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Abstract. In this article, the approximate Bayes estimation problem for the log-Dagum distribution with three 

parameters is considered. Firstly, the maximum likelihood estimators and asymptotic confidence intervals based 

on these estimators for unknown parameters of log-Dagum distribution are constructed. In  addition, 

approximate Bayes estimators under squared error loss function for unknown parameters of this distribution are 

obtained using Tierney and Kadane approximation. A Monte-Carlo simulation study is performed to compare 

performances of maximum likelihood and approximate Bayes estimators in terms of mean square errrors and 

biases. Finally, real data analysis for this distribution is performed.  

Keywords: Log-Dagum Distribution Maximum Likelihood Estimation, Asymptotic Confidence Interval, 

Approximate Bayesian Estimation, Tierneyand Kadane Approximation. 

Log-Dagum Dağılımı İçin Yaklaşık Bayes Tahmini 

Özet. Bu makalede, log-Dagum dağılımı için yaklaşık Bayes tahmini problemi düşünüldü. İlk olarak, Log-

Dagum dağılımının bilinmeyen parametreleri için en çok olabilirlik tahmin edicileri ve bu tahmin edicilere 

dayalı asimptotik güven aralıkları oluşturuldu. Ayrıca, bu dağılımın bilinmeyen parametreleri için karesel kayıp 

fonksiyonu altında yaklaşık Bayes tahmin edicileri Tierney and Kadane yaklaşımı kullanılarak elde edildi. Bu 

tahmin edicilerin performanslarını, hata kareler ortalaması ve yan bakımından karşılaştırmak için bir Monte-

Carlo simülasyon çalışması gerçekleştirilmiştir. Son olarak bu dağılım için gerçek veri analizi 

gerçekleştirilmiştir. 

Anahtar Kelimeler: Log-Dagum dağılımı, En çok olabilirlik tahmini, Asimptotik güven aralığı, Yaklaşık  

Bayes tahmini, Tierney and Kadane yaklaşımı. 

 

1. INTRODUCTION  

Statistical distributions are widely used for analysis of data in the real world. In literature, new statistical 

distributions have been obtained for modeling data in many areas such as science, engineering, medicine 

and economy. One of these statistical distributions is the dagum distribution suggested by Dagum [1,2] 

used for modelling wealth and income data . The cumulative distribution function (cdf) and probability 

density function (pdf) of a Y  random variable having to Dagum distribution with parameters ,  and   

are given by, 

       (1.1) 

       (1.2) 
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where 0, 0y   , 0  , 0  .  Domma [3] has introduced the log-Dagum ( LDa ) distribution by  

using logarithmic transformation, lnX Y , of a Y  random variable having to Dagum distribution. The 

cdf and pdf of the  log-Dagum ( LDa ) distribution with  ,   and    parameters   are  

      (1.3) 

 

and 

      (1.4) 

 

respectively. Where x , 0  , 0   and 0  . There are few studies about LDa distribution in 

literature. Domma [4] has proved that the kurtosis for log-dagum distribution depends only on parameter 

 . Domma and Perri [5] have examined some characteristic properties of this distribution and they have 

studied about maximum likelihood estimation (MLE) and asymptotic confidence interval for the unknown 

parameters of log-dagum distribution.  The plots of pdf for various parameter values of  , ,LDa   

distribution are given in Figure 1. 

 
Figure 1. Density function plots of log-Dagum distribution for different parameter values 

In this paper, we consider approximate Bayes estimation problem of unknown parameters 

 , ,    for the log-Dagum distribution. This study is organized as follows.  In Section 2, 

maximum likelihood estimators (MLEs) for unknown parameters of the log-Dagum distribution 

and asymptotic confidence intervals based on these estimators are presented. In section 3, Bayes 

estimators with Tierney and Kadane approximation under squared loss function for unknown 

parameters of the log-Dagum distribution are obtained. In section 4, a Monte-Carlo simulation 

study is performed to compare maximum likelihood (ML) and approximate Bayes estimators in 

terms of mean square errors (MSEs) and biases. In addition, in this section, a simulation study 

based on asymptotic confidence intervals is carried out. A real data application is performed in 

section 5. In the last section, the conclusion of this study is given. 
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2. ML ESTIMATION and ASYMPTOTIC CONFIDENCE INTERVALS for LOG-DAGUM 

DISTRIBUTION 

Let  1 2, ,..., nX X X X  be a random sample with size n taken from  , ,LDa    distribution. In 

that case, the log-likelihood function is given by; 

 
      (2.1) 

 

In order to obtain ML estimators, the following likelihood equations should be solved. 
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The solution of these non-linear equations can be obtained by using iteration methods such as Newton-

Raphson method (Domma and Perri [5]). 

