
Turkish Journal of Science & Technology
Volume 13(1), 25-29, 2018

Implementation of Two Cell Non-Autonomous CNN Model on FPGA

Bariş Karakaya*, Vedat Çelik, Arif Gülten
Fırat University, Electrical – Electronics Engineering, Faculty of Engineering, 23119 Elazig, Turkey

*bkarakaya@firat.edu.tr

(Received: 05.01.2017; Accepted: 27.02.2017)

Abstract

This paper presents implementation of a chaotic Cellular Neural Network (CNN) on Field Programmable Gate

Array (FPGA). The network has two non-autonomous cells and exhibits chaotic behavior. In the implementation

stage, Verilog Hardware Description Language (HDL) is used and discrete time model of the network is coded

on Xilinx ISE Design Suite 13.2. It seems that the chaotic attractor can be used as entropy source or short key

(seed) of chaos based random number generator design.

Keywords: Cellular Neural Network, Chaos, FPGA, Random Number Generator.

İki Hücreli Özerk Olmayan HYSA Modelinin FPGA’da Gerçeklenmesi

Özet

Bu çalışma, kaotik bir Hücresel Yapay Sinir Ağı’nın (HYSA) Alanda Programlanabilir Kapı Dizileri’nde

(FPGA) gerçeklenmesini sunmaktadır. Ağ, özerk olmayan iki hücreye sahiptir ve kaotik davranış

sergilemektedir. Gerçekleme aşamasında, Verilog Donanım Tanımlama Dili kullanılmakta ve ağın ayrık zamanlı

modeli Xilinx ISE Design Suite 13.2’de kodlanmaktadır. Görülmektedir ki kaotik çeker, kaos tabanlı rasgele

sayı üreteci tasarımında entropi kaynağı veya tohum olarak kullanılabilir.

Anahtar Kelimeler: Hücresel Yapay Sinir Ağı, Kaos, FPGA, Rasgele Sayı Üreteci.

1. Introduction

Chaos can be defined as unpredictable

behaviors that are sensitive to initial conditions

in a nonlinear deterministic system [1]. As

chaotic behavior can be undesirable in some

applications, there are a lot of application areas

which use the chaotic behavior in their

structures. In [2], the use of the Field

Programmable Gate Array (FPGA) as a

controller of a DC-DC boost converter,

controlling the output current of a photovoltaic

cells and minimizing the effect of the boost

converter chaotic behavior on the output voltage

are discussed. Micro controllers, Digital Signal

Processors (DSP) and FPGAs can be used to

design implementations of chaotic systems [3-6].

FPGA realizations of chaotic systems are studied

in [7, 8] by using Euler algorithm with both

integer arithmetic and floating-point number

format. Especially, the Lorenz’s chaotic system

is implemented onto a FPGA with the help of the

fourth order Runge-Kutta (RK4) algorithm in

[9]. The chaotic behavior can be used in Random

Number Generator (RNG) applications in order

to generate exactly true random number series

which are required for secure communication

systems. In literature, the realizations of chaotic

systems are proposed by using the Xilinx System

Generator technology in order to have the HDL

code. In [10], the Lorenz’s chaotic system is

implemented onto FPGA to obtain chaotic

sequence for information security issue and in

this design the Xilinx System Generator

technology is also used. As Cellular Neural

Network (CNN) proposed by Chua [11, 12] has

complex dynamics, chaotic behavior can occur

in the CNN structures [13]. In this paper, a

chaotic attractor is observed with two non-

autonomous cell CNN using opposite-sign

template. This network is reported in [14] and

solved with Runge-Kutta iterative solution

method.

In recent years, many chaotic CNN

applications are implemented on the FPGA.

Main advantage of the usage of the FPGA is that

it can be programmed with more flexibility

during implementation of design. Furthermore,

mailto:bkarakaya@firat.edu.tr

Implementation of Two Cell Non-Autonomous CNN Model on FPGA

26

development of any design on FPGA is easier

and faster than other microprocessors [15].

Implementation of CNN structure on FPGA

platform presents all advantages in the meaning

of higher operating frequency, minimum

resource utilization, reconfigurable systems and

more secure applications.

Herewith this introduction, CNN structure

and its mathematical model which exhibits

chaotic behavior, are presented in Section 2. In

Section 3, the implementation of discrete time

chaotic CNN model on FPGA platform is also

presented. At the end, final section concludes the

paper.

2. The Chaotic CNN Structure

The two-cell non-autonomous CNN model

given in [14] is described by state equations as

follow:

1 1 1 2

2 2 1 2

() () ()

() ()

x x pf x sf x g t

x x sf x pf x

    

   

&

&
 (1)

 
1

(()) () 1 () 1 , 1,2
2

i i if x t x t x t i     (2)

2
() sin()

t
g t A

T


 (3)

where p > 1, s > 0; x1, x2 are state variables of

each cell and f(∙) is an odd piecewise-linear

function as defined in Eq. (2). For the CNN

parameters p = 2, s = 1.2, initial condition x (0) =

(0.14, -0.1) and a sinusoidal input signal

parameters A = 4.04 and T = 4, the non-

autonomous CNN with two-cell given in [14]

and chaotic portrait of the system are shown in

Fig.1 and Fig.2, respectively.

f(x1)

f(x2)

x2

x1

s

-s

p p

g(t)
Figure 1. The non-autonomous CNN with two-cell.

