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Abstract  

The use of hyperelastic materials capable of large deformations, such as elastomeric bearings used to reduce seismic 
effects, is quite common in civil engineering. Such environments are, in most cases, addressed by numerical solution 
techniques such as the finite element method. In case of large deformations, nonlinear analysis is used in the 
solution. In the study presented here, large deformations of a hyperelastic continuum expressed by the Mooney-
Rivlin material model are calculated using hexahedral adaptive finite elements. A code was written in MATLAB 
using the total Lagrangian formulation for the nonlinear adaptive finite element solution. Comparisons were made 
with Abaqus software to check the consistency of the results obtained from this program. It has been observed that 
local refinements in the adaptive element mesh occur in the regions where they are needed. Considering the 
variation of maximum displacement and maximum stress with the number of elements, it has been observed that 
mesh refinement creates a convergent solution. 
 
Keywords: Hyperelasticity, adaptive finite element method, hexahedral elements. 

1. Introduction 

Hyperelasticity is used for materials that are nonlinear and capable of large deformation, where 
the constitutive equation is derived from an elastic potential. These types of materials are 
frequently encountered in the field of civil engineering as well as in various sectors. One of the 
important area of use is elastomeric bearings used for reducing seismic forces on structures. 
These environments, which involve large deformation of hyperelastic materials, are in most cases 
handled with numerical solution techniques such as finite element method (FEM). 
 
Regarding the solutions obtained from FEM, how the problem geometry is divided into finite 
elements is an important factor affecting the solution. Results generally become more accurate 
as the finite element size decreases. The process of dividing the elements into smaller elements 
is referred as mesh refinement. As a result of mesh refinement, the solution time increases as the 
number of elements increases. Therefore, an effective solution can be achieved by refining the 
mesh only where necessary. At this point, mesh refinement can be done in user-defined regions, 
or an automatical mesh refinement strategy based on a particular predefined refinement criterion 
can be used. The second one can be called adaptive mesh refinement. The method turns into 
adaptive finite element analysis with a criterion that uses the results obtained from finite element 
analysis. 
 
In modeling a three-dimensional geometry, tetrahedral elements (tetrahedrons), which consist of 
four triangular faces, and hexahedral elements (hexahedrons), which consist of six faces, are 
commonly used. Tetrahedrons enable the creation of an element mesh that better represents 
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geometry boundaries and enables easier transition from small elements to large elements, 
especially for non-uniform geometries and adaptive solutions. On the other hand, using 
hexahedrons shortens the calculation time by requiring fewer elements and provides more 
accurate solutions due to the additional terms in the shape functions used for interpolation [1]. 
Linear tetrahedral elements also exhibit "volumetric locking" and "shear locking" problems due 
to their more rigid behavior, so hexahedral finite elements are preferred [2]. 
 
Creating a finite element mesh using hexahedral elements can be done by several different 
methods. The element mesh created by dividing the geometry into uniformly distributed 
hexahedral elements is called a regular element mesh. The problem geometry is divided into 
finite elements using a grid with equal number of points on opposite edges [3]. A regular element 
mesh is a fast option in cases where there are no curvilinear boundaries. Using an unequal number 
of points on opposite edges makes the distribution of hexahedral elements irregular. Irregular 
finite element mesh, which provides a more flexible option in dividing the geometry into 
elements, is an element mesh that must be created in complex geometries with curvilinear 
surfaces. This type of finite element mesh can be created by direct and indirect methods. Dividing 
[4] or combining [5] tetrahedron elements created as the initial element mesh is an indirect 
method for creating hexahedral elements. With grid-based methods, which are direct methods, a 
regular hexahedral grid is first placed in the geometry, and then the gaps between the grid and 
the geometry boundary are filled with hexahedral elements [3]. Direct and indirect methods such 
as sweeping [6,7], advancing front [1, 8], and subdivision [9] are other methods that can be used 
to create hexahedral element meshes in complex geometries. 
 
In a mesh containing hexahedral elements, dividing an element into smaller elements to achieve 
regional refinement is a frequently used method. However, a discontinuity occurs between the 
divided element and neighboring elements. Therefore, neighboring elements must be divided in 
addition to the divided element to ensure continuity. These elements, which provide continuity 
in the hexahedral element mesh refinement, are defined as transition elements [10]. Hexahedron 
partitioning types and shapes of transition elements for different local refinement strategies have 
been shown in various studies [10-12]. 
 
