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Highlights 
• The study aims to comprehend the impacts of the virus and how it spreads.  
• To estimate the daily number of COVID-19 related deaths, Gumbel distribution is used. 

• The findings can be viewed as a valuable resource for analyzing the effects of any future pandemics. 
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Abstract 

Nearly all nations, including Turkey, were impacted by the 2019 new coronavirus (COVID-19) 
infections reported by Wuhan, China, as the disease's first official case. Turkey is one of the most 
impacted nations in the globe due to the high number of infected patients. To comprehend the 
pattern of the virus's propagation and its impacts, it is crucial to examine the pandemic statistics 
in Turkey. The Gumbel distribution is utilized when describing the maximum or minimum of 

several samples with different distributions. Therefore, we used the Gumbel distribution to 
estimate the daily number of COVID-19-related deaths. This study proposes a multi-objective 
programming methodology for Gumbel distribution parameter estimation based on the RMSE, 
R2, and Theil coefficient methods. A comprehensive Monte-Carlo simulation research is 
performed to examine the effectiveness of single-objective RMSE, R2, Theil’s coefficient and 
multi-objective RMSE-R2, RMSE-Theil, R2-Theil, RMSE-R2-Theil programming estimation 
methods. When the simulation results were analyzed, the case formed by the RMSE-R2-Theil 
estimator has the best Def value across all cases. The application of the real dataset containing 
COVID-19 death data is examined, and it can be seen that Theil, RMSE-Theil, and R2-Theil were 

better estimators for winter data. At the same time, RMSE was a better estimator for autumn and 
autumn-winter data. 
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1. INTRODUCTION 

 
A disaster faced by humanity is undoubtedly epidemic disease, and throughout history, it has deeply 

affected states, societies, and people, struck commercial activities, and paralyzed social life [1]. People's 

perceptions of diseases, reactions to them, and ability to adapt to them are all related. [2]. For this reason, 
people’s health behaviors in the face of an epidemic threat are essential in minimizing the epidemic's 

geographical prevalence and the speed of its spread and reducing possible loss of life. In this context, the 

lives of civilizations and the global economy have been profoundly impacted by the new coronavirus 

epidemic (COVID-19 or 2019-nCOV), which began in the Chinese city of Wuhan and has spread quickly 
throughout the world. Since the World Health Organization declared the COVID-19 pandemic, 514 million 

cases have been detected worldwide, and 6.25 million deaths have occurred. In Turkey, the COVID-19 

virus has been detected in 15 million people and 99 thousand deaths have been reported [3].  
 

Upon reviewing the publications that provide data on the quantity of COVID-19 cases and fatalities, Chen 

analyzed the global death rate and case-fatality rates of COVID-19 using nonlinear regression [4]. An 
attempt has been made to confirm the MSL-COVID-19 score generated to predict COVID-19 mortality in 

Mexicans, and a modified version of the equation is suggested to assess the severity of COVID-19 in a 

triage situation [5]. During the first wave of the pandemic in 23 countries, the Gompertz model was used 

to characterize the growth dynamics of COVID-19 cases, and it was compared with the straightforward 
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logistic regression model [6]. The number of hospitalized cases was utilized to estimate the number of 

discharged and deceased cases using the MLP-MC hybrid model [7]. Time models, conditional variance, 
and asymmetric effects were used to model and forecast new COVID-19 cases [8]. The epidemic model 

was created to comprehend the disease's spreading tendency, incorporating effective TTT (tracking, testing, 

and treatment) control techniques [9]. Modeling pandemics is important in understanding the spreading 

behavior of a virus and its effects on humanity.  
 

