

Turkish Computational and Theoretical Chemistry
Turkish Comp Theo Chem (TC\&TC)

Research Article

Detemination of The Best Method (HF, MP2 and B3LYP) in Calculation of Chemical

 HardnessZinet Zaim, Tuba Alagöz Sayın, Koray Sayın ${ }^{l}$, Duran Karakaş
Chemistry Department, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey

Abstract

Chemical hardness of 62 molecules are calculated at different 18 levels. No imaginargy frequency is observed in optimization results for each level. Correlation between experimental and calculated hardness values are investigated. To analyze this investigation, correlation coefficient and scale factor are calculated for each level. As a results, HF method is better in calculation of chemical hardness and moleculer orbital energy than B3LYP and MP2 methods.

Keywords: Molecular Orbital Energy, Chemical Hardness, HF, B3LYP, MP2

Graphical Abstract

There are a lot paper in literature about chemical hardness Researcher mainly used B3LYP and HF method in their study. Generally researchers use the energy of frontier molecular orbital. BUT which is the best method in calculation of chemical hardness? HF, MP2 or B3LYP.

- Investigations of the best method in calculation of chemical hardness were performed.
- Some organic and inorganic molecules were optimized at different level.
- Calculated and Experimental chemical hardness values were compared with each other.
- It was found that HF method is the best in calculation of chemical hardness.
principle is very practical in chemistry field. However, definition of hardness or softness is incomplete in hard-soft-acid-base (HSAB) principle. These troubles were solved in 1983 by Pearson and Parr. According to Pearson study, absolute hardness have been introduced as in Eq. (1) $[12,13]$.

$$
\begin{equation*}
\eta=\frac{(I-A)}{2} \tag{1}
\end{equation*}
$$

[^0]where I and A are ionization potential and electron affinity of any chemical species (atom, ions, molecule or radical). These parameters is useful in determination of behaviors of chemical species. Ionization potential and electron affinity can be calculated by using Eq. (2) and (3).
$I=E_{N-1}-E_{N}$
$A=E_{N}-E_{N+1}$
where E_{N+1}, E_{N} and E_{N-l} are total energy of system with $(\mathrm{N}+1),(\mathrm{N})$ and ($\mathrm{N}-1$) electron, respectively. In addition to these equations, many researchers have being used the Koopmans theorem, recently. According to this theorem, ionization potential and electron affinity can be calculated from frontier molecular orbital, HOMO and LUMO, and their mathematical definations are given in Eq. (4) and (5).
$I=-E_{\text {номо }}$
$A=-E_{\text {LUMO }}$
One of the other hardness type is optical hardness $\left(\eta_{o}\right)$ and can be easily calculated by using Eq. (6).
$\eta_{O}=E_{\text {LUмо }}-E_{\text {Номо }}$
This hardness is related to polarizabilities of chemical species and can be used in investigation of optical properties of related chemical species. According to hardness equations, energies of frontier molecular orbitals are important to calculation of hardness.

As for the quantum chemical calculations, some quantum chemical descriptors have been calculated by using the energy of frontier molecular orbitals [14-21]. These parameters have been used in determination of reactivity of molecules towards enzyme, protein and metal surface etc. Additionally, some theoretical formulas are derived by using some quantum chemical descriptors in quantitave structure-activity relationship (QSAR) studies. Because of that, calculation of these parameters is important to correct results. Generally, DFT methods have been used in calculation of these parameters.

Recently, computational chemistry has been fashion in academic invstigations. In this study, performance of HF, B3LYP and MP2 methods in calculation of chemical hardness is investigated in detail. Experimental hardness values of 62 molecules are optimized. In calculations, HF, B3LYP and MP2 methods are used. In addition to mentioned methods, $6-31++G(d, p)$, 6-311G, LANL2DZ, LANL2MB, SDD and SDDALL basis sets are used. Corelations between experimental and calculated results are examined by plotting distribution graphs and correlation coefficient are founds for each graph.

