product space 

of dimension ≥ 2. Define the real distance 

spaces Δ𝑖 = (𝕊𝑖, 𝑑𝑖) for 𝑖 = 1,2 as  

𝕊1 = {𝑥 ∈ 𝑋: 〈𝑥, 𝑥〉 = 1} 

and  

𝕊2 = {{𝑥, −𝑥} ⊂ 𝑋: 〈𝑥, 𝑥〉 = 1} 

with  

cos𝑑1(𝑥, 𝑦) = 〈𝑥, 𝑦〉 

for 𝑑1(𝑥, 𝑦) ∈ [0,2𝜋), where 𝑥, 𝑦 ∈ 𝕊1 and  

cos𝑑2({𝑥, −𝑥}, {𝑦, −𝑦}) = |〈𝑥, 𝑦〉| 

for 𝑑2({𝑥, −𝑥}, {𝑦, −𝑦}) ∈ [0,
𝜋

2
), where 

{𝑥, −𝑥}, {𝑦, −𝑦} ∈ 𝕊2. The distance spaces 

Δ𝑖 = (𝕊𝑖, 𝑑𝑖) are metric spaces. Spherical 

and elliptic geometries over 𝑋 are based on 

Δ1 and Δ2, respectively. W. Benz proved 

that the 2𝜋 − periodic lines in Δ1 =

(𝕊1, 𝑑1) are given by  

𝑥(𝜉) = 𝑝𝑐𝑜𝑠𝜉 + 𝑞𝑠𝑖𝑛𝜉, 𝜉 ∈ [0,2𝜋) 

with 𝑝, 𝑞 ∈ 𝑆 such that 〈𝑝, 𝑞〉 = 0, and 𝜋 − 

periodic lines in Δ2 = (𝕊2, 𝑑2) are given by  

𝑥(𝜉) = 𝑅(𝑝𝑐𝑜𝑠𝜉 + 𝑞𝑠𝑖𝑛𝜉), 𝜉 ∈ [0, 𝜋) 

with 𝑝, 𝑞 ∈ 𝑋 such that 〈𝑝, 𝑝〉 = 1, 〈𝑞, 𝑞〉 =

1 and 〈𝑝, 𝑞〉 = 0. In this equation 𝑅 =

{1, −1},   𝑅𝑥 = {𝑥, −𝑥}. 

In [3], O. Demirel et al. proved that 

there do not exist periodic lines in Poincaré 

ball model of hyperbolic geometry. 

Levenberg Plane  

The Levenberg plane is 

generalization of the Moulton plane which 

is well known as an example of an affine 

plane whose completion to projective plane 

does not satisfy the Desargues theorem. The 

set of points of Levenberg plane is the same 

as Euclidean analytical plane ℝ2. The set of 

lines consists of vertical and horizontal 

Euclidean lines, and set of the form 

{(𝑥, 𝑦) ∈ ℝ2:  𝑦 = {
𝑚𝑥 + 𝑏, if 𝑥 ≤ 0 
𝑐𝑚𝑥 + 𝑏, if 𝑥 > 0

 , 

𝑚 ∈ 𝑅, 𝑐 ∈ ℝ+, 𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 } 
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Notice that a Levenberg line has a slope m 

such that 𝑚 = 0 or 𝑚 → ∞ is the same as 

the Euclidean line as shown in Figure 1. 

 

Figure1. Levenberg lines have a slope 𝑚 such 

that 𝑚 = 0 or 𝑚 → ∞ are the same as the 

Euclidean lines. 

On the other hand, a Levenberg line gets 

bent as is passed across the 𝑦 −axis as 

shown in Figure 2.  

 

Figure 2. Levenberg lines get bent as it 

passed across the y-axis. 

Therefore, the set of the Levenberg line 𝐿𝐿 

is the union of 𝐿𝑚,𝑏 and 𝐿𝑎, where  

𝐿𝑚,𝑏 = {(𝑥, 𝑦) ∶  𝑦 = {
𝑚𝑥 + 𝑏, 𝑥 ≤ 0 
𝑐𝑚𝑥 + 𝑏, 𝑥 > 0

  

𝑚 ∈ 𝑅, 𝑐 ∈ ℝ+, 𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 } 

and  

𝐿𝑎 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥 = 𝑎, 𝑎 ∈ ℝ}. 

