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Abstract 

This paper presents implementation of a chaotic Cellular Neural Network (CNN) on Field Programmable Gate 

Array (FPGA). The network has two non-autonomous cells and exhibits chaotic behavior. In the implementation 

stage, Verilog Hardware Description Language (HDL) is used and discrete time model of the network is coded 

on Xilinx ISE Design Suite 13.2. It seems that the chaotic attractor can be used as entropy source or short key 

(seed) of chaos based random number generator design. 
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İki Hücreli Özerk Olmayan HYSA Modelinin FPGA’da Gerçeklenmesi 
 

Özet 

Bu çalışma, kaotik bir Hücresel Yapay Sinir Ağı’nın (HYSA) Alanda Programlanabilir Kapı Dizileri’nde 

(FPGA) gerçeklenmesini sunmaktadır. Ağ, özerk olmayan iki hücreye sahiptir ve kaotik davranış 

sergilemektedir. Gerçekleme aşamasında, Verilog Donanım Tanımlama Dili kullanılmakta ve ağın ayrık zamanlı 

modeli Xilinx ISE Design Suite 13.2’de kodlanmaktadır. Görülmektedir ki kaotik çeker, kaos tabanlı rasgele 

sayı üreteci tasarımında entropi kaynağı veya tohum olarak kullanılabilir. 

Anahtar Kelimeler: Hücresel Yapay Sinir Ağı, Kaos, FPGA, Rasgele Sayı Üreteci. 

1. Introduction 

 

Chaos can be defined as unpredictable 

behaviors that are sensitive to initial conditions 

in a nonlinear deterministic system [1]. As 

chaotic behavior can be undesirable in some 

applications, there are a lot of application areas 

which use the chaotic behavior in their 

structures. In [2], the use of the Field 

Programmable Gate Array (FPGA) as a 

controller of a DC-DC boost converter, 

controlling the output current of a photovoltaic 

cells and minimizing the effect of the boost 

converter chaotic behavior on the output voltage 

are discussed. Micro controllers, Digital Signal 

Processors (DSP) and FPGAs can be used to 

design implementations of chaotic systems [3-6]. 

FPGA realizations of chaotic systems are studied 

in [7, 8] by using Euler algorithm with both 

integer arithmetic and floating-point number 

format. Especially, the Lorenz’s chaotic system 

is implemented onto a FPGA with the help of the 

fourth order Runge-Kutta (RK4) algorithm in 

[9]. The chaotic behavior can be used in Random 

Number Generator (RNG) applications in order 

to generate exactly true random number series 

which are required for secure communication 

systems. In literature, the realizations of chaotic 

systems are proposed by using the Xilinx System 

Generator technology in order to have the HDL 

code. In [10], the Lorenz’s chaotic system is 

implemented onto FPGA to obtain chaotic 

sequence for information security issue and in 

this design the Xilinx System Generator 

technology is also used. As Cellular Neural 

Network (CNN) proposed by Chua [11, 12] has 

complex dynamics, chaotic behavior can occur 

in the CNN structures [13]. In this paper, a 

chaotic attractor is observed with two non-

autonomous cell CNN using opposite-sign 

template. This network is reported in [14] and 

solved with Runge-Kutta iterative solution 

method.  

In recent years, many chaotic CNN 

applications are implemented on the FPGA. 

Main advantage of the usage of the FPGA is that 

it can be programmed with more flexibility 

during implementation of design. Furthermore, 
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development of any design on FPGA is easier 

and faster than other microprocessors [15]. 

Implementation of CNN structure on FPGA 

platform presents all advantages in the meaning 

of higher operating frequency, minimum 

resource utilization, reconfigurable systems and 

more secure applications. 

Herewith this introduction, CNN structure 

and its mathematical model which exhibits 

chaotic behavior, are presented in Section 2. In 

Section 3, the implementation of discrete time 

chaotic CNN model on FPGA platform is also 

presented. At the end, final section concludes the 

paper. 

 

2. The Chaotic CNN Structure 

 

The two-cell non-autonomous CNN model 

given in [14] is described by state equations as 

follow: 
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where p > 1, s > 0; x1, x2  are state variables of 

each cell and f(∙) is an odd piecewise-linear 

function as defined in Eq. (2). For the CNN 

parameters p = 2, s = 1.2, initial condition x (0) = 

(0.14, -0.1) and a sinusoidal input signal 

parameters A = 4.04 and T = 4, the non-

autonomous CNN with two-cell given in [14] 

and chaotic portrait of the system are shown in 

Fig.1 and Fig.2, respectively. 
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Figure 1. The non-autonomous CNN with two-cell. 
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Figure 2. Phase plane portrait of system with initial 

condition of x(0) = (0.14, -0.1). 

 

In Fig 2, the chaotic behavior is observed. It 

is clearly appeared that the attractor has a 

roughly point symmetric property. If the 

Poincaré map of (x1, x2)-plane is obtained, it can 

be seen that the attractor possesses the horseshoe 

structure [14]. 

