
Karakaya et al., International Advanced Researches and Engineering Journal 02(02): 147-152, 2018 

 

 

 

e-ISSN: 2618-575X 

Available online at www.dergipark.gov.tr 

 

INTERNATIONAL ADVANCED RESEARCHES  

and  

ENGINEERING JOURNAL 
 

Journal homepage: www.dergipark.gov.tr/iarej  
 

 

International 

Open Access 
 

 

 

 

Volume 02 

Issue 02 
 

 

August,  2018 

 

Research Article 

Selection of optimal numerical method for implementation of Lorenz Chaotic 

system on FPGA 
 

Baris Karakaya 
a
*, Meral Akarcay Turk 

b
, Mustafa Turk 

a
, Arif Gulten 

a
 

 

b

 

  ARTICLE INFO  ABSTRACT 

Article history: 

Received 28 February 2018 

Revised 15 May 2018 

Accepted 22 May 2018 

 In this study, implementation of Lorenz chaotic system on Spartan 3e XC3S1600e FPGA 

development board by using Xilinx System Generator technology is presented. Differential 

equations of any nonlinear system have to be discretized before coding and design process on 

FPGA editor. The Lorenz chaotic system is discretized by using Taylor series expansion, Runge-

Kutta and Euler discretization methods which are mostly preferred to discretize the continuous 

formed signals. The optimal numerical method based on application area is proposed by proving 

accuracy and complexity of methods and comparing designs in terms of resource utilizations on 

FPGA board. 
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1. Introduction 

Chaos can be found in many engineering systems [1]. 

The main characteristic of chaotic system is that it is 

extremely sensitive to initial conditions and small 

difference in initial state can cause to extraordinary 

differences in the system behavior. Chaotic behaviors are 

complex, irregular and generally undesirable in 

mechanical systems. In many mechanical system 

applications require a control unit that minimizes 

complexity and eliminates undesired behaviors in order 

to improve performance of the system. However, chaotic 

behavior can be useful some areas where the complexity 

is required such as secure communication and 

cryptographic systems [2].  

The dynamics of chaotic systems have attracted 

increasing attention of researchers in recent years. The 

Lorenz model [3] describes the motion of a fluid under 

the conditions of Rayleigh-Benard flow [4] and it has 

become a paradigm [5]. The system consists of many 

features of the chaotic dynamics but it is the simplest 

model for the dynamics of convective layers and close 

convection loops [6]. In literature, there are many 

publications related to Lorenz system and comparisons of 

it between other chaotic systems [7-10]. 

In the analysis of chaotic system, two representation 

types confront to us which are continuous time and 

discrete time modelling. In digital applications, discrete 

time modelling must be used in order to process the 

system behavior onto digital processors. For this purpose, 

there are many discretization methods in literature. When 

using a discretization method for a digital processing, it is 

definitely considered by user whether the design has 

desired accuracy and resource utilization or not. In this 

study, Taylor series expansion, Euler and Runge-Kutta 

discretization methods are used to represent differential 

equations of Lorenz chaotic system in discrete time 

domain. Selection of the optimal discretization method is 

important to have desired performance. In [11], Forward 

Euler (FE) and Runge-Kutta (RK) numerical integration 

methods are used for simulating the chaotic behavior of 

multi-scroll chaotic oscillator and results are compared. 

In circuit realization studies, Field Programmable Gate 

Array (FPGA) technology is frequently preferred by 

designers based upon its high speed parallel processing 

and low cost area abilities. When FPGA is used for 

realization of mathematical equations, a fractional 
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In this study, differential equations of Lorenz system 

are discretized by using Taylor series expansion, Euler 

and Runge-Kutta numerical discretization methods in 

order to compare designs by the meaning of accuracy, 

complexity and resource utilizations on FPGA. After 

discretization process, discrete time models are designed 

on Spartan 3e XC3S1600e FPGA development board by 

using Xilinx System Generator (XSG) technology. In the 

design stage, fixed-point number representation format is 

used. 

Herewith this introduction, the Lorenz chaotic system 

and three different discretization methods are expressed 

in Section 2. For each discretization methods, discrete 

mathematical models are defined. In Section 3, brief 

information about fixed-point number representation 

format and FPGA design by using XSG technology is 

given. Also, implementation results of three designs and 

comparison of discretization methods are illustrated in 

this section. At the end, final section concludes the paper. 