The adaptive element mesh can be created using geometric features of the problem or using a 
calculated indicator [13]. In geometric adaptive methods, refinement is done through points, 
edges, and surfaces on the element depending on the characteristics of the problem geometry 
[14]. Geometric features such as surface curvatures, sharp-edged regions, and boundaries, can be 
used to create a geometric adaptive element mesh [14-19]. In methods based on an indicator, an 
error estimator is calculated at each element using the initial mesh [20-24]. Refinement or 
coarsening is made in the elements to create an evenly distributed error estimate in the mesh. 
Variation of parameters such as stress, strain, or temperature obtained from an initial FEM 
solution can also be used to create an adaptive finite element mesh [25, 26]. 
 
Although the finite element method was initially created to solve linear behavior, it was expanded 
over time to model the nonlinear behavior of hyperelastic materials, including compressibility 
[27-29] and incompressibility [30-32]. In related studies, triangular elements [33] and 
quadrilateral elements [34, 35] for two dimensional problems, tetrahedral elements [36] and 
hexahedral [31,32,37,38,39] elements in three-dimensional problems were frequently used. In 
order to obtain more realistic results and quick solutions for hyperelastic continua, 2d triangular 
adaptive finite elements [40-42], 2d quadrilateral adaptive elements [35], 2d quadtree adaptive 
finite elements [43], 3d octree adaptive finite elements [44], and 3d tetrahedral adaptive finite 
elements [40,45] were used. 
In this study, large deformations of a hyperelastic medium were calculated with three-
dimensional hexahedral adaptive finite elements. A program was written in the MATLAB 
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environment using the total Lagrangian formulation. The results were examined by comparing 
them with Abaqus [46] software. 

2. Theory and Formulation 

2.1 Kinematics and Constitutive Theory 

We consider the continuum shown in Fig. 1 to study the nonlinear motion of a nearly 
incompressible hyperelastic body. A continuous medium is shown that moves from the reference 
configuration, that is, the undeformed state, to the spatial configuration, that is, the deformed 
state, due to the forces and/or displacements acting on it. In subsequent calculations, scalar 
quantities are expressed in italics, and vector and tensor quantities are expressed in bold letters. 
Additionally, the elements of any vector or tensor are shown with index notation. Capital letters 
will be used in square brackets for matrices representing the elements of tensor quantities. 

 

 
Fig. 1. Reference (Ω0) and spatial configuration (Ω) of the continuous medium 

 
The deformation gradient tensor is important for calculations involving large deformations in 
continuum mechanics. As seen in Eq. (1), the deformation gradient tensor F is the tensor that 
transforms an infinitesimal dX vector defined in the reference configuration into the dx vector 
in the spatial configuration. It is defined as the derivative of the spatial position vector with 
respect to the reference position vector.  
 
 	dx=FdX   veya  Fij= ∂xi

∂Xj
 (1) 

 
The strain energy function expressed in unit volume is used in the stress calculation for a 
hyperelastic continuum. For an isotropic medium, this quantity is expressed with the help of 
principal invariants in most cases. The principal invariants to be used here are the principal 
invariants of the Right Cauchy - Green deformation tensor C given by Eq. (2). 
 
  C=FTF	  (2) 
 
The principal invariants of the right Cauchy - Green deformation tensor are written in terms of 
the eigenvalues of this tensor, as follows. 
 
  I1= tr(C)=	λ1

2 +	λ2
2+λ3

2 ,	I2 =	 1
2

 $(trC)2- tr%C2&'=	λ1
2λ2

2 +	λ2
2λ3

2 +	λ3
2λ1

2 ,	I3=det(C)=λ1
2λ2

2λ3
2 (3) 

Here, λ1
2, λ2

2 and λ3
2 represent the eigenvalues of the symmetric right Cauchy – Green deformation 
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principal invariant related to volumetric deformation. A general form of the strain energy 
function required for stress calculation is given in Eq. (4) [47]. 
 
  W(I1, I2, I3) = 	∑ Cmnk(I1-3)m(I2-3)n(I3-1)k∞

m+n+k=1 	 (4) 
 
In this equation, Cmnk are the material coefficients. The strain energy function, which can be 
written by separating the distortional strain resulting from shear stresses and the volumetric strain 
resulting from normal stresses, is possible by using the following constants [47].  
 
 J1=I1I3

-1/3,		J2=I2I3
-2/3,		J3=I3

1/2  (5) 
 
Here, the values J1, J2 and J3 are reduced invariants.  
 