Notice that the Levenberg lines are 

geodesics in this geometry. As in the 

representation of an Euclidean line in a 

parametric form, a Levenberg line 𝐿𝑚,𝑏 can 

be expressed by a parametric form via  

𝛼(𝑡) = {
𝐵 + 𝑡𝑢,        if 𝑡 ≥ 0
𝐵 − 𝑡𝑣, if 𝑡 < 0

 

where 𝐵 is a point on 𝑦 −axis, ∥ 𝑢 ∥=∥ 𝑣 ∥

= 1, and 𝑑𝐿(𝑢, 𝑣) =∥ 𝑢 ∥ +∥ 𝑣 ∥ (𝑢, 𝑣 ∈

ℝ2). Here, ∥⋅∥ denotes the Euclidean norm  

and 𝑑𝐿 denotes the Levenberg distance 

function which is defined as follows: 

The Levenberg distance between the points 

𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2) in ℝ2 is 

defined by  

𝑑𝐿(𝑃1, 𝑃2)

= {

𝑑𝐸(𝑃1, 𝐵) + 𝑑𝐸(𝐵, 𝑃2),   if  𝑃1, 𝑃2, 𝐵  lie

                                       on a line 𝑙 ∈ 𝐿𝑚,𝑏,

                                                        𝑥1𝑥2 < 0

 𝑑𝐸(𝑃1, 𝑃2),                           otherwise

 

(3) 

where 𝐵 = (0, 𝑏) ∈ ℝ2 and 𝑑𝐸 is Euclidean 

distance. Notice that the point 𝐵 is defined 

uniquely for 𝑃1, 𝑃2 ∈ ℝ2. 

The distance of two points in Levenberg 

plane may not be invariant under Euclidean 

translations. More precisely,  
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𝑑𝐿(𝑃1, 𝑃2) = 𝑑𝐿(𝑇𝑤(𝑃1), 𝑇𝑤(𝑃2)) 

holds true for all 𝑃1, 𝑃2 ∈ ℝ2 (where 

𝑇𝑤: ℝ2 → ℝ2 such that 𝑇𝑤(𝑢) = 𝑤 + 𝑢) if 

and only if 𝑤 lies on the 𝑦 −axis. There are 

even more interesting properties of 

Levenberg plane, for instance, triangle 

inequality and Pythagorean theorem are fail 

in Levenberg plane. For more details we 

refer [6]. 

Metric and Periodic Lines in Levenberg 

Plane 

In this section we define the real 

distance space 𝕊 = ℝ2 and 𝑑(𝑥, 𝑦) =

𝑑𝐿(𝑥, 𝑦) as in the equation (3) for all 𝑥, 𝑦 ∈

𝕊. 

Theorem 3. The metric lines of Δ = (𝕊, d) 

are exactly the classical lines of Δ.  

Proof. Let us consider the Levenberg line  

𝛼(𝑡) = {
𝐵 + 𝑡𝑢,        if 𝑡 ≥ 0
𝐵 − 𝑡𝑣, if 𝑡 < 0

 

where 𝐵 is a point on 𝑦 − axis satisfying ∥

𝑢 ∥=∥ 𝑣 ∥= 1, 𝑑𝐿(𝑢, 𝑣) =∥ 𝑢 ∥ +∥ 𝑣 ∥ for 

𝑢, 𝑣 ∈ ℝ2. Clearly, for all 𝜉 > 0 and 𝜂 < 0, 

we get  

𝑑𝐿(𝛼(𝜉), 𝛼(𝜂)) = ‖𝜉𝑢‖ + ‖𝜂𝑣‖     

= |𝜉| + |𝜂|             

= |𝜉 − 𝜂|                

 

For the all cases of 𝜉, 𝜂 ∈ ℝ 

satisfying 𝜉𝜂 ≥ 0, we immediately get  

𝑑𝐿(𝛼(𝜉), 𝛼(𝜂)) = |𝜉 − 𝜂| 

The other type of Levenberg lines 

which have a slope 𝑚 such that 𝑚 = 0 or 

𝑚 → ∞ are already metric lines, see [2]. 