First introduced by E. J. Gumbel in 1941, the Gumbel distribution is applied to explain the maximum or 

minimum of several samples of different distributions [10]. In real life, the Gumbel distribution is used for 
numerous purposes, including predicting annual sea level rise and the flow of rivers, floods, strong winds, 

and earthquake magnitudes [11-14]. This distribution has different applications in modeling extreme values, 

so it is essential to estimate its parameters correctly. Various estimation methods, such as the method of 

moments, the method of maximum likelihood, the method of least squares, and the method of weighted 
least squares, have been used to estimate the Gumbel distribution parameters [14-18]. The Gumbel 

distribution function was utilized to estimate the daily and overall number of COVID-19-related deaths 

[19,20]. Since the root means square error (RMSE) and Theil's inequality coefficient includes the least-
squares estimator function, coefficient determination (R2) contains the likelihood function for simple linear 

regression, and the parameter estimation functions are RMSE, Theil’s inequality, and R2 are used.  

 
In the second and third section of the study, Gumbel distribution and estimation methods and the NSGA-II 

method are respectively given. In the next section, a detailed Monte Carlo (MC) simulation research is 

performed to examine the effectiveness of single-objective RMSE, R2, Theil’s coefficient and multi-

objective RMSE-R2, RMSE-Theil, R2-Theil, RMSE-R2-Theil programming estimation method, and the 
findings are presented. The implementation of the suggested method has been evaluated using COVID-19 

death data in Turkey in the next section. In the last section, the study is summarized, and the results are 

analyzed. 
 

2. ESTIMATING PARAMETERS FOR GUMBEL DISTRIBUTION USING THE NSGA-II 

 

The cumulative distribution function (CDF) and the probability density function (PDF) of the two-

parameter Gumbel distribution with the location parameter μ and the scale parameter σ are given in 

Equations (1) and (2), respectively 

 

𝐹(𝑥) = 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
(𝑥−μ)

σ
))  (1) 

 

𝑓(𝑥) =
1

σ
𝑒𝑥𝑝 (−

(𝑥−μ)

σ
) 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−

(𝑥−μ)

σ
)) , −∞ < 𝑥 < ∞, μ ∈  𝑅, 𝜎 ∈ 𝑅+ .               (2) 

 
In this section, where the parameters of the two-parameter Gumbel distribution are given, the concepts of 

RMSE, R2, and Theil’s inequality coefficient estimators and the proposed multi-objective approach are 

presented, let be a random sample of size 𝑛 taken from the PDF in 𝑥1, 𝑥2, … , 𝑥𝑛. 
 

2.1. Root means square error (RMSE) 

 
The standard deviation of the estimated errors is measured by the RMSE, a quadratic metric that assesses 

the size of the error in a model between the expected and true values. Considering 𝑋(1), 𝑋(2),… , 𝑋(𝑛) as the 

order statistics of 𝑋1, 𝑋2, … , 𝑋𝑛 and 𝑥(1), 𝑥(2), … , 𝑥(𝑛) as observed ordered observations, the values of CDF 

in Equation (1) are estimated using the mean rank provided in Equation (3) 

 

𝐹̂(𝑥(𝑖)) = 𝑦̂i =
𝑖

𝑛+1
,         𝑖 = 1,2, … , 𝑛 .           (3) 

 

Here, i denotes the ith smallest value of  𝑥(1), 𝑥(2), … , 𝑥(𝑛). The RMSE minimizing the function in Equation 

(4) 



Ecem DEMIR YURTSEVEN, Emre KOCAK, H. Hasan ORKCU/ GU J Sci, 37(4): x-x (2024) 

 

ψ(μ, σ) = √
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑁
𝑖=1  . (4) 

 

2.2. Coefficient of Determination (R
2
) 

 

The coefficient of determination is the best measure of the linear model's goodness of fit. The coefficient 

in question indicates how much of the change in the dependent variable is explained by the independent 

variable(s). Equation (5) provides the most comprehensive definition of the coefficient of determination 
 

𝑅2 = 1 −
∑ (𝑦𝑖−𝐹(𝑥𝑖))

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅))
2𝑛

𝑖=1

 .                                                                    (5) 

    

2.3. Theil’s Inequality Coefficient (TIC) 

 