Rubber-type materials used in engineering are called "nearly incompressible" because they can 
be compressed to a very low amount. The Mooney-Rivlin material model is often used when 
calculating the strain energy function of these hyperelastic materials because of its simple 
definition. Despite its difficulties representing the hardening of the material, it is a good model 
for large strains up to 100% strain [47].  There are four different types depending on the number 
of material constants used in the model. These are material models with 2, 3, 5 and 9 constants. 
For this model, the strain energy function is calculated with Eq. (6) using the reduced invariants 
given in Eq. (5). In this Equation, W1 refers to the distortion energy function and W2 refers to the 
energy function resulting from volumetric change. 
 
 W(J1, J2, J3) = W1(J1, J2)+W2( J3) = C10(J1-3)+C01(J2-3)+ K

2
(J3-1)2 (6) 

 
Here C10, C01 are material constants and K is the bulk modulus. For a completely incompressible 
material, the bulk modulus should theoretically be infinite. For nearly incompressible medium, 
the solution using a large K value is referred to as the penalty method and K as the penalty 
parameter. In case of three-dimensional small unit strain, the value 2(C10+C01 ) corresponds to 
the shear modulus of the material, and the value 6(C10+C01) corresponds to the elasticity 
modulus of the material. Theoretically, for incompressible materials the Poisson's ratio should 
be 0,5, but for nearly incompressible behavior the Poisson's ratio is between 0,49 and 0,5. 
 
The second Piola – Kirchhoff stress S is obtained by the derivative of the strain energy function, 
W, with respect to the Lagrange strain tensor, E, for the constitutive equations representing the 
relation between stress and strain, as follows,  
 
 S= ∂W

∂E
= ∂W1

∂J1

∂J1
∂E

+ ∂W1
∂J2

∂J2
∂E

+ ∂W2
∂J3

∂J3
∂E

      (7) 
 
The derivative of the second Piola – Kirchhoff stress with respect to the Lagrange strain tensor 
is equal to the fourth order constitutive tensor, D.   
 
 D= ∂S

∂E
  (8) 

 
By calculating the tensor D in terms of material constants, the relationship between stress and 
strain is established.   
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2.2 Nonlinear Finite Element Formulation 

In the total Lagrangian formulation, the reference configuration of the continuum shown in Fig. 1 
is used [48]. In addition, the frame of reference in this configuration is considered to be fixed. 
Independent variables are (X, t) for position and time, and the displacement dependent variable 
is u(X, t).  
 
The "approximate displacement function" is expressed in terms of the shape functions written in 
the reference position and the displacements at the nodes as given in Eq. (9). Additionally, the 
displacement gradient and the Lagrange strain tensor are also written in terms of this 
"approximate displacement function" using spatial derivatives. 
 

u1 =0 d1jNj

8

j=1

=	 d11N1 + d12N2 + d13N3 +⋯+ d18N8 
 

u2 =0 d2jNj

8

j=1

=	 d21N1 + d22N2 + d23N3 +⋯+ d28N8 
 

u3 =0 d3jNj

8

j=1

=	 d31N1 + d32N2 + d33N3 +⋯+ d38N8 
 
		(9) 

 	
According to the principle of minimum potential energy, the potential energy of the elastic 
system is equal to the difference between the stored strain energy Πint in the system and the work 
done by external forces Πext. For an approximate solution in nonlinear finite element analysis, an 
iterative solution is made based on the principle of approximating this difference to the smallest 
value.  
 
The strain energy stored in the system is calculated by integrating the strain energy density over 
the undeformed entire volume. The work done by the forces is calculated by the integral of the 
product of the body forces with the displacement of the nodes over the entire volume and the 
integral of the displacement of the nodes at the boundaries of the continuum multiplied by the 
external forces on the boundaries. Potential energy of the system can be written as follows. 
 
 Π=Πext-Πint=∭ W(E)dΩ 

Ω0 -∭ uTfbdΩ 
Ω0 -∬ uTt dτ   

τ0
	  (10) 

 
If the displacement field u is perturbed by u7 in an arbitrary direction and magnitude, equating 
the variation of potential energy Π8 to zero yields the following variational equation. 
 
  Π8=∭ ∂W(E)

∂E
:E8 dΩ 

Ω0 -∭ u7TfbdΩ 
Ω0 -∬ u7Tt dτ   

τ0
=0  (11) 

 
The displacement-strain transformation matrix [B] relates nodal displacements to strain. In linear 
analysis, it only includes spatial derivatives of shape functions. It also includes the deformation 
gradient tensor for the nonlinear analysis. While it is constant in linear analysis, in nonlinear 
analysis it changes with respect to displacement because of the deformation gradient tensor.  
 