Thus, 𝛼(𝑡) is a metric line of Δ. 

Suppose that the function 𝑥: ℝ → 𝕊 solves 

(1) for all 𝜉, 𝜂 ∈ ℝ. If the metric line, 

defined by 𝑥, does not meet 𝑦 −axis at any 

point, thus we immediately get that the 

metric line must be a classical line with 

slope 𝑚 → ∞, see [2]. 

Now assume that the metric line defined by 

𝑥 meets 𝑦 − axis. In this case, without loss 

of generality, we may assume 𝑥(0) = 0. 

Since 𝑥 is a solution of (1), we have  

𝑑𝐿(𝑥(𝜉), 𝑥(0)) = ∥ 𝑥(𝜉) − 𝑥(0) ∥

= |𝜉 − 0|                

= |𝜉|                        

 

for all 𝜉 ∈ ℝ. Let us assume 𝜉 > 0. Clearly, 

there are two cases such as 

𝑑𝐿(𝑥(𝜉), 𝑥(1)) =∥ 𝑥(𝜉) − 𝐵 ∥

                                   + ∥ 𝐵 − 𝑥(1) ∥         (4) 

where 𝐵 is a point on 𝑦 − axis, or  

𝑑𝐿(𝑥(𝜉), 𝑥(1)) =∥ 𝑥(𝜉) − 𝑥(1) ∥.         (5) 

Now we consider the first case (4). It is not 

hard to see that the points 𝑥(𝜉) and 𝑥(1) 

must be in different sides of 𝑦 − axis. There 

are two subcases: 

Subcase 1: Firstly assume 𝐵 = 𝑥(0) = 0, 

that is the points 𝑥(𝜉), 𝑥(1) and 𝑥(0) lie on 
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the same Levenberg line. Observe by (1), 

we get  

|𝜉 − 1| = ∥ 𝑥(𝜉) − 𝐵 ∥ +∥ 𝐵 − 𝑥(1) ∥

= 𝜉 + 1                                           
 

and clearly this is not possible for all 𝜉 > 0. 

Subcase 2: Now assume 𝐵 ≠ 𝑥(0), i.e. the 

points 𝑥(𝜉), 𝑥(1) and 𝑥(0) are not collinear 

in the Levenberg sense. Put ∥ 𝐵 ∥= 𝑏. Here, 

we need to apply Euclidean triangle 

inequality to triangles Δ0𝐵𝑥(𝜉) and 

Δ0𝑥(1)𝐵 for six different cases. Notice that 

in these six cases  

𝑑𝐿(𝑥(𝜉), 𝑥(1)) = ∥ 𝑥(𝜉) − 𝐵 ∥ +        

                                             ∥ 𝐵 − 𝑥(1) ∥ 

(i) If 𝑏 ≤ 𝜉 ≤ 1 holds, then  

𝑑𝐿(𝑥(𝜉), 𝑥(1)) > |𝜉 − 𝑏| + |1 − 𝑏|

= 𝜉 + 1 − 2𝑏          
 

holds. By (1), we get  

|𝜉 − 1| > 𝜉 + 1 − 2𝑏 

which contradicts 𝑏 ≤ 𝜉 ≤ 1. 

(ii) If 𝑏 ≤ 1 ≤ 𝜉 holds, then the proof is 

clear by (i). 

(iii) If 1 ≤ 𝑏 ≤ 𝜉 holds, then one can easily 

get  

𝑑𝐿(𝑥(𝜉), 𝑥(1)) > |𝜉 − 𝑏| + |1 − 𝑏|

= 𝜉 − 1.                   
 

By (1), we have |𝜉 − 1| > 𝜉 − 1 

which contradicts 1 ≤ 𝑏 ≤ 𝜉. 