The accuracy of a set of predictions produced by certain models was assessed using Theil's inequality 

coefficient. One of the first applications was by Hee in 1966 [21]. Thiel's inequality coefficient, sometimes 

called as Thiel's U, indicates how closely a model's predicted values match the corresponding observed 

values. Theil's summary measure of prediction accuracy is proposed in Equation (6) 
 

𝑇𝐼𝐶 =
√1
𝑁
(∑ 𝑦̂𝑖−𝑦𝑖

𝑁
𝑖=1 )

2

√
1

𝑁
∑ 𝑦̂𝑖

2𝑁
𝑖= +√

1

𝑁
∑ 𝑦𝑖

2𝑁
𝑖=

 .                                                                    (6) 

 

2.4. Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

 

In addition to being a multi-objective metaheuristic approach, Genetic Algorithm-based NSGA-II is among 
the best techniques for identifying the Pareto solution set. The fast non-dominated sorting and the crowding 

distance are the two main advantages of the NSGA-II method over other multi-objective genetic algorithms 

[22]. The search begins with a set of solutions using the population-based search method NSGA-II, each 

representing a possible solution for the issue. Better solutions are sought from the current set of solutions. 
A new population is produced through crossing and mutation operators using the best members of the 

existing population. For a set number of iterations, it keeps creating a population. 

 
3. PROPOSED MULTI-OBJECTIVE OPTIMIZATION APPROACH  

 

The functions of RMSE, R2, and Theil were used to build the suggested multi-objective optimization 

methodology. It is desirable to make the function as small as possible in the RMSE and Theil but as large 
as possible in the R2. Therefore, the additive inverse of the R2 function is taken. The generated models for 

RMSE-R2, RMSE-Theil, Theil-R2, and RMSE-R2-Theil are specified in Equations (7) - (10), respectively.  

 
Rather than a single optimal solution, sometimes referred to as the ideal solution, Pareto optimum solutions 

are alternate solution sets that answer the multi-objective optimization problem. In order to obtain Pareto 

optimal solutions, multi-objective metaheuristic approaches are practical because they generate many 
solutions, do not require derivative computations, offer an excellent approach to Pareto optimal solutions, 

and are easily applicable to optimization problems 
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4. SIMULATION STUDY 

 

A detailed MC simulation research is performed to investigate the performance of the proposed single-
purpose RMSE, R2, Theil’s coefficient and multi-purpose RMSE-R2, RMSE-Theil, R2-Theil, RMSE-R2-

Theil programming estimation methods in this section. The performance of various scenarios is compared 

using the deficiency criterion (Def), which is used to evaluate the efficiency of the parameter estimate 
techniques [23]. It is defined as given in Equation (11). Additionally, Equations (12) and (13) provide the 

mean squared error (MSE) values for the parameters that were used to calculate the Def criterion 

 

  𝐷𝑒𝑓(𝜇̂, 𝜎̂) = 𝑀𝑆𝐸(𝜇̂) +𝑀𝑆𝐸(𝜎̂)  (11) 

 
  𝑀𝑆𝐸(𝜇̂) = 𝑉𝑎𝑟(𝜇̂) + 𝐵𝑖𝑎𝑠2(𝜇̂)  

 

(12) 

 
  𝑀𝑆𝐸(𝜎̂) = 𝑉𝑎𝑟(𝜎̂) + 𝐵𝑖𝑎𝑠2(𝜎̂) . 

 
(13) 

 

Here, 𝜇̂ and 𝜎̂ are estimators of parameters 𝜇 and 𝜎 respectively. 