Linear displacement-strain transformation matrix [BL], 
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 [BL]=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
N1,1 0 0 N2,1 … 0 0
N1,2 0 0 N2,2 … 0 0
N1,3 0 0 N2,3 … 0 0

0 N1,1 0 0 … N8,1 0
0 N1,2 0 0 … N8,2 0
0 N1,3 0 0 … N8,3 0
0 0 N1,1 0 … 0 N8,1
0 0 N1,2 0 … 0 N8,2
0 0 N1,3 0 … 0 N8,3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	  (12) 

 
and [BN]  transformation matrix for nonlinear analysis is given by the following equation [47]. 
 

[BN]=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

F11N1,1 F21N1,1 F31N1,1 … F31N8,1
F12N1,2 F22N1,2 F32N1,2 … F32N8,2
F13N1,3 F23N1,3 F33N1,3 … F33N8,3

F12N1,1+F11N1,2 F22N1,1+F21N1,2 F32N1,1+F31N1,2 … F32N8,1+F31N8,2
F13N1,2+F12N1,3 F23N1,2+F22N1,3 F33N1,2+F32N1,3 … F33N8,2+F32N8,3
F13N1,1+F11N1,3 F23N1,1+F21N1,3 F33N1,1+F31N3,1 … F33N8,1+F31N8,3⎦

⎥
⎥
⎥
⎥
⎥
⎤

   (13) 

 
Here, NI denotes the shape function and NI,j denotes the derivative of the shape function with 
respect to position, and Fij denotes the corresponding element of the deformation gradient. 
 
Due to the nonlinearity in the displacement-strain relationship, there is no easy direct solution to 
the variational equations. It is possible to obtain the solution by the iterative Newton-Raphson 
method in combination with a series of successive linearizations.  
 
Since internal forces are a nonlinear function of the deformation, the resulting force-displacement 
equation will need to be solved iteratively. A general nonlinear equation can be solved by the 
Newton-Raphson method along with a series of linearization operations. An iterative method 
such as the Newton-Raphson method requires the use of a tangent stiffness matrix. In the total 
Lagrangian formulation, the tangent stiffness matrix corresponds to the discretization of the 
linearized energy form. The 9x9 size [Σ] matrix, which will be used to obtain the linear part of 
the tangent stiffness matrix, is obtained with Eq. (14).  
 

  S7= A
S11 S12 S13
S21 S22 S23
S31 S32 S33

B ,			07= A
0 0 0
0 0 0
0 0 0

B ,			[Σ]= A
S7 07 07
07 S7 07
07 07 S7

B  (14) 

 
Here S is the second Piola-Krichhoff stress tensor. Tangent stiffness matrix [KT], can be written 
by adding linear and non-linear parts as, 
 
 [KT] = ∭ %[BN]T[D][BN]+[BL]T[ ∑ ][BL]&dΩ 

Ω0
	  (15) 

 
Generally, the integral in above equation is obtained by Gauss quadrature. 2x2x2 integration 
points were used for the hexahedral element.  
 
Internal forces fint are obtained by the following discrete version of the energy form [47]. 
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 a(u,u7)=∭ S:E8 
Ω 0

dΩ= {d7}T ∭ [BN]T 
Ω 0

{S}dΩ≣{d7}T{fint}	  (16) 
 
Using the minimum potential energy principle, the incremental finite element matrix equation is 
written as follows [47]. 
 
 {d7}T [KT] {∆d} =	{d7}T {fext-fint}	  (17) 
 
Here, d7  refers to the variation of nodal displacements, ∆d refers to the displacement increment, 
fext refers to external forces, fint refers to internal forces. By making an initial assumption for 
node displacements, the increment in displacements, ∆d, is calculated from the solution of this 
system of equations and added to the existing node displacements to obtain the new displacement 
value of the nodes. Thus, one iteration is completed. Iterations continue until the difference 
between the external forces and internal forces on the right side of the equation approaches zero 
within a certain tolerance value. 

2.3 Adaptive finite element mesh 

Refinement of the finite element mesh is often done by the engineer performing the analysis. In 
the adaptive finite element mesh, refinement is done automatically according to a criterion 
determined independently of the person. The adaptive finite element mesh can be made in four 
different ways [49]. With the h-adaptive distribution, the size of the elements is changed; with 
the p-adaptive distribution, the degree of the element is changed; with the r-adaptive distribution, 
smaller finite elements are created in the targeted region by moving the mesh, provided that the 
degree and number of the elements are kept constant. The hp-adaptive distribution uses h- and p- 
methods together [49,50].  