2. Computational Details

Computational processes of were performed by using GaussView 5.0.8 [22], Gaussian 09 AML64G09 Revision-D01 programs [23], Gaussian 09 IA32W-G09 Revision-A02 programs [24]. Firstly, geometries of investigated compounds were optimized by using universal force field (UFF) method which is one of the molecular mechanics methods. After that, the geometries of mentioned complexes reoptimized at HF, B3LYP and MP2 methods with $6-31++G(d, p), 6-311 \mathrm{G}$, LANL2DZ, LANL2MB, SDD and SDDALL basis sets. The vibrational frequency analyses indicate that optimized structures of relevant molecules are at stationary points corresponding to local minima without imaginary frequencies. Chemical hardness of these molecules are calculated by using Eq. (1).

3. Results and discussion

3.1. Chemical Hardness in HF Method

The fully optimizations of related molecules are done at each basis set in vacuum. Experimental hardness values (η) of investigated molecules are given in Table 1 [25]. Chemical hardness value of mentioned molecules are calculated at 6$31++G(d, p), 6-311 \mathrm{G}$ and LANL2DZ basis sets and given in Table $2-4$, respectively. As for the other basis sets, Calculated results in LANL2MB, SDD and SDDALL basis sets are given in Supp. Table S1-S3, respectively.

Table 1. Studied molecules and their experimental hardness values

Molecule	η^{a}	Molecule	η^{a}	Molecule	η^{a}	Molecule	η^{a}
SF_{6}	7.40	BBr_{3}	4.85	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	5.00	cyclohexene	5.50
BF_{3}	9.70	PBr_{3}	4.20	butadiene	4.90	DMF	5.80
SO_{3}	5.50	$\mathrm{~S}_{2}$	3.85	$\mathrm{H}_{2} \mathrm{~S}$	6.20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.40
Cl_{2}	4.60	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	4.40	$\mathrm{C}_{2} \mathrm{H}_{2}$	7.00	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	5.50
H_{2}	8.70	PCl_{3}	4.70	HCONH_{2}	6.20	$\mathrm{CH}_{3} \mathrm{~F}$	9.40
SO_{2}	5.60	$\mathrm{~N}_{2} \mathrm{O}$	7.60	styrene	4.36	$\mathrm{H}_{2} \mathrm{O}$	9.50
$\mathrm{~N}_{2}$	8.90	acrylonitrile	5.56	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	5.60	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$	5.70
Br_{2}	4.00	CS_{2}	5.56	PH_{3}	6.00	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$	5.90
O_{2}	5.90	CO_{2}	8.80	$\mathrm{C}_{6} \mathrm{H}_{6}$	5.30	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	6.00
CO	7.90	HF	11.00	toluene	5.00	NH_{3}	8.20
BCl_{3}	5.64	HCl	8.00	propylene	5.90	CH_{4}	10.3
CS^{2}	5.23	$\mathrm{CH}_{3} \mathrm{CN}$	7.50	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	4.80	$\mathrm{C}_{4}\left(\mathrm{CH}_{3}\right)_{4}$	8.30
HNO_{3}	5.23	$\mathrm{CH}_{2} \mathrm{O}$	6.20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	4.60	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	8.00
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	5.34	$\mathrm{HCO}_{2} \mathrm{CH}$	6.40	$\mathrm{CH}_{3} \mathrm{Cl}$	7.50	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.30
PF_{3}	6.70	$\mathrm{CH}_{3} \mathrm{CHO}$	5.70	p-xylene	4.80	-	-
$\mathrm{HCN}^{8.00}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	6.20	$1,2,5-$		-		
				trimethylbenzene	4.72	-	

${ }^{\text {a }}$ Experimental values are taken from Ref. 25.

Table 2. Calculated chemical hardness values of mentioned molecules at HF/6-31++G(d,p) level in vacuum