-4 -2 2 4

-2

-1

1

2

x2

x1

Figure 2. Phase plane portrait of system with initial

condition of x(0) = (0.14, -0.1).

In Fig 2, the chaotic behavior is observed. It

is clearly appeared that the attractor has a

roughly point symmetric property. If the

Poincaré map of (x1, x2)-plane is obtained, it can

be seen that the attractor possesses the horseshoe

structure [14].

3. Implementation of Discrete Time Chaotic

CNN Model

In order to implement the model on

microprocessor, state equations must be

discretized. Discrete time model of the CNN

based chaotic system is determined as below.

1

1 1 2

2

2 1 2

[]1
[1] ([]) ([])+ g[n]

[]1
[1] ([]) ([])

x n
x n pf x n sf x n

a T

x n
x n sf x n pf x n

a T

  
     

  

  
     

  

 (4)

 
1

([]) [] 1 [] 1 , 1,2
2

i i if x n x n x n i     (5)

[] 4.04sin(/ 2)g n n (6)

Discrete time response of the model can be

acquired by using CNN parameters as p = 2, s =

1.2, initial conditions x(0) = (0.14, -0.1), T =

0.005, a = 1 + (1/T) = 201.

In arithmetic operations, fractional numbers

are used as well as integers. There are two types

of binary number representation format which

are floating-point and fixed-point format. Any of

Bariş Karakaya, Vedat Çelik, Arif Gülten

27

them can be chosen to represent a fractional

number as a fractional binary number. A

fractional number representation format should

be considered that it represents the fractional

number as a decimal and then converts it to a

fractional binary number by multiplying the

decimal number by 0.5 repeatedly. A binary

coded number can be defined by equation,

2 1 0 1 2... 2i

i

i

b b b b b b x   (7)

where there is a binary radix point in the above

equation before b-1 [16].

In this study, the fixed-point number format

is chosen because of advantages on easy coding.

In this format, a signed/unsigned number is

stored and this number is scaled by a fixed factor

which is determined by user with respect to

format parameters. This method implies shifting

operation the radix point to the left side [16].

Qm.n is the representation of fixed-point

number format that has m bit for integer part and

n bit for fractional part as shown in Fig. 3. As we

use signed numbers in discrete time model of our

network, Qm.n format has to be arranged as it

contains signed two’s complement fixed-point

fractional binary number [16].

bn+m bn+m-1…bn+1bn bn-1 … b2b1b0

N= m + n + 1 bit

X[B2] =

sign bit

Figure 3. Structure of the Qm.n fixed-point signed

number format.

Since initial values of state variables and

parameters are chosen signed numbers as 16-bits

in width, the format is arranged to Q3.12 and 1

bit is reserved for the sign.

2

1

[10] 1

0

1
2 2

2

N
N i

B N in
i

x b b








 
   

 
 (8)

Regarding to equation above (8) where x[B10]

represents fractional number in decimal, N = 16,

xmin = -2m = -8, xmax = 2m -2-n = 7.99975 and

resolution = 2-n = 2.4414.10-3 are determined for

Q3.12 signed two’s complement format.

In the implementation stage, three peripheral

circuits are used in the CNN core design. These

are Clock Generator, CNN Circuit and CNN

Cache.

The Clock Generator generates the low

frequency clock signal by using the 50 MHz

clock signal on FPGA chip. Generated low

frequency clock signal is used for iterative

solution of model. In FPGA applications, instead

of for loop operation, a counter module is

arranged in order to calculate the next value of

state variables repeatedly. Each increment of

counter value is admitted as the beginning of the

new loop.

The CNN circuit has two state variables,

four parameters for state variables, sampling

period register and external sinusoidal input

register which are all in 16 bit width. The CNN

circuit solves the equations (4), (5) and (6)

iteratively by using the clock pulse of the Clock

Generator circuit. The model requires previous

values of the state variables in order to determine

the current values. Therefore, the CNN Cache

circuit is used.

The CNN Cache needs 20 KB of total

memory in order to emulate the discrete time

chaotic CNN model. Since FPGA chip has

enough memory in BlockRAM, no external

memory is needed. 2 BlockRAM modules are

defined for this implementation each one of

module has 10 KB capacity. Defined BlockRAM

modules have a dual-port interface. Therefore,

the values at different addresses can be

accessible at the same time.

The CNN core is designed, implemented on

Spartan 3e XC3S1600e FPGA development

board and programmed by Xilinx ISE Design

Suite 13.2. When core is programmed, initial

values of state variables and parameters are

transferred to the core by using built-in

communication interfaces and functions in

MATLAB. The whole system is illustrated in

Fig.4. Table 1 illustrates resource utilization of

the CNN core design.

Figure 4. The scheme of the CNN Core Design.