(ıv)  If 1 ≤ 𝜉 ≤ 𝑏 holds, then we get  

𝑑𝐿(𝑥(𝜉), 𝑥(1)) > |𝜉 − 𝑏| + |1 − 𝑏|

= −𝜉 − 1 + 2𝑏.       
 

By (1), |𝜉 − 1| > −𝜉 − 1 + 2𝑏 

which contradicts 1 ≤ 𝜉 ≤ 𝑏. 

(v) If 𝜉 ≤ 𝑏 ≤ 1 holds, then obviously  

𝑑𝐿(𝑥(𝜉), 𝑥(1)) > |𝜉 − 𝑏| + |1 − 𝑏|

= −𝜉 + 1                  
 

and by (1), we get |𝜉 − 1| > −𝜉 + 1 which 

contradicts 𝜉 ≤ 𝑏 ≤ 1. 

(vı) If 𝜉 ≤ 1 ≤ 𝑏 holds, then  

𝑑𝐿(𝑥(𝜉), 𝑥(1)) > |𝜉 − 𝑏| + |1 − 𝑏|

= −𝜉 − 1 + 2𝑏        
 

is satisfied. Clearly, by (1), this yields |𝜉 −

1| > −𝜉 − 1 + 2𝑏 which contradicts 𝜉 ≤

1 ≤ 𝑏 . 

Therefore, (5) must be valid for 𝑥(1) and 

𝑥(𝜉) with 𝜉 > 0. In this case, we get  

𝑥(𝜉) = 𝜑(𝜉) ⋅ 𝑥(1) for  𝜉 > 0                (6) 

with  𝜑(𝜉) = 𝜉,  see [2]. 

If 𝜉 < 0, following the same way above, 

one can easily get  

 𝑥(𝜉) = 𝜑(𝜉) ⋅ 𝑥(−1)  for 𝜉 < 0            (7) 

with  𝜑(𝜉) = −𝜉. 

Clearly, the equations (6) and (7) define two 

different rays in ℝ2 start at 𝑥(0) and goes 

off in a certain direction forever, to infinity. 



Demirel                                                                         Sinop Uni J Nat Sci 4 (1): 54-62(2019)  

                                                                                                                         ISSN: 2536-4383 

60 
 

Naturally, one may wonder whether 

these rays lie on a common Levenberg line? 

In order to see this, we need to check that 

the collinearity property of the points 

𝑥(−1), 𝑥(0) and 𝑥(1) in the Levenberg 

sense. It is easy to see that the points 𝑥(−1) 

and 𝑥(1) must be lie on different sides of 

𝑦 −axis; otherwise, by using Euclidean 

triangle inequality to Δ𝑥(−1)𝑥(0)𝑥(1) and 

by (1), we get  

2 = |1 − (−1)| =∥ 𝑥(1) − 𝑥(−1) ∥<

∥ 𝑥(1) ∥ +∥ 𝑥(−1) ∥= 2. 

which is not correct. Now, assume that these 

rays do not lie on a common Levenberg line. 

Therefore, the line which passes through 

𝑥(−1) and 𝑥(1) intersect 𝑦 −axis at a point, 

say 𝐾, different from 0. By using Euclidean 

triangle inequality for the triangles 

Δ𝑥(−1)𝐾𝑥(0) and Δ𝑥(1), 𝑥(0), 𝐾, we 

immediately get  

∥ 𝑥(−1) − 𝐾 ∥  < ∥ 𝐾 ∥ +∥ 𝑥(−1) ∥

=  ∥ 𝐾 ∥ +1                
 

and  

∥ 𝑥(1) − 𝐾 ∥  < ∥ 𝐾 ∥ +∥ 𝑥(1) ∥

=  ∥ 𝐾 ∥ +1
 

respectively. Thus, we have  

∥ 𝑥(−1) − 𝑥(1) ∥ = ∥ 𝑥(−1) − 𝐾 ∥ +

∥ 𝑥(1) − 𝐾 ∥

< 2 + 2 ∥ 𝐾 ∥           

 

i.e.  