Molecule	η	Molecule	η	Molecule	η	Molecule	η
SF_{6}	10.251	BBr_{3}	6.275	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	5.294	cyclohexene	6.174
BF_{3}	9.742	PBr_{3}	5.705	butadiene	5.047	DMF	5.592
SO_{3}	7.669	S_{2}	3.769	$\mathrm{H}_{2} \mathrm{~S}$	5.782	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.558
Cl_{2}	6.380	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	5.485	$\mathrm{C}_{2} \mathrm{H}_{2}$	6.222	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	5.110
H_{2}	9.156	PCl_{3}	6.359	HCONH_{2}	6.242	$\mathrm{CH}_{3} \mathrm{~F}$	7.792
SO_{2}	6.864	$\mathrm{N}_{2} \mathrm{O}$	7.945	styrene	4.771	$\mathrm{H}_{2} \mathrm{O}$	7.515
N_{2}	10.341	acrylonitrile	5.938	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	6.124	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$	4.987
Br_{2}	5.444	CS_{2}	5.639	PH_{3}	5.770	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$	5.002
O_{2}	6.651	CO_{2}	8.223	$\mathrm{C}_{6} \mathrm{H}_{6}$	5.169	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	5.151
CO	8.695	HF	9.457	toluene	4.982	NH_{3}	6.330
BCl_{3}	6.927	HCl	7.032	propylene	5.503	CH_{4}	8.028
CS	7.065	$\mathrm{CH}_{3} \mathrm{CN}$	6.834	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	4.839	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$	6.721
HNO_{3}	7.304	$\mathrm{CH}_{2} \mathrm{O}$	6.575	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	5.228	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	6.310
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	6.736	$\mathrm{HCO}_{2} \mathrm{CH}_{3}$	6.911	$\mathrm{CH}_{3} \mathrm{Cl}$	6.471	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	5.319
PF_{3}	7.327	$\mathrm{CH}_{3} \mathrm{CHO}$	6.327	p-xylene	4.838	-	-
HCN	7.341	$\mathrm{C}_{2} \mathrm{H}_{4}$	5.824	1,2,5trimethylbenzene	4.773	-	-

Table 3. Calculated chemical hardness values of mentioned molecules at HF/6-311G level in vacuum

Molecule	η	Molecule	η	Molecule	η	Molecule	η
SF_{6}	7.864	BBr_{3}	6.248	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	6.398	cyclohexene	7.459
BF_{3}	11.193	PBr_{3}	5.229	butadiene	6.016	DMF	6.945
SO_{3}	6.374	$\mathrm{~S}_{2}$	3.774	$\mathrm{H}_{2} \mathrm{~S}$	6.947	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	5.806
Cl_{2}	5.954	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	5.548	$\mathrm{C}_{2} \mathrm{H}_{2}$	7.943	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	6.591
H_{2}	10.458	PCl_{3}	5.968	HCONH_{2}	7.602	$\mathrm{CH}_{3} \mathrm{~F}$	9.399
SO_{2}	5.769	$\mathrm{~N}_{2} \mathrm{O}$	8.424	styrene	5.568	$\mathrm{H}_{2} \mathrm{O}$	8.796
$\mathrm{~N}_{2}$	10.647	acrylonitrile	6.648	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	7.550	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$	6.405
Br_{2}	5.193	CS_{2}	5.680	PH_{3}	6.979	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$	6.449
O_{2}	6.783	CO_{2}	9.769	$\mathrm{C}_{6} \mathrm{H}_{6}$	6.467	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	6.648
CO	9.383	HF	10.628	toluene	6.292	NH_{3}	7.591
BCl	7.139	HCl	8.017	propylene	7.121	CH_{4}	9.646
CS	7.083	$\mathrm{CH}_{3} \mathrm{CN}$	8.243	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	6.134	$\mathrm{C}_{3}\left(\mathrm{CH}_{3}\right)_{4}$	8.117
HNO_{3}	7.441	$\mathrm{CH}_{2} \mathrm{O}$	7.660	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	6.298	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	7.802
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	7.033	$\mathrm{HCO}_{2} \mathrm{CH}$	8.462	$\mathrm{CH}_{3} \mathrm{Cl}$	7.771	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.646
PF_{3}	8.028	$\mathrm{CH}_{3} \mathrm{CHO}$	7.719	p-xylene	6.140	-	-
HCN		$\mathrm{C}_{2} \mathrm{H}_{4}$		7.259	$1,2,5-$		

Table 4. Calculated chemical hardness values of mentioned molecules at HF/LANL2DZ level in vacuum