 
In this study, the h-adaptive method was used with hexahedral finite elements. In order to create 
the adaptive mesh, the minimum/maximum error indicator was used. The effective stress is the 
parameter of the minimum/maximum error indicator. In the minimum/maximum error 
distribution, the average parameter value of the finite elements is first found. The effective stress 
of all finite elements are compared with this value. If the element’s effective stress is more or 
less than the average at a default value, the element is decided to be divided for the adaptive 
distribution. 
 
The most commonly used method for mesh refinement is to divide an element into smaller 
elements. After this division process, the nodes formed in the finite element mesh should be 
connected to the nodes of another element, and the element edges or surfaces should not be 
formed in a way that cuts the edges and surfaces of other elements. The element types that can 
be used for division to achieve this are shown in Fig. 2. Here, an element that has not been divided 
will be named as a 0-element, and the divided element will be named according to the number 
of elements formed in it. The elements connecting the divided element to the mesh will be 
referred to as transition elements.  
 

 
Fig. 2. Types of elements used in the refinement 

0-element 22-element 11-element 13-element 27-element 4-element 5-element 
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Fig. 3. Refinement strategies a) at a point, b) at an edge, c) and d) at an element 

 
In the refinement, a new finite element mesh can be created using a node, element edge, and 
element surface or the element itself. If the refinement is decided to be done at a node as shown 
in Fig. 3a, the element is divided using a 4-element with the transition elements to connect the 
mesh. Fig. 4 shows a mesh refinement using a node of the mesh. If it is decided to refine the 
mesh by dividing the whole element, 27-element can be used with the transition elements as 
shown in Fig. 3c and 3d. The element types that can be connected to the divided element are 
expressed in Table 1. Additionally, new elements formed in a divided element are shown in Fig. 
5. 

Table 1. Elements that can be connected to a divided element 

Divided 
element 

Transition element 

27 27, 22, 13 
22 27, 22, 13, 11, 0 
13 27, 22, 13, 5, 0 
11 22, 11, 4, 0 
5 13, 5, 0 
4 11, 4, 0 

 

  
Fig. 4. Refinement of hexahedral mesh at a point on surface, a) initial element mesh, b) first refinement, 

c) second refinement 
 

0-element 13-element 27-element 13-element 0-element 

0-element 22-element 27-element 22-element 0-element 
(c) 

(d) 

11-element 0-element 4-element 4-element 0-element 

0-element 4-element 4-element 0-element 

(a) 

(b) 

(a) (b) (c) 
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Fig. 5. Elements formed in a divided element for a) 4-element, b) 11-element 

3. Analysis 

Three specific examples were analyzed: the cubic block loaded with a single point loading, the 
rectangular block with shear loading, and the rectangular block containing a circular hole under 
uniform tension loading. Analyses were made by writing a code in MATLAB. In order to perform 
adaptive finite element analysis, an initial finite element analysis is made using an initial mesh. 
Then the mesh refinement is done using the stresses obtained. The final results are obtained by 
finite element analysis using the refined mesh.  

 
In addition, the results were compared with the results obtained from ABAQUS finite element 
software, which is frequently used in the literature. 

3.1. Material properties 

In the analyses, material constants C10 and C01 for the Mooney-Rivlin material model were taken 
as 0,552 MPa and 0,138 MPa, respectively. Within the small strain range, the shear modulus, G, 
of the material is equal to 2(C10+C01), and it can be calculated as 1,38 MPa and the elasticity 
modulus, E, can be calculated as 4,14 MPa. Poisson's ratio can be calculated by the following 
equation. 
 

 ν=
3
2

K
G-1

3K
G+1

  (18) 

 
The bulk modulus is taken as 1000 MPa. The Poisson’s ratio values calculated for different bulk 
moduli are given in Table 2. In the penalty method, a high K value causes an instability called 
"volumetric locking". A small change in displacement value leads to a large change in pressure 
due to the large K value. For this reason, the finite element exhibits a more rigid behavior and 
changes shape less. For nearly incompressible materials, it will be sufficient to use a K value that 
produces a Poisson's ratio close to 0.5. 
 

Table 2. Poisson’s ratio corresponding to certain bulk modulus values for C10 = 0,552 and C01=0,138 
K (MPa) ν 
1 0,0274 
3 0,3006 
5 0,3736 
10 0,4340 
100 0,4931 
1000 0,4993 
10000 0,4999 

1 2 3 

11 
10 

9 8 

7 

4 5 
6 

1 
2 

3 

4 

(a) (b) 
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3.2. Single point loading on a cubic block 

The cubic block has a side length of 100 mm. Displacements of the bottom surface points are 
constrained as shown in Fig. 6a. Single point pressure loading was applied on mid point of the 
upper face of the block. Analyzes were made using adaptive mesh refinement. Initial mesh of the 
adaptive refinement has 216 uniformly distributed hexahedral elements as shown in Fig. 7a. 
Normal stress, σ22, in the direction of the point load was used as the effective stress parameter 
for adaptive mesh refinement criterion. Two successive adaptive analyzes were made. Finite 
element meshes after two adaptive refinements are shown in Fig. 7b and 7c. 
  