 ∥ 𝑥(−1) − 𝑥(1) ∥ < 2 + 2 ∥ 𝐾 ∥≠ 2 

which contradicts (1). Consequently, the 

points 𝑥(−1), 𝑥(0) and 𝑥(1) must be 

collinear, i.e. the rays mentioned above are 

lie on a common Levenberg line. Then by 

(6) and (7),  

𝑥(𝜉) = {
𝜉𝑥(1),             if  𝜉 ≥ 0

−𝜉𝑥(−1),        if  𝜉 < 0
             (8) 

must be a classical line. Clearly, if  

𝑑𝐸(𝑥(−1), 𝑥(1)) = 2 

holds where 𝑑𝐸 denotes Euclidean distance, 

then (8) is a Euclidean line with slope 𝑚 =

0 which is also a Levenberg line. 

Remark 4. In the proof of the theorem we 

have assumed 𝑥(0) = 0. If we remove this 

condition, one can easily find an 

appropriate translation g which sends 𝑥(𝑡0) 

to 0, where 𝑥(𝑡0) lies on the 𝑦 −axis. 

Therefore, 𝑥 ∘ 𝑔 is a solution of (1).  

Remark 5. As we mentioned before, the 

triangle inequality is fail in Levenberg 

plane, however this situation is not valid for 

some triangles. More precisely, if 𝛥𝐴𝐵𝐶 is 

a triangle whose vertices are lie on the same 

side of 𝑦 −axis (including being on), then 

triangle inequality is valid.  

Theorem 6. For all 𝜌 > 0, then there do not 

exist 𝜌 −periodic lines in Δ = (𝕊, d).  

Proof. Let us assume 𝑥: [0, 𝜌) →   𝕊 be a 

solution of (2) for a certain 𝜌 > 0. Without 
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loss of generality, we may assume 𝑥(0) =

0. By (2), we get  

∥ 𝑥(
𝜌

2
) ∥ = ∥ 𝑥(

𝜌

2
) − 𝑥(0) ∥

= |
𝜌

2
− 0|                

|
𝜌

2
|.                       

 

Clearly, for all 0 ≤ 𝜉 ≤
𝜌

2
, we have ∥ 𝑥(𝜉) ∥

= 𝜉. If 0 ≤ 𝜉, 𝜂 ≤
𝜌

2
, following the way in 

the proof of the Theorem 3 and by (2), we 

immediately obtain  

𝑑𝐿(𝑥(𝜉), 𝑥(𝜂)) =∥ 𝑥(𝜉) − 𝑥(𝜂) ∥          (9) 

Obviously, (9) implies that 𝑥(𝜉), 𝑥(0) and 

𝑥(𝜂) must be lie on the same Levenberg 

plane. Thus, we get  

𝑥(𝜉) = 𝜑(𝜉)𝑥 (
𝜌

2
) ,     𝜉 ∈ [0,

𝜌

2
)   

with  𝜑(𝑡) =
2𝑡

𝜌
,  see [2]. 

If 
𝜌

2
< 𝜁 < 𝜌, then, by (2),  

∥ 𝑥(𝜁) ∥= 𝑑(𝑥(𝜁), 𝑥(0)) 

     = 𝜌 − |𝜁 − 0| 

     = 𝜌 − 𝜁. 

For  𝜁 ∈ (
𝜌

2
, 𝜌), there are two cases such as 

𝑑 (𝑥(𝜁), 𝑥 (
𝜌

2
)) = ∥ 𝑥(𝜁) − 𝐵 ∥ +

    ∥ 𝐵 − 𝑥 (
𝜌

2
) ∥

 

(10) 

where 𝐵 is a point on 𝑦 −axis, or  

𝑑 (𝑥(𝜁), 𝑥 (
𝜌

2
)) =∥ 𝑥(𝜁) − 𝑥 (

𝜌

2
) ∥      (11) 

First, let us assume (10). It is not hard to see 

that the points 𝑥(𝜁) and 𝑥 (
𝜌

2
) must be on 

different sides of 𝑦 − axis. There are two 

subcases: 

Subcase 1: Firstly assume 𝐵 = 𝑥(0) = 0, 

i.e. the points 𝑥(𝜁), 𝑥 (
𝜌

2
) and 𝑥(0) are 

collinear in the Levenberg sense. Observe 

by (2), we get  

|𝜁 −
𝜌

2
| = 𝑑 (𝑥(𝜁), 𝑥 (

𝜌

2
)) 

 =∥ 𝑥(𝜁) ∥ +∥ 𝑥 (
𝜌

2
) ∥ 

 = (𝜌 − 𝜁) +
𝜌

2
 

which is not possible for all 𝜁 ∈ (
𝜌

2
, 𝜌). 