Molecule	η	Molecule	η	Molecule	η	Molecule	η
SF_{6}	7.980	BBr_{3}	6.242	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	6.288	cyclohexene	7.459
BF_{3}	10.906	PBr_{3}	4.986	butadiene	5.869	DMF	7.381
SO_{3}	6.150	$\mathrm{~S}_{2}$	3.765	$\mathrm{H}_{2} \mathrm{~S}$	7.766	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	5.691
Cl_{2}	5.892	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	5.460	$\mathrm{C}_{2} \mathrm{H}_{2}$	8.036	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	7.023
H_{2}	11.680	PCl_{3}	6.070	HCONH_{2}	7.951	$\mathrm{CH}_{3} \mathrm{~F}$	10.320
SO_{2}	5.568	$\mathrm{~N}_{2} \mathrm{O}$	8.279	styrene	5.422	$\mathrm{H}_{2} \mathrm{O}$	9.869
$\mathrm{~N}_{2}$	10.425	acrylonitrile	6.508	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	7.672	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$	6.738
Br_{2}	5.008	CS_{2}	5.727	PH_{3}	7.578	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$	7.134
O_{2}	6.735	CO_{2}	9.644	$\mathrm{C}_{6} \mathrm{H}_{6}$	6.338	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	7.147
CO	9.164	HF	11.635	toluene	6.166	NH_{3}	8.748
BCl_{3}	7.265	HCl	8.784	propylene	7.121	CH_{4}	11.504
CS	6.997	$\mathrm{CH}_{3} \mathrm{CN}$	9.051	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	6.022	$\left.\mathrm{C}_{3} \mathrm{CH}_{3}\right)_{4}$	9.389
HNO_{3}	7.268	$\mathrm{CH}_{2} \mathrm{O}$	7.523	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	6.237	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	8.851
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	6.942	$\mathrm{HCO}_{2} \mathrm{CH}$	8.314	$\mathrm{CH}_{3} \mathrm{Cl}$	8.143	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	7.876
PF_{3}	8.140	$\mathrm{CH}_{3} \mathrm{CHO}$	7.626	p-xylene	6.029	-	-
HCN	9.082	$\mathrm{C}_{2} \mathrm{H}_{4}$		7.117	$1,2,5-$		

Fig. 1. Distribution graphs between experimental and calculated values at HF/6-31++G(d,p), HF/6-311G and HF/LANL2DZ levels in vacuum.

Table 5. Calculated chemical hardness values of mentioned molecules at B3LYP/6-31++G(d,p) level in vacuum

Molecule	η	Molecule	η	Molecule	η	Molecule	η
SF_{6}	2.190	BBr_{3}	2.973	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	3.186	cyclohexene	1.192
BF_{3}	5.337	PBr_{3}	1.856	butadiene	3.239	DMF	3.520
SO_{3}	1.618	S_{2}	0.435	$\mathrm{H}_{2} \mathrm{~S}$	4.940	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	3.131
Cl_{2}	1.711	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	2.180	$\mathrm{C}_{2} \mathrm{H}_{2}$	5.532	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	4.130
H_{2}	11.664	PCl_{3}	2.232	HCONH_{2}	3.409	$\mathrm{CH}_{3} \mathrm{~F}$	6.671
SO_{2}	1.405	$\mathrm{N}_{2} \mathrm{O}$	3.502	styrene	3.006	$\mathrm{H}_{2} \mathrm{O}$	6.127
N_{2}	4.913	acrylonitrile	3.562	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	3.041	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$	4.309
Br_{2}	1.446	CS_{2}	2.726	PH_{3}	5.412	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$	4.566
O_{2}	0.894	CO_{2}	4.591	$\mathrm{C}_{6} \mathrm{H}_{6}$	3.828	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	4.076
CO	4.606	HF	6.500	toluene	3.719	NH_{3}	6.996
BCl_{3}	3.369	HCl	5.486	propylene	4.529	CH_{4}	11.090
CS	2.981	$\mathrm{CH}_{3} \mathrm{CN}$	5.405	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	3.179	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$	8.519
HNO_{3}	3.255	$\mathrm{CH}_{2} \mathrm{O}$	3.008	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	3.690	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	5.701
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	2.441	$\mathrm{HCO}_{2} \mathrm{CH}_{3}$	3.510	$\mathrm{CH}_{3} \mathrm{Cl}$	4.431	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	5.931
PF_{3}	3.388	$\mathrm{CH}_{3} \mathrm{CHO}$	3.042	p-xylene	3.620	-	-
HCN	5.581	$\mathrm{C}_{2} \mathrm{H}_{4}$	4.529	1,2,5- trimethylbenzene	3.593	-	-

According to HF results, calculated chemical hardness values are mainly in agreement with experimental results except results in HF/6$31++G(d, p)$ and HF/LANL2MB levels. In these levels, there are big deviations in results.