 
Fig. 6. a) Single point loading and b) shear loading applied on rectangular block 

 

 
Fig. 7. a) initial mesh, b) first adaptive mesh refinement, c) second adaptive mesh refinement 

 
The maximum displacement in y-direction, u2max, and maximum normal stress in y-direction, 
σ22max, are shown in Table 3. After the second adaptive analysis, the number of elements increases 
to 3108 elements, and the minimum element edge length decreases to 1,85, that is 11% of the 
minimum element edge length of the initial mesh. 
 
The maximum displacement in the y-direction occurs at the point of application of the force. Its 
value varies between 2,18 mm and 7,63 mm as the number of elements increases for adaptive 
finite element analysis. The maximum normal stress occurs at the point of application of the 
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force. It varies between 0,164 MPa and 0,811 MPa as the number of elements increases for 
adaptive finite element analysis. 
 

Table 3. Maximum u2 displacement and maximum σ22 stress for adaptive mesh refinement 
Analysis name Number 

of 
elements 

Minimum 
element 

edge length 
(mm) 

u2max 
(mm) 

σ22max 
(MPa) 

 

Initial mesh analysis 216 16,7 2,18 0,164 
First adaptive analysis 1016 5,55 6,17 0,791 
Second adaptive analysis 3108 1,85 8,05 0,811 

 
In addition, analyzes were also made using uniform mesh refinement where all the elements in 
the mesh were divided. Maximum displacement in y-direction and corresponding maximum 
normal stress obtained after four consecutive analyzes, are shown in Table 4. After the 4th 
uniform mesh refinement, the number of elements increases to 2744 elements, and the minimum 
element edge length decreases to 7,14, that is 43% of the minimum element edge length of the 
initial mesh. 

 
Table 4. Maximum u2  displacement and maximum σ22 stress for uniform mesh refinement 

Analysis  
# 

Number 
of 

elements 

Minimum 
element 

edge 
length 
(mm) 

u2max 
(mm) 

u2max 
(mm) 

(Abaqus) 

Difference 
(%) 

σ22max 
(MPa) 

σ22max 
(MPa) 

(Abaqus) 

Difference 
(%) 

1 216 16,7 2,18 2,26 3,54 0,164 0,234 29,91 
2 512 12,5 2,86 2,96 3,38 0,265 0,373 28,95 
3 1000 10 3,52 3,6 2,22 0,364 0,497 26,76 
4 2744 7,14 4,76 4,89 2,66 0,538 0,892 39,69 

 

 
Fig. 8. Variation of maximum displacement u2max  with the number of elements 
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Fig. 9. Variation of maximum normal stress σ22max with number of elements 

 
In uniform mesh refinement, maximum displacement in the y-direction varies between 2,18 mm 
and 4,76 mm. The % difference between the results of uniform mesh refinement and Abaqus 
decreases as the number of elements increases. 
 
Fig. 8 and Fig. 9 show the variation of maximum displacement, u2max, and variation of the 
maximum normal stress, σ22max, with the number of elements. These graphs represent 
convergence when adaptive mesh refinement was used. 

3.3. Shear loading from the top surface on a rectangular block 

The rectangular block, shown in Fig. 6b, is loaded at the bottom and top surface with a tangential 
surface traction of 0,2 MPa. Analyzes were made using two consecutive adaptive mesh 
refinements. Shear stress, σ12, was used as the effective stress parameter for adaptive mesh 
refinement criterion. The number of elements created is given in Table 5. Maximum 
displacement in the x-direction, u1max,  was calculated near the top and bottom edge of the 
problem geometry in the force direction. The maximum value of shear stress, σ12max, was obtained 
in the mid region of the problem geometry. The variation of maximum displacement in the x-
direction, u1max, and variation of maximum shear stresses, σ12max, with the number of elements 
are shown in Fig. 10 and Fig. 11, respectively. Adaptive analysis converged after the first 
adaptive mesh refinement.  
 