 

2. The Lorenz System and Discretization Methods 

2.1 The Lorenz System 

The Lorenz system [3], named for Edward N. Lorenz is a 

famous example of nonlinear chaotic system. The system 

has 3-dimensional dynamical model that exhibits chaotic 

behaviors. The state equations of system are represented as 

follow;  

where σ, r and β are called control parameters and x, y, z 

are state variables of system. All σ, r, β>0, but usually σ=10, 

β=8/3 and r is varied. The system exhibits chaotic behavior 

for r=28 [12]. 

The system has many features of nonlinearity. MATLAB 

Simulink block diagram of the system is illustrated in Fig. 1 

and simulation result for x-y phase plane portrait is given in 

Fig. 2. 

The chaotic behavior can be quantitatively determined by 

obtaining maximum Lyapunov exponent (MLE) value [13, 

14]. Regarding to simulation time series of the model, MLE 

values of state variables of the Lorenz system are λ1max = 

0.1359, λ2max = 0.0828 and λ3max = 0.0164. Since there are at 

least two positive MLE value, strong hyper chaotic 

behavior in the system is quantitatively demonstrated. 

 
Figure 1. MATLAB Simulink block diagram of Lorenz system. 

 
Figure 2. x-y chaotic phase plane portrait of the system. 

2.2 Taylor Series Expansion Method 

In order to program any system on a microprocessor, 

system model must be discretized. In Taylor series 

expansion numerical method, state variables of the Lorenz 

system are expanded for any m
th
 order as follow. 
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Bearing in mind that this study aims the comparison of 

numerical methods, Taylor series expansion method is 

executed for m=2 and h=0.001. In this situation, discrete 

time state equations of the Lorenz system with Taylor series 

expansion method is obtained as follow. 
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number representation format must be arranged to design 

mathematical model. There are two types of fractional 

number representation format which are fixed-point and 

floating-point, respectively.  
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2.3 Runge-Kutta Discretization Method 

In literature, the most preferred Runge-Kutta method is 

4
th
 order method. Since this study aims to compare 

discretization methods, 2
nd

 order Runge-Kutta method is 

preferred. 2
nd

 order Runge-Kutta method is extended for an 

example in Eq. 5. State variables of the Lorenz system are 

executed with 2
nd

 order Runge-Kutta method for h=0.001 

and discrete time model of the system is represented as in 

Eq. 6. 

1 0 0 1

2 1 0 0

0 0 2

( ) ( )
2 2

( ),
2 2

( ) ( )

h h
x t x t k

h h
k f x t t

x t h x t k h

   

 
   

 

   

                                         (5) 

 

 

 

1

1
2

1 2

1

1

2

( [ ] [ ])

( [ ] ( [ ] ))
2

( )
[ 1] [ ]

2

[ ] [ ] [ ] [ ]

[ ] ( [ ] ) [ ] [ ]
2

x

x
x

x x

y

y

y

k h y n x n

k
k h y n x n

k k
x n x n

k h r x n y n x n z n

k
k h r x n y n x n z n





   

 
     

 


  

     

 
       

 

     

 

1 2

1

1
2

1 2

( )
[ 1] [ ]

2

[ ] [ ] [ ]

[ ] [ ] ( [ ] )
2

( )
[ 1] [ ]

2

y y

z

z
z

z z

k k
y n y n

k h x n y n z n

k
k h x n y n z n

k k
z n z n






  

    

 
      

 


  

                    (6) 

2.4 Euler Discretization Method 

Euler method can be arranged in two ways which are 

Forward and Backward Euler. In this study, Forward Euler 

(FE) method is preferred. The expression of FE method is 

given in Eq. 7 and discretized model is expressed in Eq. 8 

for h=0.001. 
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3. Implementation Stage 

3.1 The Xilinx System Generator (XSG) Technology 

The Xilinx System Generator is a high level MATLAB-

Simulink based software platform that is used to create fast 

and easy designs on FPGA boards, execute Hardware Co-

Simulation of design and implement real-time onboard 

applications [15]. XSG has libraries which consists of bit or 

loop based blocks inside MATLAB-Simulink for 

applications such as arithmetic, logical, memory and Digital 

Signal Processing (DSP). The only difference between 

XSG blocks and common Simulink blocks is that XSG 

blocks can be used in discrete-time domain with fixed-point 

number representation format.   