3.2. Chemical Hardness in B3LYP Method

The fully optimizations of related molecules are performed in each basis set. In this method, the best results are calculated by using B3LYP/6$31++G(d, p)$ level in vacuum. Calculated hardness
values of related molecules are given in Table 5 at B3LYP/6-31++G(d,p) level.

Experimental and calculated results are used to plot the distribution graph. It is represented in Fig. 2 and it is seen that correlation coefficient (R^{2}) values is 0.5907 . As for the other results in B3LYP method, correlation coefficient is calculated as lower than 0.5907. Therefore, performance of B3LYP in calculations of chemical hardness is under the expectations. Calculated results in 6311G, LANL2DZ, LANL2MB SDD and SDDALL basis sets are given in Supp. Table S4-S8, respectively.

Fig. 2. Distribution graphs between experimental and calculated values at B3LYP/6-31++G(d,p) levels in vacuum.

Table 6. Calculated chemical hardness values of mentioned molecules at MP2/LANL2DZ level in gas phase

Molecule	η	Molecule	η	Molecule	η	Molecule	η
SF_{6}	6.792	BBr_{3}	6.219	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	6.072	cyclohexene	9.281
BF_{3}	10.725	PBr_{3}	4.832	butadiene	5.664	DMF	7.173
SO_{3}	5.900	$\mathrm{~S}_{2}$	3.719	$\mathrm{H}_{2} \mathrm{~S}$	7.678	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	5.602
Cl_{2}	5.721	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	5.174	$\mathrm{C}_{2} \mathrm{H}_{2}$	7.743	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	6.817
H_{2}	11.620	PCl_{3}	2.956	HCONH_{2}	7.689	$\mathrm{CH}_{3} \mathrm{~F}$	10.183
SO_{2}	5.136	$\mathrm{~N}_{2} \mathrm{O}$	7.433	styrene	5.360	$\mathrm{H}_{2} \mathrm{O}$	9.738
$\mathrm{~N}_{2}$	9.510	acrylonitrile	6.210	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	7.493	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{As}$	6.695
Br_{2}	4.893	CS_{2}	5.610	PH_{3}	7.561	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$	7.098
O_{2}	6.526	CO_{2}	9.162	$\mathrm{C}_{6} \mathrm{H}_{6}$	6.168	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	7.030
CO	8.965	HF	11.461	toluene	6.013	NH_{3}	8.678
BCl_{3}	7.216	HCl^{2}	8.692	propylene	6.880	CH_{4}	11.363
CS	6.727	$\mathrm{CH}_{3} \mathrm{CN}$	8.535	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	5.895	$\left.\mathrm{C}_{3} \mathrm{CH}_{3}\right)_{4}$	9.256
HNO_{3}	6.862	$\mathrm{CH}_{2} \mathrm{O}$	7.397	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	6.071	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	8.774
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	6.480	$\mathrm{HCO}_{2} \mathrm{CH}$	8.042	$\mathrm{CH}_{3} \mathrm{Cl}$	8.039	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	7.887
PF_{3}	7.982	$\mathrm{CH}_{3} \mathrm{CHO}$	7.468	p-xylene	4.302	-	-
HCN^{8}	8.557	$\mathrm{C}_{2} \mathrm{H}_{4}$	6.922	$1,2,5-$		-	

3.3. Chemical Hardness in MP2 Method

The optimizations of related molecules are done in each basis set. In this method, the best results are calculated by using MP2/LANL2DZ level in gas phase. Calculated hardness values of related molecules are given in Table 6 for MP2/LANL2DZ level.

A graph is plotted by using experimental and calculated chemical hardness values and it is represented in Fig. 3. It is seen that correlation coefficient $\left(\mathrm{R}^{2}\right)$ values is 0.8147 . Calculated chemi, cal hardness values in $6-31++G(d, p), 6-$ 311G, LANL2MB, SDD and SDDALL basis sets are given in Supp. Table S9-S13, respectively.

Fig. 3. Distribution graphs between experimental and calculated values at MP2/LANL2DZ levels in gas phase.