Large-sample approach is used to obtain asymptotic confidence intervals for unknown parameters. Let ̂  

is ML estimator of   and    , , ,I       is Fisher information matrix. In this case, the asymptotic 

distribution of  ˆn   and the Fisher information matrix are  
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,              (2.5) 

 respectively. The elements of fisher information matrix have been obtained by Domma and Perri [5]. The 

above approaches are used to find the approximate confidence intervals of ,  and   parameters. The 

 1 100%   confidence intervals of the ,  and   parameters are obtained as in equations (2.6),( 2.7) 

and (2.8). 
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2 2

ˆ ˆ ˆ ˆ 1P z Var z Var      
 

      
 

    (2.7) 

    
2 2

ˆ ˆ ˆ ˆ 1P z Var z Var      
 

      
 

                                     (2.8) 

where diagonal elements of inverse of Fisher information matrix are variances of ̂ , ̂  and ̂  

(Domma and Perri [5]). 

 
3. BAYES ESTIMATION for PARAMETERS of LOG-DAGUM DISTRIBUTION 

Let 1 2, ,..., nX X X  be a random sample with size n taken from  , ,LDa    distribution. It is needed to 

prior distributions for these parameters to obtain Bayesian estimation of parameters. In this study, it is 

taken as following gamma priors for unknown ,    and    parameters. 
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respectively.  Where     
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  . In this case, 

Bayes estimator for any function of ,    and , ( , , )u    , under squared loss function is as follows. 

 

(2.13) 

 

 

Where  , , | x    is log-likelihood function,  , ,    is logarithm of joint prior distribution. It is 

very difficult to the obtain solution of above Eq. (2.13) in closed form. Some approximate methods for 

solution of this equation are used. One of these methods is Tierney Kadane’s approximation. 
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a.  Bayes Estimation with Tierney and Kadane’s Method 

Tierney and Kadane’s approximation introduced by Tierney and Kadane [6] to compute integral ratios in 

bayes analysis has been  studied by many authors such as Gencer and Saraçoğlu [7], Howloader and 

Hossain [8], Mousa and Jaheen [9], Kınacı et al. [10], Tanış and Saraçoğlu [11].  Tierney and Kadane 

approximation can be summarized as follows. 

     (2.14) 

     (2.15) 

 

Where,  , ,     is defined as follows. 

(2.16) 

 

Bayes estimators with Tierney and Kadane approximation of  , ,u     under squared error loss 

function for  , ,LDa      distribution is obtained as follows 
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 where  * * *
ˆ ˆ ˆ, ,

I I I
    and  ˆ ˆ ˆ, ,I I I    maximize  * * *
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I I I
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I     and  ˆ ˆ ˆ, ,I I II     at  * * *
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 ˆ ˆ ˆ, ,I I I   , respectively. 

4. SIMULATION STUDY 

 

In this section, a  Monte-Carlo simulation study in order to compare  the performances of ML estimators 

and  aproximate bayesian estimators according to MSEs and biases for   , ,LDa     distribution is 

performed. In addition, in this section, a simulation study based on coverage probabilities (cp) and  lengths 

of asymptotic confidence intervals based on ML estimators is carried out. Firstly, it is needed to generate 

random samples from  , ,LDa    distribution for simulation study. 

4.1. Random Sample Generation 

Inverse conversion method in order to generate random number from  , ,LDa    distribution is used. 

Let u  state a random number generated from  0,1Uniform . x  generated from  , ,LDa     distribution 

with inverse conversion method is given as follows. 
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where 0 0,   and 0  are initial values. (Domma and Perri [7]).  

In simulation study, it is generated 5000N    samples of sizes 100,200,500,1000n   from 

 , ,LDa     distribution with  0 0 00.43, 0.2, 0.5     ,  0 0 00.8, 0.15, 0.3      and 

 0 0 00.5, 0.1, 0.7     . The biases and MSEs of ML and approximate bayes estimators for unknown 

parameters at different samples sizes as 100,200,500,1000n   are given in Table1. In this table, prior 

values for approximate bayes estimators are  1 10.01, 0.01d e   , 2 20.01, 0.01d e  , 3 30.01, 0.01d e 

. The results of asymptotic confidence intervals based on ML estimators for unknown parameters of 

 , ,LDa     distribution for different samples sizes as 100,200,500,1000n   are presented in Table 2.  