 

3. Implementation of Discrete Time Chaotic 

CNN Model 

 

In order to implement the model on 

microprocessor, state equations must be 

discretized. Discrete time model of the CNN 

based chaotic system is determined as below. 
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Discrete time response of the model can be 

acquired by using CNN parameters as p = 2, s = 

1.2, initial conditions x(0) = (0.14, -0.1), T = 

0.005, a = 1 + (1/T) = 201.  

In arithmetic operations, fractional numbers 

are used as well as integers. There are two types 

of binary number representation format which 

are floating-point and fixed-point format. Any of 
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them can be chosen to represent a fractional 

number as a fractional binary number. A 

fractional number representation format should 

be considered that it represents the fractional 

number as a decimal and then converts it to a 

fractional binary number by multiplying the 

decimal number by 0.5 repeatedly. A binary 

coded number can be defined by equation,  

 

2 1 0 1 2... . ... 2i

i

i

b b b b b b x                                      (7) 

                                      

where there is a binary radix point in the above 

equation before b-1 [16]. 

In this study, the fixed-point number format 

is chosen because of advantages on easy coding. 

In this format, a signed/unsigned number is 

stored and this number is scaled by a fixed factor 

which is determined by user with respect to 

format parameters. This method implies shifting 

operation the radix point to the left side [16].  

Qm.n is the representation of fixed-point 

number format that has m bit for integer part and 

n bit for fractional part as shown in Fig. 3. As we 

use signed numbers in discrete time model of our 

network, Qm.n format has to be arranged as it 

contains signed two’s complement fixed-point 

fractional binary number [16]. 

bn+m bn+m-1…bn+1bn bn-1     …   b2b1b0

N= m + n + 1 bit

X[B2] =

sign bit

 
Figure 3. Structure of the Qm.n fixed-point signed 

number format. 

 

Since initial values of state variables and 

parameters are chosen signed numbers as 16-bits 

in width, the format is arranged to Q3.12 and 1 

bit is reserved for the sign. 
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Regarding to equation above (8) where x[B10] 

represents fractional number in decimal, N = 16, 

xmin = -2m = -8, xmax = 2m -2-n = 7.99975 and 

resolution = 2-n = 2.4414.10-3 are determined for 

Q3.12 signed two’s complement format. 

In the implementation stage, three peripheral 

circuits are used in the CNN core design. These 

are Clock Generator, CNN Circuit and CNN 

Cache. 

The Clock Generator generates the low 

frequency clock signal by using the 50 MHz 

clock signal on FPGA chip. Generated low 

frequency clock signal is used for iterative 

solution of model. In FPGA applications, instead 

of for loop operation, a counter module is 

arranged in order to calculate the next value of 

state variables repeatedly. Each increment of 

counter value is admitted as the beginning of the 

new loop.  

The CNN circuit has two state variables, 

four parameters for state variables, sampling 

period register and external sinusoidal input 

register which are all in 16 bit width. The CNN 

circuit solves the equations (4), (5) and (6) 

iteratively by using the clock pulse of the Clock 

Generator circuit. The model requires previous 

values of the state variables in order to determine 

the current values. Therefore, the CNN Cache 

circuit is used.  

The CNN Cache needs 20 KB of total 

memory in order to emulate the discrete time 

chaotic CNN model. Since FPGA chip has 

enough memory in BlockRAM, no external 

memory is needed. 2 BlockRAM modules are 

defined for this implementation each one of 

module has 10 KB capacity. Defined BlockRAM 

modules have a dual-port interface. Therefore, 

the values at different addresses can be 

accessible at the same time. 

The CNN core is designed, implemented on 

Spartan 3e XC3S1600e FPGA development 

board and programmed by Xilinx ISE Design 

Suite 13.2. When core is programmed, initial 

values of state variables and parameters are 

transferred to the core by using built-in 

communication interfaces and functions in 

MATLAB. The whole system is illustrated in 

Fig.4. Table 1 illustrates resource utilization of 

the CNN core design. 

 

 
Figure 4. The scheme of the CNN Core Design. 
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Table 1. Resource utilizations of the design. 

Resources Arithmetic Unit 

 Clock Generator Circuit CNN Core Design 

Used slices 24 4013 

Used FFs 33 5214 

Used LUTs 47 6589 
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Figure 5. Discrete time response of the model with 

given parameters. 
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Figure 6. Discrete time response of a) x1[n], b) x2[n]. 

After the whole design is implemented, the 

programming bit stream of the design is 

generated and FPGA chip is programmed by 

Xilinx ISE Design Suite. The maximum 

operating frequency is obtained as 24.67 MHz 

from Xilinx ISE Design Suite. Fig. 5 shows the 

discrete time response of the model, which is 

very similar to the continuous time response 

given in Fig. 2. Also, Fig.6 illustrates the discrete 

time response of each cell. Fig. 5 and Fig. 6 are 

plotted in MATLAB and the data are obtained 

from implementation results on Xilinx ISE 

Design Suite for FPGA of the chaotic discrete 

time CNN model. 
 

4.Conclusion 

 

In this study, we have presented the 

implementation of two cell non-autonomous 

CNN model on FPGA. This study shows that the 

implemented CNN model have chaotic behaviors 

and model can be easily adapted to RNG 

applications using FPGA not only the entropy 

source of RNG but also the seed of pseudo 

random number generator application. 
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