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Introduction 
 
Elliptic equations are used to describe the behavior of 

electromagnetic fields, the propagation of waves in a 
medium and the motion of fluids. They appear in a wide 
range of applications in various fields of science and 
technology such as physics, engineering and computer 
science. 

In this paper, we consider the equation 
 

𝑃𝑢 ≡ 𝑎(𝑥, �̅�)(𝑢𝑥𝑥 + ∆𝑦𝑢) + 𝑘𝑢𝑥 − 𝑏(𝑥, �̅�)𝑢 

= 𝑐(𝑥, �̅�)𝑓(𝑥, �̅�)                        (1) 
 

in the domain 

𝑄 = {(𝑥, 𝑦)| 𝑥 ∈ (0,1),  𝑦𝑖 ∈ (0,1), 𝑖 = 1,2, … , 𝑛} 

where 𝑦 = (�̅�, 𝑦𝑛),  �̅� = (𝑦1, 𝑦2 , … , 𝑦𝑛−1). The boundary 
of the domain is defined as 

𝜕𝑄 = 𝜎0 ∪ {𝑦𝑛 = 0} ∪ {𝑦𝑛 = 1},  

𝜎0 = 𝜕𝑄/({𝑦𝑛 = 0} ∪ {𝑦𝑛 = 1}).  

The coefficients of equation (1) satisfy the following 
conditions: 

𝑎(𝑥, �̅�) ∈ 𝐶1(�̅�), 𝑏(𝑥, �̅�), 𝑐(𝑥, �̅�) ∈ 𝐶(�̅�),   
 𝑎(𝑥, �̅�), 𝑏(𝑥, �̅�),  𝑎′(𝑥, �̅�) > 0, 𝑘 < 0. 

 
We consider the following problem: 
Problem 1. Find the functions 𝑢(𝑥, 𝑦) and 𝑓(𝑥, �̅�) from 

equation (1), provided that the following conditions are 
given: 
 
𝜕𝑢

𝜕𝑦𝑛
|𝑦𝑛=0 = 𝑢0,

𝜕𝑢

𝜕𝑦𝑛
|𝑦𝑛=1 = 𝑢1, 𝑢|𝜎0

= 𝑢2,                     (2) 

𝑢|𝑦𝑛=0 = 𝑢3.                                                                              (3) 

 
 
A problem is said to be well posed if a unique solution 

exists which depends continuously on the data. Problem 1 
is not a well posed problem. Some of the typical ill-posed 
problems for partial differential equations are  the Cauchy 
problem for the Laplace equation, the Dirichlet problem 
for the wave equation and the initial-boundary value 
problem for the backward heat equation, [1]. 

The existence, uniqueness and stability of solution of 
various inverse problems for elliptic, hyperbolic and 
parabolic equations are studied in [2-5]. As for the 
solvability results for some ill-posed problems for other 
type equations, we refer to [6-10]. 
The first result of this paper is given below:                                                                                                                                     
 

Theorem 1. Problem 1 has at most one solution (𝑢, 𝑓) 
such that 𝑢 ∈ 𝐻3(𝑄), 𝑓 ∈ 𝐻1(𝑄).   
In the proof, we shall use the Fredholm Alternative 

Theorem and show that the homogeneous problem has 
only zero solution. 

 
Proof of Theorem 1. 

It is sufficient to prove for 𝑢 ∈ 𝐶𝑘(�̅�), since 𝐶𝑘(�̅�) is 

dense in 𝐻𝑘(𝑄). Let us assume that (𝑢(1), 𝑓(1)),

(𝑢(2), 𝑓(2)) are two solutions of problem (1)-(3) in the 

space 𝐶3(�̅�) × 𝐶1(�̅�) . 
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Then we can write 

𝑎(𝑥, �̅�)(𝑢𝑥𝑥
(𝑖) + ∆𝑦𝑢(𝑖)) + 𝑘𝑢𝑥

(𝑖) − 𝑏(𝑥, �̅�)𝑢(𝑖) = 𝑐(𝑥, �̅�)𝑓(𝑖)(𝑥, �̅�),                                                                           (4) 

𝑢𝑦𝑛

(𝑖)
|𝑦𝑛=0 = 𝑢0, 𝑢𝑦𝑛

(𝑖)
|𝑦𝑛=1 = 𝑢1, 𝑢(𝑖)|𝜎0

= 𝑢2,                                                                                                                        (5) 