 

Selecting the point that corresponds to the best E2 value of the prediction points provides the optimal 

solution among the Pareto points in the parameter space for RMSE-R2, RMSE-Theil, R2-Theil, and RMSE-
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R2-Theil. The sum of the differences between the estimated and real parameter values gives the E2 value, 

which is determined in Equation (14) 
 

𝐸2 = ∑ (𝛾 − 𝛾)2𝑛
𝑖=1  .          (14)                                                                  

  

The real parameter values for the two-parameter Gumbel distribution are to be (𝜇, 𝜎) = (3,4). The mean, 

MSE, and Def values of the parameter estimators are calculated using 100000/n Monte Carlo runs for 
sample sizes of 10, 50, 100, and 1000. RMSE, R2, Theil, RMSE-R2, RMSE-Theil, R2-Theil, and RMSE- 

R2-Theil estimates of the parameters for the two-parameter Gumbel distribution are calculated using the 

NSGA-II algorithm. Crossover Fraction = 0.8 and Pareto Fraction = 0.35 are the parameters considered for 

the NSGA-II algorithm. Population Size (Pop) is also considered 50, 100, and 250, respectively, while the 

Search Space for 𝜇 and 𝜎 is chosen as (0, inf). The simulated mean and Def values for (𝜇, 𝜎) = (3,4) are 

given in Table 1.  

 
The simulation results demonstrate that the case created by the RMSE-R2-Theil estimator has the best Def 

value across all cases. Compared to its parameter estimation, this case does not yield the best results in any 

scenario. When the simulation results were analyzed in terms of parameter estimations, it was seen that the 

R2 state made the best parameter estimation for the location and scale parameters in all parameter values. 
This situation is because achieving objectives in cases with more than one objective function is difficult to 

compare with cases with an objective function, and the spread of predicted values is less in multi-objective 

function cases when estimating parameters. However, the parameter estimate values are related under 
various circumstances. 

 

It is seen in Table 1 that as the number of samples increases, there is a decrease in Def values in all cases. 
On the other hand, it shows that the growth of the population number does not affect the Def values as 

much as the number of samples. Although RMSE-R2-Theil is the estimator that gives the best def values 

for all cases, this is not the same for the population size parameter. When the sample size is 10, 50, 100, 

and 1000, the population sizes that give the best Def results are 100, 250, 50, and 50, respectively. Using 
these results, the population size can be small when working with large sample sizes. Thus, an advantage 

can be achieved in terms of algorithm time. 

 

5. APPLICATION OF COVID-19 DEATH DATA 

 

This section examines, using the NSGA-II algorithm, the application of parameter estimates approaches to 

a real dataset that contains COVID-19 death data. Consisting of 181 observations, the number of deaths 
from COVID-19 in Turkey between September 1, 2021, and February 28, 2022, was used as a dataset, and 

the data were analyzed in three datasets. In the first dataset, the dataset for the autumn-winter period consists 

of 181 observations covering all the data, and the second reflects the autumn period of 91 observations 
between September 1 and November 30, 2021, and the winter period of 90 observations between December 

1, 2021-February 28, 2022. 

 
A goodness-of-fit test using Kolmogorov-Smirnov (KS) was used to demonstrate how well the data fit the 

Gumbel distribution. The KS test statistics and p values are KS=0.0559 and p=0.9233 for the autumn period, 

KS=0.0908 and p=0.4238 for the winter period and KS=0.0647 and p=0.4168 for the autumn-winter period, 

respectively.  
 

When the results were examined, it was seen that the dataset was suitable for the Gumbel distribution 

(p<0.05). When the parameter estimation values of logL and AIC of the COVID-19 death dataset are 
examined in Table 2, it can be seen from logL and AIC values that RMSE estimates are better than in the 

other cases for autumn data. Theil, RMSE-Theil, and R2-Theil estimates are better for the winter datasets, 

and RMSE cases ensure the best estimates for the autumn-winter data. Additionally, the Pareto optimal 
solution sets are given in Figure 1. 
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Table 1. Simulation results for estimating of the parameters (𝜇, 𝜎) = (3,4) 