Table 5. Maximum u1 displacement and maximum shear  σ12  stress for adaptive mesh refinement 
Analysis name Number of 

elements 
Minimum 

element edge 
length (mm) 

u1max  
(mm) 

σ12max  
(MPa) 

 
Initial mesh analysis 108 16,7 9,73 0,265 
First adaptive analysis 1542 5,55 10,12 0,277 
Second adaptive 
analysis 10920 1,85 10,14 0,279 

 
Analyzes were also performed using five uniform meshes by increasing the number of elements, 
as shown in Table 6. The problem was also analyzed using the Abaqus software with identical 
mesh distributions. Code written in MATLAB and Abaqus software yields similar results for 
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uniform mesh refinement. The maximum displacement value, u1max, and maximum shear stress, 
σ12max, for uniform mesh refinement apparently converged as the number of elements increased. 

 
Table 6. Maximum 𝑢*	displacement and maximum σ12  stress values for various uniform mesh 

refinements 
Analy

sis  
# 

Numb
er of 

eleme
nts 

Minimum element edge 
length (mm) 

u1max 
(m
m) 

u1max  
(mm) 

(Abaqus) 

Differenc
e (%) 

σ12max  
(MP
a) 
 

σ12max 
(MPa) 
(Abaq

us) 
 

Differe
nce (%) 

1 108 16,7 9,7
3 10,31 5,63 0,2

65 0,283 6,36 

2 256 12,5 10,
18 10,39 2,02 0,2

79 0,289 3,46 

3 500 10 10,
31 10,47 1,53 0,2

86 0,292 2,05 

4 864 8,33 10,
40 10,50 0,95 0,2

90 0,293 1,02 

5 4000 5 10,
52 10,60 0,75 0,2

94 0,297 1,01 

 

 

Fig. 10. Variation of maximum displacement u1max with number of elements 

 

Fig. 11. Variation of maximum shear stress σ12max with number of elements 
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Fig. 12. Variation of displacement (u1) and shear stress (σ12) obtained from a) initial mesh, b) first 

adaptive mesh, c) second adaptive mesh, d) Abaqus 

3.4. Rectangular block with circular hole 

 
Fig. 13. Problem geometry, boundary conditions and applied force  

 
Among the problems involving geometric discontinuities, the most frequently used problem 
geometry is a continuous medium containing a circular hole. Dimension of such a geometriy is 
given in Fig. 13. The nodes on left end of the rectangular block is restrained not to move along 
the x-direction and a distributed load is applied on the right end as the boundary conditions. 
After the initial finite element mesh was created using 600 elements, two consecutive adaptive 
analyzes were carried. Normal stress, σ11, in the direction of the tension load was used as the 
effective stress parameter for adaptive mesh refinement criterion. In Table 7, the maximum 
values of displacement in the x-direction and maximum normal stress obtained from these 
adaptive analyzes are presented. Also, the variation of displacements and shear stresses are 
shown in Fig. 14. 
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Table 7. Maximum u1 displacement and maximum σ11 stress obtained from adaptive mesh refinement 
Analysis name Number 

of 
elements 

Smallest 
element edge 
length (mm) 

u1max 	 
(mm) 

σ11max 	 
(MPa) 

Initial mesh analysis 600 6,54 7,61 0,435 
First adaptive analysis 2230 2,18 7,81 0,509 
Second adaptive 
analysis 11770 0,73 7,81 0,594 

 
Maximum normal stresses σ11max were observed at the lower and upper midpoints of the circular 
hole. Maximum displacements u1max were observed at the midpoint of the upper and lower edges 
of the surface to which the load is applied. 
 
 

 
 

Fig. 14. Variation of displacement (u1) and normal stress (σ11) obtained from a) initial mesh, b) first 
adaptive mesh, c) second adaptive mesh, d) Abaqus 

 
Analysis also was carried out for five separate uniform finite element meshes. The results for the 
maximum displacement, u1max,  and maximum normal stress, σ11max , obtained using these meshes 
are shown in Table 8 in comparison with the results of Abaqus.  
 