Table 7. Calculated scale factor ($\lambda_{\text {Average }}$) and correlation coefficient $\left(R^{2}\right)$ values for each level

Basis Set	HF		B3LYP		MP2	
	$\lambda_{\text {Average }}$	R^{2}	$\lambda_{\text {Average }}$	R^{2}	$\lambda_{\text {Average }}$	R^{2}
$6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$	0.9825	0.5707	2.0241	0.5907	0.9916	0.5863
6-311G	0.8598	0.8046	1.9667	0.4986	0.9459	0.7200
LANL2DZ	0.8375	0.8999	1.9526	0.3803	0.8754	0.8147
LANL2MB	0.7404	0.5388	1.8528	0.5630	0.7606	0.5630
SDD	0.8313	0.8970	1.9923	0.2719	0.8646	0.6057
SDDALL	0.8426	0.8178	1.9534	0.3611	0.8764	0.7708

3.4. Scale Factor for Chemical Hardness

Scale factors are mainly used in vibrational spectroscopy to determination of anharmonic frequencies. In this study, scale factor is calculated for determination of accuracy and harmony. Scale factor ($\lambda_{\text {Hardness }}$) is calculated for each level by using Eq. (7) and (8).
$\lambda_{\text {Hardness }}=\frac{\eta_{\text {experimental }}}{\eta_{\text {calculated }}}$
$\lambda_{\text {Average }}=\frac{\sum_{0}^{N} \lambda_{\text {Hardness }}}{N}$

It is expected that scale factor is equal to one. If scale factor is equal to one, it is expected that accuracy and harmony is high. Calculated scale factor and R^{2} values are given in Table 7.

To determine the best method n calculation of chemical hardness, both scale factor and correlation coefficient must be taken into consideration. Scale
factor and correlation coefficient must be equal or close to " 1 ". Therefore, results in HF method are better than those of B3LYP and MP2. Additionally, HF method is better in calculation of molecular orbital energies than those of B3LYP and MP2, since chemical hardness is calculated by using HOMO and LUMO energies.

4. Conclusion

62 molecules are optimized at three different methods and six different basis set in gas phase. Chemical hardnesses are calculated in each level by taking into considerations Koopmans theorem. Distribution graphs are plotted in each level and correlation coefficient are calculated for each graph. In addition to these results, average scale factor for chemical hardness are calculated by using experimental and calculated hardness values. As a results, HF method is better in calculation of chemical hardness and moleculer orbital energy than B3LYP and MP2 methods.

Acknowledgments

The numerical calculations reported in this paper are performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources).