Subcase 2: Now assume 𝐵 ≠ 𝑥(0), i.e. the 

points 𝑥(𝜁), 𝑥 (
𝜌

2
) and 𝑥(0) are not collinear 

in the Levenberg sense. Put ∥ 𝐵 ∥= 𝑏. As in 

the proof of Theorem 3, we need to apply 

Euclidean triangle inequality for the 

triangles Δ0𝐵𝑥(𝜁) and Δ0𝑥 (
𝜌

2
) 𝐵 in three 

different cases. Notice that in these cases  

𝑑𝐿(𝑥(𝜁), 𝑥(
𝜌

2
)) = ∥ 𝑥(𝜁) − 𝐵 ∥ +

  ∥ 𝐵 − 𝑥(
𝜌

2
) ∥.
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(i) If 𝑏 ≤ 𝜌 − 𝜁 <
𝜌

2
, then  

𝑑𝐿(𝑥(𝜁), 𝑥(
𝜌

2
)) > |𝑏 − 𝜌 + 𝜁| + |

𝜌

2
− 𝑏|

=
3𝜌

2
− 𝜁 − 2𝑏               

 

and by (2), we have |𝜁 −
𝜌

2
| >

3𝜌

2
− 𝜁 − 2𝑏 

which contradicts 𝑏 ≤ 𝜌 − 𝜁 <
𝜌

2
. 

(ii) If 𝜌 − 𝜁 ≤ 𝑏 <
𝜌

2
, then  

𝑑𝐿(𝑥(𝜁), 𝑥(
𝜌

2
)) > |𝑏 − 𝜌 + 𝜁| + |

𝜌

2
− 𝑏|

= 𝜁 −
𝜌

2
                             

 

is satisfied. By (2), we get |𝜁 −
𝜌

2
| > 𝜁 −

𝜌

2
 

which contradicts 𝜌 − 𝜁 ≤ 𝑏 <
𝜌

2
. 

(iii) If 𝜌 − 𝜁 <
𝜌

2
≤ 𝑏, then one get  

𝑑𝐿(𝑥(𝜁), 𝑥(
𝜌

2
)) > |𝑏 − 𝜌 + 𝜁| + |

𝜌

2
− 𝑏|

= 𝜁 + 2𝑏 −
3𝜌

2
                 

 

By (2), this yields |𝜁 −
𝜌

2
| > 𝜁 + 2𝑏 −

3𝜌

2
 

which contradicts 𝜌 − 𝜁 <
𝜌

2
≤ 𝑏. Hence, 

(11) must be valid for all 𝜁 ∈ (
𝜌

2
, 𝜌) and this 

implies 𝑥(𝜁), 𝑥 (
𝜌

2
) and 𝑥(0) are collinear 

points in the Levenberg sense. Moreover,  

𝑥(𝜁) = 𝜙(𝜁)𝑥 (
𝜌

2
) ,     𝜁 ∈ (

𝜌

2
, 𝜌)   

with  𝜙(𝑡) =
2

𝜌
(𝜌 − 𝑡), see [2]. Notice that 

𝑥 (
𝜌

4
) = 𝑥 (

3𝜌

4
), but this contradicts  

|
3𝜌

4
−

𝜌

4
| =∥ 𝑥 (

𝜌

4
) − 𝑥 (

3𝜌

4
) ∥. 

Hence, there do not exist 𝜌 −periodic lines 

in Δ = (𝕊, 𝑑).  

Problem 3 Is there any distance space Δ =

(𝕊, d) in which 𝜌 −periodic lines can be 

represented by a single fixed point?  
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