Fig. 14 and Fig. 15 show that the displacements were converged for the adaptive mesh analysis, 
and the normal stresses almost converged after second refinement. It has been also observed that 
the code written in MATLAB and Abaqus yield convergent solutions for the displacements and 
normal stresses in uniform distributions.  
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Table 8. Maximum u1	 displacement and maximum σ11  stress 
Analy
sis # 

Numb
er of 

eleme
nts 

Smallest element edge 
length (mm) 

u1max 	
(m
m) 

u1max 	
(mm) 

(Abaqus) 

Differenc
e (%) 

σ11max 	 
(MP
a) 

σ11max 	 
(MPa) 
(Abaq

us) 

Differe
nce (%) 

1 600 6,54 7,6
1 7,5 -1,47 0,43

5 0,480 9,38 

2 1332 4,91 7,6
3 7,57 -0,79 0,44

2 0,487 9,24 

3 1932 3,93 7,6
5 7,61 -0,53 0,45

0 0,491 8,35 

4 3360 3,27 7,6
5 7,62 -0,39 0,46

4 0,497 6,64 

5 4260 2,8 7,6
6 7,63 -0,39 0,46

5 0,499 6,81 

 
 

 
Fig.14. Variation of maximum displacement u1max with number of elements 

 
 

 

Fig.15. Variation of maximum normal stress σ11max with number of elements 
 

7,0

7,1

7,2

7,3

7,4

7,5

7,6

7,7

7,8

7,9

0 2000 4000 6000 8000 10000 12000 14000

M
ax

 d
isp

la
ce

m
en

t (
m

m
)

Number of elements

Adaptive mesh refinement
Uniform mesh refinement
Abaqus

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000 12000 14000

M
ax

 n
or

m
al

 st
re

ss
 x

10
-3

 (M
Pa

)

Number of elements

Adaptive mesh refinement

Uniform mesh refinement

Abaqus



M. Tekin, B. Alyavuz 

 179 

4. Conclusions 

In this study, considering the large deformation of hyperelastic continuum, displacement and 
stress calculations were made using the Mooney-Rivlin material model and adaptive finite 
element analysis with hexahedral elements. Although there are sufficient studies on creating 
adaptive mesh using hexahedral elements, new studies are needed on its use for large deformation 
calculations with the finite element method. In this regard, a code has been written in the 
MATLAB environment. In order to check the reliability of the code, the test problems with the 
uniform mesh distributions were also solved with the Abaqus software. Comparisons show that 
the code written in MATLAB and Abaqus yields compatible results. Adaptive mesh refinement 
of hexahedral elements in the finite element analysis was performed using transition elements. 

 
For the example of single point loading on a cubic block, the smallest element edge length 
decreased by approximately 90 percent in the adaptive finite element mesh, and the maximum 
displacement (u2)  and maximum normal stress (σ22) values converged after the first adaptive 
solution. In the uniform mesh, the smallest element edge length decreased by approximately 60 
percent. Maximum displacement (u2)  and maximum normal stress (σ22) values converged faster 
than the adaptive finite element results. The maximum normal stress (σ22) value obtained from 
the adaptive solution is approximately 10 percent less than the Abaqus solution. 
 
For the shear loading from the top and bottom surfaces, the smallest element edge length 
decreased by approximately 90 percent in the adaptive mesh. The maximum displacement (u1)   
and maximum shear stress (σ12) values converged after the first adaptive solution. In the uniform 
mesh, the smallest element edge length decreased by approximately 70 percent. The maximum 
displacement (u1)   and maximum shear stress (σ12) values converged for both the adaptive mesh 
refinement and the uniform mesh. The adaptive solution maximum shear stress (σ12) value is 
approximately 6 percent less than the Abaqus. 
 
For the rectangular block with a circular hole, the smallest element edge length around the circle 
decreased by approximately 90 percent in the adaptive mesh refinement. The maximum 
displacement (u1)   values converged after the first adaptive solution. The smallest element edge 
length decreased by approximately 60 percent in the uniform mesh. The maximum displacement 
value converged to 7,8mm after the first adaptive refinement. The maximum normal stress (σ11) 
value almost converged for the uniform mesh. The difference between the results of the adaptive 
finite element solution and uniform mesh solution is approximately 16 percent for the maximum 
normal stress (σ11) value. 
 
The displacements obtained from the finite element solutions are large; for example, the 
displacements were between 4% and 11% of the problem geometry. 
 
In order to create a uniform mesh distribution with the smallest element size as in the adaptive 
mesh refinement, many more elements need to be used. In this case, the solution time increases. 
Thus, adaptive distribution provides an advantage by shortening the solution time. 
It can be seen that the criterion used in adaptive mesh refinement effectively creates locally 
refined elements. 
 
For local mesh refinements, the transition from large to small elements must be smooth. In the 
case of hexahedral elements, the use of transition elements causes the formation of sharp internal 
angle elements in the transition from the larger to the smaller elements. In this case, the element 
mesh is not smooth enough. Considering the effect of this situation on the results, a smoothing 
procedure can be recommended to improve the results. 
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More realistic simulations can be made for tearing/rupture due to large deformations of the 
hyperelastic continuum by using adaptive mesh refinement with hexahedral elements. 
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