Table 1. Biases and MSEs of MLE and Bayes estimators for  , ,LDa     

  ˆ
MLE  ˆ

BAYES  ˆ
MLE  ˆ

BAYES  ˆ
MLE  ˆ

BAYES  

 0 0 0, ,    N 
bias mse bias mse bias mse bias mse bias mse bias mse 

 0.43,0.2,0.5  

100 -0.0261 0.0261 -0.0417 0.0352 -0.0018 0.0066 -0.0236 0.0105 -0.0247 0.0137 -0.0487 0.0201 

200 -0.0110 0.0102 -0.0154 0.0111 -0.0005 0.0027 -0.0101 0.0033 -0.0120 0.0053 -0.0225 0.0062 

500 -0.0032 0.0036 -0.0044 0.0037 -0.0005 0.0010 -0.0041 0.0011 -0.0052 0.0019 -0.0093 0.0020 

1000 -0.0020 0.0017 -0.0026 0.0017 -0.0001 0.0005 -0.0018 0.0005 -0.0022 0.0009 -0.0042 0.0009 

 0.8,  0.15,  0.3  

100 -0.1117 2.5370 -0.3782 2.8199 0.0010 0.0037 -0.0115 0.0051 -0.0092 0.0031 -0.0159 0.0038 

200 -0.0425 0.0556 -0.0758 0.0816 0.0005 0.0016 -0.0053 0.0019 -0.0046 0.0013 -0.0079 0.0015 

500 -0.0135 0.0164 -0.0227 0.0178 -0.0001 0.0006 -0.0023 0.0007 -0.0020 0.0005 -0.0033 0.0005 

1000 -0.0076 0.0077 -0.0118 0.0080 0.0001 0.0003 -0.0010 0.0003 -0.0008 0.0002 -0.0015 0.0002 

 0.5,  0.1,  0.7  

100 -0.0366 0.0392 -0.0645 0.0824 0.0026 0.0013 -0.0039 0.0016 -0.0294 0.0227 -0.0594 0.0327 

200 -0.0153 0.0146 -0.0224 0.0164 0.0013 0.0006 -0.0018 0.0007 -0.0148 0.0094 -0.0278 0.0108 

500 -0.0045 0.0050 -0.0067 0.0052 0.0004 0.0002 -0.0008 0.0002 -0.0066 0.0034 -0.0115 0.0036 

1000 -0.0028 0.0024 -0.0038 0.0024 0.0003 0.0001 -0.0003 0.0001 -0.0028 0.0016 -0.0052 0.0017 

 

Table 2. Length and cp based on MLE for  , ,LDa     

  ˆ
MLE  ˆ

MLE  ˆ
MLE  

 0 0 0, ,    n cp length cp length cp length 

 0.43,0.2,0.5  

100 0.9298 0.5739 0.8994 0.2926 0.9456 0.4061 

200 0.9446 0.3788 0.9232 0.1982 0.9502 0.2704 

500 0.9470 0.2313 0.9388 0.1232 0.9490 0.1662 

1000 0.9512 0.1623 0.9444 0.0864 0.9514 0.1161 

 0.8,  0.15,  0.3  

100 0.9310 1.4932 0.8988 0.2216 0.9460 0.2012 

200 0.9422 0.8406 0.9260 0.1524 0.9448 0.1370 

500 0.9488 0.4928 0.9398 0.0952 0.9538 0.0850 

1000 0.9508 0.3424 0.9460 0.0669 0.9518 0.0596 

 0.5,  0.1,  0.7  

100 0.9340 0.6945 0.8974 0.1346 0.9480 0.5367 

200 0.9418 0.4516 0.9202 0.0942 0.9502 0.3610 

500 0.9494 0.2740 0.9380 0.0593 0.9500 0.2227 

1000 0.9506 0.1920 0.9420 0.0418 0.9506 0.1557 

According to results of  simulation study, it is seen that MSEs and biases values for ML and approximate 

bayes estimators of parameters are decreases when the number of samples increases. Furthermore,  as 
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sample sizes increases, it is observed that cp approaches to 0.95 and the length of the asymptotic 

confidence interval decreases as expected. 

5. REAL DATA APPLICATION 

 
The data set consist of 76 observations about the life of fatigue fracture of Kevlar 373/epoxy which is 

considered in this section. These data are obtained by subject to constant pressure at the 90% stress level 

until all fatigue fracture had failed. (Kharazmi and Saatınık, [12]). This data set have been studied 

Andrews and Herzberg [13], Barlow et al. [14] and Merovci et. al. [15]. Let x   express data, we 

consider a transformation with ln( )y x  on Kevlar 373/epoxy data set. Thus, it is obtained y  data. 