 𝑢(𝑖)|𝑦𝑛=0 = 𝑢3, 𝑖 = 1,2.                                                                                                                                                                  (6) 

For �̃� = 𝑢(2) − 𝑢(1), 𝑓 = 𝑓(2) − 𝑓(1), we have 

𝑎(𝑥, �̅�)(�̃�𝑥𝑥 + ∆𝑦�̃�) + 𝑘�̃�𝑥 − 𝑏(𝑥, �̅�)�̃� = 𝑐(𝑥, �̅�)𝑓(𝑥, �̅�)                                                                                                  (7) 

�̃�𝑦𝑛
|𝑦𝑛=0 = 0, �̃�𝑦𝑛

|𝑦𝑛=1 = 0, �̃�|𝜎0
= 0,                                                                                                                                (8) 

�̃�|𝑦𝑛=0 = 0, 𝑖 = 1,2.                                                                                                                                                            (9) 

Taking the derivative of both sides of equation (7) with respect to 𝑦𝑛 yields to 

𝑃�̃�𝑦𝑛
= 0                                                                                                                                                                                  (10) 

and taking �̃�𝑦𝑛
= �̂�, we obtain 

𝑃�̂� = 0,                                                                                                                                                                                   (11) 

�̂�𝑦𝑛
|𝑦𝑛=0 = 0, �̂�𝑦𝑛

|𝑦𝑛=1 = 0, �̂�|𝜎0
= 0.                                                                                                                          (12) 

Dividing both sides of equation (11) by 𝑎(𝑥, �̅�), we get 

�̂�𝑥𝑥 + ∆𝑦�̂� +
𝑘

𝑎(𝑥,�̅�)
�̂�𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
�̂� = 0,                                                                                                                                (13) 

�̂�|𝜕𝑄 = 0.                                                                                                                                                                                (14) 

Multiplying equation (13) by −�̂� and using the equalities 

−�̂�𝑥𝑥�̂� = −(�̂�𝑥�̂�)𝑥 + �̂� 𝑥
2 , 

−�̂�𝑦𝑖𝑦𝑖
�̂� = −(�̂�𝑦𝑖

�̂�)𝑦𝑖
+ �̂�𝑦𝑖

2 , 𝑖 = 1,2, … , 𝑛 

−�̂�
𝑘

𝑎(𝑥,�̅�)
�̂�𝑥 = −

1

2
(

𝑘

𝑎(𝑥,�̅�)
�̂�2)𝑥 −

1

2

𝑘

 𝑎′(𝑥,�̅�)
�̂�2, 

we see that 

−�̂�𝑃�̂� = �̂� 𝑥
2 + ∑ �̂�𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)�̂�2                                                                                     

                   −(�̂�𝑥�̂�)𝑥 − ∑ (�̂�𝑦𝑖
�̂�)𝑦𝑖

𝑛
𝑖=1 −

1

2
(

𝑘

𝑎(𝑥,�̅�)
�̂�2)

𝑥
.                                                                                                   (15)   

Since 𝑎(𝑥, �̅�), 𝑏(𝑥, �̅�),  𝑎′(𝑥, �̅�) > 0 and 𝑘 < 0, we have 

�̂� 𝑥
2 + ∑ �̂�𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)�̂�2 > 0. 

 If we integrate equality (15) over 𝑄, we get 

  ∫ [(�̂�𝑥�̂�)𝑥 + ∑ (�̂�𝑦𝑖
�̂�)𝑦𝑖

𝑛
𝑖=1 +

1

2
(

𝑘

𝑎(𝑥,�̅�)
�̂�2)𝑥𝑄

]𝑑𝑄 = ∫ (�̂� 𝑥
2 + ∑ �̂�𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)�̂�2)𝑑𝑄

𝑄
.                     (16)   

From the Ostrogradsky formula, we can write 

∫ (�̂� 𝑥
2 + ∑ �̂�𝑦𝑖

2

𝑛

𝑖=1

+ (
𝑏(𝑥, �̅�)

𝑎(𝑥, �̅�)
−

1

2

𝑘

 𝑎′(𝑥, �̅�)
)�̂�2)𝑑𝑄

𝑄

=     ∫ {[(�̂�𝑥�̂�) +
1

2
(

𝑘

𝑎(𝑥, �̅�)
�̂�2)]𝑛𝑥 + ∑(�̂�𝑦𝑖

�̂�)

𝑛

𝑖=1𝑄

𝑛𝑦𝑖
}𝑑𝑆. 