Pop. Size Method 
n=10 n=50 

Location Scale Def Location Scale Def 

50 

RMSE 2.98155 4.40919 4.12578 2.95997 4.06743 0.72047 

R2 3.07926 4.08480 3.91429 2.97788 4.00810 0.71184 

Theil 2.95816 4.36057 4.06099 2.95435 4.05842 0.71832 

RMSE- R2 3.02888 4.23969 3.57662 2.96806 4.04329 0.68822 

RMSE-Theil. 2.90480 4.56541 4.07379 2.91971 4.18334 0.85841 

R2-Theil. 3.01913 4.21960 3.59038 2.96553 4.03837 0.69270 

RMSE- R2-Theil. 3.02021 4.24371 3.55770 2.96592 4.04249 0.68636 

100 

RMSE 2.95718 4.41868 4.05257 2.99992 4.10002 0.74665 

R2 3.05659 4.09421 3.81098 3.01869 4.03757 0.73533 

Theil 2.93323 4.37055 3.98688 2.99416 4.09023 0.74364 

RMSE- R2 3.01198 4.22724 3.52775 3.01003 4.06571 0.70997 

RMSE-Theil. 2.92943 4.42663 3.89131 2.99170 4.11012 0.74139 

R2-Theil. 3.00256 4.21017 3.54615 3.00749 4.06135 0.71248 

RMSE- R2-Theil. 3.00449 4.23100 3.50397 3.00830 4.06608 0.70823 

250 

RMSE 2.95953 4.43113 4.04294 3.02035 4.06750 0.68841 

R2 3.05742 4.10781 3.81600 3.03923 4.00526 0.68135 

Theil 2.93606 4.38293 3.98026 3.01459 4.05782 0.68583 

RMSE- R2 3.01369 4.23945 3.53338 3.03018 4.03432 0.65595 

RMSE-Theil. 2.94333 4.40265 3.93539 3.01701 4.06242 0.68098 

R2-Theil. 3.00479 4.22291 3.55338 3.02735 4.03038 0.65803 

RMSE- R2-Theil. 3.00715 4.24166 3.51801 3.02827 4.03496 0.65412 

Pop. Size Method 
n=100 n=1000 

Location Scale Def Location Scale Def 

50 

RMSE 2.99275 4.03382 0.32519 3.00490 4.00598 0.03111 

R2 3.00199 4.00300 0.32345 3.00582 4.00295 0.03112 

Theil 2.98988 4.02888 0.32477 3.00461 4.00550 0.03110 

RMSE- R2 2.99534 4.02606 0.32009 3.00250 4.01068 0.03208 

RMSE-Theil. 2.95417 4.15141 0.46849 2.99545 4.02163 0.03580 

R2-Theil. 2.99474 4.02100 0.31753 3.00223 4.01979 0.04604 

RMSE- R2-Theil. 2.99501 4.02387 0.31704 3.00506 4.00542 0.03035 

100 

RMSE 2.98978 4.04095 0.35403 2.98431 4.00201 0.03688 

R2 2.99920 4.00972 0.35153 2.98515 3.99920 0.03688 

Theil 2.98682 4.03604 0.35342 2.98403 4.00156 0.03689 

RMSE- R2 2.99464 4.02457 0.34228 2.98474 4.00063 0.03655 

RMSE-Theil. 2.98519 4.04966 0.35384 2.98203 4.01003 0.03943 

R2-Theil. 2.99328 4.02226 0.34310 2.98462 4.00035 0.03659 

RMSE- R2-Theil. 2.99370 4.02478 0.34162 2.98465 4.00070 0.03653 

250 

RMSE 2.99363 4.03571 0.35691 2.98992 4.00088 0.03088 

R2 3.00278 4.00521 0.35496 2.99087 3.99772 0.03083 

Theil 2.99076 4.03089 0.35638 2.98961 4.00037 0.03089 

RMSE- R2 2.99822 4.02026 0.34584 2.99044 3.99917 0.03056 

RMSE-Theil. 2.99213 4.03325 0.35451 2.98975 4.00061 0.03082 

R2-Theil. 2.99687 4.01783 0.34688 2.99031 3.99891 0.03060 

RMSE- R2-Theil. 2.99737 4.02046 0.34525 2.99033 3.99923 0.03054 
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Table 2. Parameter estimate values for the dataset containing the number of deaths from COVID-19 