Then, new data after transformation is given in Table 3. This data set has been analyzed to compare the 

log-Dagum distribution with other distributions such as, Normal, Logistic, Laplace, t location-Scale, 

Extreme Value and Generalized Extreme Value (GEV).  Probability density functions of these 

distributions given by; 
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Table 3. Kevlar 373/epoxy data set 

-3.6849 -2.4236 -2.4180 -1.3859 -1.1670 -1.0639 -0.7417 -0.5709 

-0.5672 -0.4207 -0.3933 -0.3929 -0.3926 -0.2619 -0.1773 -0.1754 

-0.1714 -0.1456 -0.1221 -0.0929 -0.0921 -0.0165 0.0472 0.0579 

0.0745 0.1598 0.2287 0.2442 0.2612 0.2785 0.3003 0.3039 

0.3781 0.3974 0.4529 0.4532 0.5355 0.5460 0.5573 0.5670 

0.5736 0.6029 0.6084 0.6153 0.6317 0.6354 0.6356 0.6583 

0.6708 0.6955 0.7133 0.7373 0.7464 0.7575 0.7930 0.8092 

0.8276 0.8417 0.8531 0.8550 0.9143 0.9266 1.0956 1.1071 

1.1841 1.2251 1.2484 1.3200 1.3206 1.3646 1.5701 1.6865 

1.6944 1.7101 1.8801 2.2078     

MLEs and their standard errors, AIC values for seven distributions are given In Table 5. Moreover, plots 

fitted to cdfs, reliability functions and pdfs are presented in Figure 4-6. 

Table 4. Parameter estimates (standard errors) and AIC values for Kevlar 373/epoxy data set 

Distribution ML Estimate 2  AIC 

Log-Dagum 
 ˆ 0.4248 0.1275  ,  ˆ 17.7962 16.7845  ,

 ˆ 3.1766 0.5964   
187.0024 193.0024 

Normal  ˆ 0.3379 0.1102  ,  ˆ 0.9610 0.0787   206.64 210.64 

Logistic   ˆ 0.4244 0.0938  ,  ˆ 0.4810 0.0469   195.7154 199.1792 

Laplace  ˆ 0.5516 0.0754  ,  ˆ 0.6578 0.0754   191.7154 195.7154 

t location-Scale 
 ˆ 0.4675 0.0860  ,  ˆ 0.5984 0.0919  ,

 ˆ 2.9338 1.1357    
189.7942 195.7942 

Extreme Value  ˆ 0.7574 0.0911  ,  ˆ 0.7543 0.0647   191.6836 195.6836 

Generalized 

 Extreme Value 

  ˆ 0.0888 0.1271  ,  ˆ 1.0401 0.0873  ,

 ˆ 0.4695 0.0475k    
187.7040 203.7040 

Also, the approximate Bayes estimation values of the unknown parameters of Log-Dagum distribution 

are obtained as ˆ 0.4613BAYES   , ˆ 23.2287BAYES   , ˆ 3.1277BAYES   with   prior gamma distribution 

 1 1 2 2 3 30.01, 0.01, 0.01, 0.01, 0.01, 0.01d e d e d e      . 

 

Figure 2. Fitted cdfs plots for Kevlar 373/epoxy data set 
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Figure 3. Fitted pdfs plots for Kevlar 373/epoxy data set 

6. CONCLUSION 

We have analyzed the  , ,LDa    distribution in terms of estimation of unknown parameters. The 

approximate Bayesian estimators for unknown parameters of this distribution are obtained. The Bayesian 

estimators under squared error loss function are found using Tierney and Kadane approximation. The 

performances of ML and approximate Bayes estimators have been compared with the Monte Carlo 

simulation study according to MSE and bias criteria. A simulation study based on asymptotic confidence 

intervals is performed. It is seen that the biases and MSEs of ML and Bayes estimators decrease as sample 

size increases.  It can be concluded that biases and MSEs of these two estimators are very close to each 

other. In interval estimation based on ML estimators of unknown parameters for the  , ,LDa   

distribution, it is seen that coverage probabilities (cp) approach to 0.95 and length of asymptotic 

confidence intervals decreases as sample size increases. Furthermore, a real data application is performed 

in order to show that the  , ,LDa     distribution can be used in new areas. It is presented a real data set 

related to the life of fatigue fracture of Kevlar 373/epoxy. We have concluded that the  , ,LDa     

distribution has to best fit between other six distributions (Normal, Logistic, Laplace, t location-Scale, 

Extreme Value, Generalized Extreme Value) according to AIC and 2 . 
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