3.2 Fixed-point Number Representation Format 

In this study, 32-bit signed fractional numbers are used in 

arithmetic operations such as addition and multiplication 

process. In order to use in a design fractional numbers, there 

are two ways in literature that are floating-point and fixed-

point number representation formats. In the design process 

of discrete time model equations, 2’s complement 32-bit 

fixed-point number format is preferred. Qm.n is used for 

representing fixed-point number format where m indicates 
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the number of bits that are arranged for integer part of 

number while n for fractional part. Therefore, the format is 

arranged as Q16.16 and illustrated in Fig. 3. The resolution 

of the format is obtained as 2
-n 

= 2
-16

 = 1.5259 e-5 [16]. 

bn+m bn+m-1 …bn+1bn bn- 1     …   b2b1b0

N = m + n + 1 bit

X[B2 ] =

Sign bit

 

Figure 3. Qm.n fixed-point number representation format. 

3.3 Implementation Results and Comparisons 

In the implementation stage, discrete time models that 

are discretized by three numerical methods are designed on 

Spartan 3e XC3S1600e FPGA development board by using 

XSG platform with 32-bit signed 2’s complement fixed-

point number representation format in real-time. Change of 

x state variable for each one of three methods design and 

Simulink reference model is shown in Fig. 4. 
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In order to compare designs by meaning of accuracy and 

complexity, mean square error (MSE) and maximum 

Lyapunov exponent (MLE) values are determined. Table 1 

represents MSE and MLE values of designs that are used to 

discretize the Lorenz system. 

Table 1. Mean Square Error (MSE) and Maximum Lyapunov 

Exponent (MSE) values of designs. 

Discretization Method MSE  MLE  

λ1max λ2max λ3max 

Taylor Series Expansion  0.6742 0.0295 0.0249 0.0021 

Runge-Kutta 0.0884 0.0980 0.0075 0.0074 

Forward Euler 0.0874 0.1103 0.0077 0.0086 

Simulink Model - 0.1359 0.0828 0.0164 

 

In Taylor series expansion method, 2
nd

 order expansion is 

executed. Therefore, the MSE value of this method is 

nearly eight times higher than the others. Considering 

results of Table 1, FE discretization method can be used 

with greater accuracy and complexity. Implementation 

results for x-y phase plane portrait of each one three 

methods are given in Fig. 5 (a), (b) and (c). 

The screen views of three designs with discretization 

methods on XSG platform are illustrated in Fig.6, 7 and 8. 

Table 2 and 3 represent number of arithmetic circuits, XSG 

blocks and resource utilization on FPGA for each 

discretization method. 

Table 2. Number of used arithmetic circuits and XSG blocks 

Arithmetic circuits and 

XSG blocks  

 Taylor 

Series 

Runge-

Kutta 

Forward 

Euler 

Addition  6 9 3 

Subtraction  8 6 1 

Multiplication  18 16 8 

Register  3 3 3 

Constant  15 15 7 

Table 3. Resource utilizations on FPGA for each method. 

FPGA resources  Taylor 

Series 

Runge-

Kutta 

Forward 

Euler 

Used Logic Slices  2146 1856 888 

Used Flip-Flops  3225 2624 1360 

Used LUTs  3719 3248 1496 

IOBs  96 96 96 

Mults/DSP48s  78 64 32 

 

As seen in Table 2 and 3, FE method uses almost half of 

both XSG blocks and FPGA resources that RK and Taylor 

series methods use. 

4. Conclusions 

As a result of this study, it is clearly understood that 

Forward Euler discretization method has the best 

performance for discretization of the Lorenz chaotic system. 

However, Runge-Kutta method has better accuracy and 

uses less resource on FPGA than Taylor series. Also, in the 

implementation stage Taylor series expansion method is 

executed for 2
nd

 order. If the order of expansion is increased, 

accuracy of Taylor series expansion method can get better 

while MSE value decreases. On the other hand, resource 

utilization of higher order Taylor series expansion method 

increases. 

As a future work, the Lorenz chaotic system circuitry 

will be installed on board. The similar work will be 

processed on board by using basic circuit elements and 

signal converters as digital to analog and vice versa. 
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(a) (b) (c)

 
Figure 5. x-y chaotic phase plane portrait for the design with a) Taylor series expansion, b) Runge-Kutta and c) Forward Euler. 

 

 
Figure 6. Implementation view of Lorenz system with Taylor series expansion method on XSG platform. 
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Figure 7. Implementation view of Lorenz system with Runge-Kutta discretization method on XSG platform. 

 

 

 

 

Figure 8. Implementation view of Lorenz system with Forward Euler discretization method on XSG platform. 
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