Implementation of Two Cell Non-Autonomous CNN Model on FPGA

28

Table 1. Resource utilizations of the design.

Resources Arithmetic Unit

 Clock Generator Circuit CNN Core Design

Used slices 24 4013

Used FFs 33 5214

Used LUTs 47 6589

-4 -2 2 4

-2

-1

1

2

x2

x1

Figure 5. Discrete time response of the model with

given parameters.

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

x 10
4

0 1 2 3 4 5 6 7 8
6

4

2

0

2

4

6

x 10
4

(a)

(b)

Figure 6. Discrete time response of a) x1[n], b) x2[n].

After the whole design is implemented, the

programming bit stream of the design is

generated and FPGA chip is programmed by

Xilinx ISE Design Suite. The maximum

operating frequency is obtained as 24.67 MHz

from Xilinx ISE Design Suite. Fig. 5 shows the

discrete time response of the model, which is

very similar to the continuous time response

given in Fig. 2. Also, Fig.6 illustrates the discrete

time response of each cell. Fig. 5 and Fig. 6 are

plotted in MATLAB and the data are obtained

from implementation results on Xilinx ISE

Design Suite for FPGA of the chaotic discrete

time CNN model.

4.Conclusion

In this study, we have presented the

implementation of two cell non-autonomous

CNN model on FPGA. This study shows that the

implemented CNN model have chaotic behaviors

and model can be easily adapted to RNG

applications using FPGA not only the entropy

source of RNG but also the seed of pseudo

random number generator application.

5. References

1. Strogatz S.H., Herbert D.E., (1996). Nonlinear
dynamics and chaos. Medical Physics-New York-
Institute of Physics, 23(6), 993-995.
2. Natsheh A.N., Al-Habibah E.M.S., (2015). Chaos
control DC-DC boost converter by FPGA. 2015 IEEE
42nd Photovoltaic Specialist Conference (PVSC),
New Orleans, LA, 1-6.
3. Hidalgo R.M., Fernndez J.G., Rivera R.R.,
Larrondo H.A., (2001). Versatile dsp-based chaotic
communication system. Electronic Letters, 37, 1204–
1205.
4. Ali-Pacha A., Said N.H., M’Hamed A., Belgoraf
A., (2007). Lorenz’s attractor applied to the stream
cipher (alipacha generator). Chaos, Solitons and
Fractals, 33(5), 1762-1766.
5. Mazzini G., Setti G., Rovatti R., (1997). Chaotic
complex spreading sequences for aynhchronous ds-
cdma-part 1: System modeling and results. IEEE
Trans. Circuits Sys. 1, 44(10), 937–947.
6. Setti G., Balestra M., Rovatti R., (2000).
Experimental verification of enhanced
electromagnetic compatibility in chaotic fm clock
signals. in Proceedings of ISCAS’00. IEEE Circuits
and Systems Society, III-229–232.
7. Gonz´alez C.M., Larrondo H.A., Gayoso C.A.,
Arnone L.J., (2003). Generaci´on de secuencias
binarias pseudo aleatorias por medio de un mapa
ca´otico 3d. in Proceedings del IX Workshop de
IBERCHIP.
8. De Micco L., Zabaleta O.G., Gonzlez C.M.,
Arizmendi C.M., Larrondo H.A., (2010).
Estocasticidad de un atractor catico determinista
implementado en fpga. Proceedings Iberchip.

Bariş Karakaya, Vedat Çelik, Arif Gülten

29

9. De Micco L., Larrondo H.A., (2011). FPGA
implementation of a chaotic oscillator using RK4
method. 2011 VII Southern Conference on
Programmable Logic (SPL), Cordoba, 185-190.doi:
10.1109/SPL.2011.5782646.
10. Merah L., Ali-Pacha A., Said N.H., Mamat M.,
(2013). Design and FPGA implementation of Lorenz
chaotic system for information security
issues. Applied Mathematical Sciences, 7(5), 237-
246.
11. Chua L.O., Yang L., (1988). Cellular neural
networks: Theory. IEEE Trans. Circuits Syst., 35,
1257-1272.
12. Chua L.O., Yang L., (1988). Cellular neural
networks: applications. IEEE Transactions on Circuits
and Systems, 35(10), 1273-1290.

13. Zou F., Nossek J.A., (1993). Bifurcation and
chaos in cellular neural networks. IEEE Transactions
on Circuits and Systems I: Fundamental Theory and
Applications, 40(3), 166-173.
14. Zou F., Nossek J.A., (1991). A chaotic attractor
with cellular neural networks. in IEEE Transactions
on Circuits and Systems, 38(7), 811-812.
15. Gerosa A., Bernardini R., Pietri S., (2001). A fully
integrated 8-bit, 20MHz, truly random numbers
generator, based on a chaotic system. In: Proceedings
of the Southwest Symposium on Mixed-Signal
Design, SSMSD, 87–92.
16. Karakaya B., Yeniceri R., Yalcin M.E., (2015).
Wave computer core using fixed-point arithmetic.
2015 IEEE International Symposium on Circuits and
Systems (ISCAS), Lisbon, 1514-1517.