Period Method Location Scale RMSE R2 Theil logL AIC 

Autumn 

RMSE 0.00174 0.00036 0.03723 - - -87.92316 179.84631 

R2 0.00174 0.00035 - 0.98361 - -99.36461 202.72922 

Theil 0.00173 0.00035 - - 0.03245 -98.58736 201.17472 

RMSE-R2 0.00174 0.00035 0.03751 0.98361 - -99.36461 202.72922 

RMSE-Theil 0.00174 0.00036 0.03724 - 0.03213 -89.80119 183.60238 

R2-Theil 0.00174 0.00036 - 0.98340 0.03213 -89.80119 183.60238 

RMSE-R2-Theil 0.00174 0.00035 0.03740 0.98359 0.03224 -97.15839 198.31679 

Winter 

RMSE 0.00209 0.00022 0.01714 - - 
-

456.90823 
917.81647 

R2 0.00209 0.00021 - 0.99643 - 
-

460.41864 
924.83729 

Theil 0.00209 0.00022 - - 0.01485 
-

456.72442 
917.44883 

RMSE-R2 0.00209 0.00021 0.01716 0.99643 - 
-

460.41864 
924.83729 

RMSE-Theil 0.00209 0.00022 0.01714 - 0.01485 
-

456.72442 
917.44883 

R2-Theil 0.00209 0.00022 - 0.99642 0.01485 
-

456.72442 
917.44883 

RMSE-R2-Theil 0.00209 0.00021 0.01716 0.99643 0.01487 
-

460.41864 
924.83729 

Autumn-Winter 

RMSE 0.00192 0.00035 0.02195 - - 
-

265.10074 
534.20148 

R2 0.00193 0.00033 - 0.99545 - 
-

325.71813 
655.43627 

Theil 0.00193 0.00033 - - 0.01697 
-

320.19816 
644.39632 

RMSE-R2 0.00193 0.00033 0.01955 0.99545 - 
-

325.71813 
655.43627 

RMSE-Theil 0.00193 0.00033 0.01952 - 0.01697 
-

320.19816 
644.39632 

R2-Theil 0.00193 0.00033 - 0.99544 0.01697 
-

320.19816 
644.39632 

RMSE-R2-Theil 0.00193 0.00033 0.01954 0.99545 0.01699 
-

323.06819 
650.13638 
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Figure 1. Pareto Points in the Parameter Space 

 

6. CONCLUSION 

 

The Gumbel distribution is applied to explain the maximum or minimum of a set of situations of different 

distributions in probability theory and statistics. A multi-objective programming approach has been 
presented for the parameter estimation of the two-parameter Gumbel distribution, wherein methods are 

jointly assessed during the estimate process for the RMSE, R2, and Theil performance criteria in this study. 

 
A detailed MC simulation research is carried out to evaluate the effectiveness of this suggested strategy. 

The simulation results demonstrate that the case created by the RMSE-R2-Theil estimator has the best Def 

value across all cases. The R2 example produces the best parameter estimation for all parameters when the 

simulation results have been investigated in terms of parameter estimations. A case-involving Theil's 
coefficient method in parameter estimation is weaker than the others, as it does not have the best estimator 

case for any particular case. The findings demonstrate how well this multi-objective programming method 

estimates the Gumbel distribution's parameters concerning deficient criteria. 
 

The number of deaths from COVID-19 in Turkey between September 1, 2021, and February 28, 2022, 

shows the Gumbel distribution. Accurate estimation of Gumbel distribution parameters gives us 

information about the period when more deaths will occur. In line with these possibilities, the state and 
institutions can take the necessary measures to reduce the number of deaths in advance. In the subsequent 

investigation, the parameters of other statistical distributions can be estimated using the recommended 

methodology. 
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