By 𝑎(𝑥, �̅�), 𝑏(𝑥, �̅�),  𝑎′(𝑥, �̅�) > 0, 𝑘 < 0 and  �̂�|𝜎0
= 0, we obtain 

∫ (�̂� 𝑥
2 + ∑ �̂�𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)�̂�2)𝑑𝑄

𝑄
= 0                                                                                                        (17)   

which means that 
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 �̂�𝑥 = 0, �̂�𝑦𝑖
= 0 and �̂�|𝜎0

= 0 and thus �̂� = 0 in the domain 𝑄. Moreover, �̃� = 0 in 𝑄 from the equality �̃�𝑦𝑛
= �̂� and 

condition (9). On the other hand, we see that 𝑓 = 0 in 𝑄 from equation (7). Thus,  �̃� = 𝑢(2) − 𝑢(1) = 0 and  𝑓 = 𝑓(2) −

𝑓(1) = 0 where imply 𝑢(1) = 𝑢(2) and  𝑓(1) = 𝑓(2). Therefore, Theorem 1 is proven. 

In order to prove the existence of the solution of the problem, we reduce the problem to a homogeneous Dirichlet 

problem. 

Taking the derivative of both sides of equation (1) with respect to 𝑦𝑛, we see that 

𝑃𝑢𝑦𝑛
= 0.                                                                                                                                                                               (18) 

In conditions (2), if we take 𝑢𝑦𝑛
= �̂�, we can write 

𝑃�̂� = 0,                                                                                                                                                                                   (19) 

�̂�|𝑦𝑛=0 = 𝑢0, �̂�|𝑦𝑛=1 = 𝑢1, �̂�|𝜎0
= 𝑢2𝑦𝑛

.                                                                                                                        (20) 

Conditions (20) can be written in the form 

�̂�|𝜕𝑄 = �̃�0.                                                                                                                                                                              (21) 

Assume that the functions  𝑢0, 𝑢1, 𝑢2  are smooth enough on the boundary of the domain and 

𝑤 ∈ 𝐶2(�̅�),  𝑤|𝜕𝑄 = �̃�0.                       

With the help of the new unknown function 𝑣 = �̂� − 𝑤, we have                             

−𝑤𝑥𝑥 − ∆𝑦𝑤 −
𝑘

𝑎(𝑥,�̅�)
𝑤𝑥 +

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑤 = 𝐹(𝑥, �̅�)                                                                                                                                                                                                                                      

and problem (19)-(21) becomes 

𝑃𝑣 ≡ 𝑣𝑥𝑥 + ∆𝑦𝑣 +
𝑘

𝑎(𝑥,�̅�)
𝑣𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑣 = 𝐹(𝑥, �̅�),                                                                                                           (22)                                                                                                                                                                                                                

𝑣|𝜕𝑄 = 0.                                                                                                                                                                                (23)   

 

Theorem 2. Assume that 𝜕𝑄 ∈ 𝐶2(�̅�) and 𝐹 ∈ 𝐿2(𝑄).  Then problem (22)-(23) has a generalized solution in the 
Hilbert space 𝐻0

1(𝑄). 
Proof of Theorem 2. 
We first take an a priori estimate for the solution of problem (22)-(23). If we multiply (22) by – 𝑣, integrate over the 

domain 𝑄 and using the equalities (15)-(16), we obtain 

∫ (𝑣 𝑥
2 + ∑ 𝑣𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑣2)𝑑𝑄

𝑄
= − ∫ 𝐹𝑣𝑑𝑄.

𝑄
                                                                                     (24)   

From the Cauchy-Bunyakovskii inequality, we get 

 − ∫ 𝐹𝑣𝑑𝑄
𝑄

≤ ∫ ⌈𝛽𝐹
1

𝛽
𝑣⌉ 𝑑𝑄

𝑄
≤ ∫ 𝛽2𝐹2𝑑𝑄

𝑄
+ ∫

1

𝛽2 𝑣2𝑑𝑄
𝑄

. 