References

[1] P. Jankowski, W. Wieczorek, P. Johansson, SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches, J Mol Model 23:6 (2017) 3-9.
[2] Juan Frau, Noemi Hernández-Haro, Daniel Glossman-Mitnik, Computational prediction of the pKas of small peptides through Conceptual DFT descriptors, Chemical Physics Letters 671 (2017) 138141.
[3] Meryem Evecen, Hasan Tanak, DFT quantum chemical studies of (E)-4-BromoN -(2- chlorobenzylidene)-aniline, Appl. Phys. A, 123: 91 (2017) 1-6.
[4] Samaneh Bagheri Novir, Seyed Majid Hashemianzadeh, Quantum chemical investigation of structural and electronic properties of trans- and cis-structures of some azo dyes for dye-sensitized solar cells, Computational and Theoretical Chemistry 1102 (2017) 87-97.
[5] Sadegh Kaviani, Mohammad Izadyar, Mohammad Reza Housaindokht Kaviani, A DFT study on the complex formation between desferrithiocin and metal ions $(\mathrm{Mg} 2+, \mathrm{Al} 3+, \mathrm{Ca} 2+, \mathrm{Mn} 2+, \mathrm{Fe} 3+, \mathrm{Co} 2+$, $\mathrm{Ni} 2+, \mathrm{Cu} 2+, \mathrm{Zn} 2+$), Computational Biology and Chemistry 67 (2017) 114-121.
[6] Mehmet Ferdi Fellah, A DFT study of hydrogen adsorption on Be, Mg and Ca frameworks in erionite zeolite, Applied Surface Science 394 (2017) 9-15.
[7] H. Moustafa, Mohamed E. Elshakre, Salwa Elramly, Electronic structure and nonlinear optical properties (NLO) of 2,4-di-aryl-1,5benzothiazepine derivatives using DFT approach, Journal of Molecular Structure 1136 (2017) 25-36.
[8] Subhajit Mukherjee, Venkata P. Reddy B., Ishani Mitra, Sankar Ch. Moi, In vitro kinetic based adduct formation mechanism
of a cytotoxic $\mathrm{Pt}(\mathrm{II})$ complex with sulfur containing bio-relevant molecules and a theoretical approach, Polyhedron 124 (2017) 251-261.
[9] Jonas Šarlauskas, Jelena Tamulienė, Narimantas Čenas, Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 178 (2017) 136-141.
[10] R. G. Pearson, Hard and Soft Acids and Bases, J. Am. Chem. Soc. 85 (1963) 3533.
[11] John J Gilman, Chemica and physical "hardness", Mat. Res. Innovat. 1 (1997) 71.
[12] Robert G Parr, Ralph G Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105 (1983) 7512.
[13] Mihai V. Putz, Nino Russo, Emilia Sicilia, On the Applicability of the HSAB Principle through the Use of Improved Computational Schemes for Chemical Hardness Evaluation, Journal of Computational Chemistry 25 (2004) 994-1003.
[14] K. Sayin, S. E. Kariper, T. A. Sayin, D. Karakaş, Theoretical spectroscopic study of seven zinc (II) complex with macrocyclic Schiff-base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 348-356.
[15] W. Loued, J. Wéry, A. Dorlando, K. Alimi, A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment, Journal of Molecular Structure 1081 (2015) 486-493
[16] Huicen Zhu, Weimin Guo, Zhemin Shen, Qingli Tang, Wenchao Ji, Lijuan Jia, QSAR models for degradation of organic pollutants in ozonation process under acidic condition, Chemosphere 119 (2015) 65-71.
[17] Walaa H. Mahmoud, Nessma F. Mahmoud, Gehad G. Mohamed, Ashraf A. El-Bindary, Adel Z. El-Sonbati, Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy)propane-1,2-diol metal complexes, Journal of Molecular Structure 1086 (2015) 266-275.
[18] A.Z. El-Sonbati, M.A. Diab, A.A. ElBindary, M.M. Ghoneim, M.T. Mohesien, M.K. Abd El-Kader, Polymeric complexes - LXI. Supramolecular structure, thermal properties, SS-DNA binding activity and antimicrobial activities of polymeric complexes of rhodanine hydrazone compounds, Journal of Molecular Liquids 215 (2016) 711-739.
[19] A.Z. El-Sonbati, M. A. Diab, A. A. ElBindary, M. A. El-Mogazy, Polymer complexes. LXVI, thermal, spectroscopic studies and supramolecular structure of N [β-(ethylamino)] acrylamide polymer complexes, Journal of Molecular Liquids, 219 (2016) 1044-1057.
[20] A. A. El-Bindary, M. M. Ghoneim, M. A. Diab, A. Z. El-Sonbati, L. S. Serag, Thermodynamic studies of N -allylrhodanine derivatives and their metal complexes, Journal of Molecular Liquids 223 (2016) 448-461.
[21] M. A. Diab, A. Z. El-Sonbati, A. A. ElBindary, S. M. Morgan, M. A. El-Kader, Geometrical structures, molecular docking, spectroscopic characterization of mixed ligand and Schiff base metal complexes, Journal of Molecular Liquids, 218 (2016) 571-585.
[22] R. D. Dennington II, T.A. Keith, J.M. Millam, GaussView 5.0, Wallingford CT, 2009.
[23] Gaussian 09, Revision D. 01 Linux (Gaussian Inc., Wallingford, CT, USA) 2009.
[24] Gaussian 09, Revision A. 02 Windows (Gaussian Inc., Wallingford, CT, USA) 2009.
[25] Ralph G Pearson, Absolute electronegativity and Hardness: Applicaiton to Inorganic Chemistry, Inorganic Chemistry 27 (1988) 734-740.

[^0]: ${ }^{1}$ Corresponding Author
 e-mail: krysayin@gmail.com and ksayin@cumhuriyet.edu.tr