By equality (24), we see that 

∫ (𝑣 𝑥
2 + ∫ (

𝑄
∑ 𝑣𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑣2)𝑑𝑄

𝑄
−

1

𝛽2 ∫ 𝑣2𝑑𝑄
𝑄

≤ 𝛽2 ∫ 𝐹2𝑑𝑄.
𝑄

                                                    (25)   

Moreover, we apply the Rellich-Poincare inequality to the first term on the left side of inequality (25). Since 

 ∫ 𝑣 𝑥
2𝑑𝑄 ≥

𝑄
𝐶 ∫ 𝑣2𝑑𝑄,   (𝐶 = 𝑑𝑖𝑎𝑚𝑄)

𝑄
  

and by taking 

𝐶 ∫ 𝑣2𝑑𝑄 + ∫ (
𝑄

∑ 𝑣𝑦𝑖
2𝑛

𝑖=1 + (
𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑣2)𝑑𝑄 −

1

𝛽2 ∫ 𝑣2𝑑𝑄
𝑄

≤ 𝛽2 ∫ 𝐹2𝑑𝑄
𝑄

,
𝑄

                                     

(𝐶 −
1

𝛽2) ∫ 𝑣2𝑑𝑄 + ∫ (
𝑄

∑ 𝑣𝑦𝑖
2𝑛

𝑖=1 + (
𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑣2)𝑑𝑄 ≤ 𝛽2 ∫ 𝐹2𝑑𝑄,

𝑄
  

𝑄
                                     

we have 

𝐶1 ∫ 𝑣2𝑑𝑄 + ∫ (
𝑄

∑ 𝑣𝑦𝑖
2𝑛

𝑖=1 + (
𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑣2)𝑑𝑄 ≤ 𝛽2 ∫ 𝐹2𝑑𝑄

𝑄
,

𝑄
                                                                   (26)   

where 𝐶1 = 𝐶 −
1

𝛽2 > 0. Inequality (26) is an a priori estimate which we look for.  
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We apply the Galerkin method to problem (22)-(23). Let the functions 𝑤1(𝑥, 𝑦), 𝑤2(𝑥, 𝑦), … , 𝑤𝑛(𝑥, 𝑦), … be linearly 
independent and complete system of functions in 𝐿2(𝑄). 

We assume that 𝑤𝑖(𝑥, 𝑦) = 0 on 𝜕𝑄 ( 𝑖 = 1,2, … ) and 𝑤𝑖(𝑥, 𝑦) ∈ 𝐶2(�̅�). There exists a system {𝑤1, 𝑤2, … , 𝑤𝑛, … } 
such that 

𝑢𝑁(𝑥, 𝑦) = ∑ 𝑐𝑖𝑤𝑖(𝑥, 𝑦)𝑁
𝑖=1 .  

Since 𝑤𝑖|𝜕𝑄 = 0, then we have 𝑢𝑁|𝜕𝑄 = 0. Now, let us obtain the function 𝑢𝑁(𝑥, 𝑦) from the system of equations 

〈𝑢𝑁𝑥𝑥
+ ∆𝑦𝑢𝑁 +

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑢𝑁 , 𝑤𝑗(𝑥, 𝑦)〉=〈𝐹(𝑥, �̅�), 𝑤𝑗(𝑥, 𝑦)〉, 

〈𝑢𝑁𝑥𝑥
+ ∆𝑦𝑢𝑁 +

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑢𝑁 − 𝐹, 𝑤𝑗(𝑥, 𝑦)〉=0 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅.                                                                        (27)                                                                                 

We will show that 𝑢𝑁 which is the solution of system (27) converges to the exact solution of problem (22)-(23) when 
𝑁 → ∞. Then we can write 

〈∑ (𝑐𝑖
𝑁
𝑖=1 𝑤𝑖)𝑥𝑥 + ∆𝑦 ∑ 𝑐𝑖

𝑁
𝑖=1 𝑤𝑖 +

𝑘

𝑎(𝑥,�̅�)
∑ (𝑐𝑖

𝑁
𝑖=1 𝑤𝑖)𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
∑ 𝑐𝑖

𝑁
𝑖=1 𝑤𝑖 − 𝐹, 𝑤𝑗(𝑥, 𝑦)〉=0 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅.              (28)                                                                                 

We will prove the homogeneous system 

〈∑ (𝑐𝑖
𝑁
𝑖=1 𝑤𝑖)𝑥𝑥 + ∆𝑦 ∑ 𝑐𝑖

𝑁
𝑖=1 𝑤𝑖 +

𝑘

𝑎(𝑥,�̅�)
∑ (𝑐𝑖

𝑁
𝑖=1 𝑤𝑖)𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
∑ 𝑐𝑖

𝑁
𝑖=1 𝑤𝑖 , 𝑤𝑗〉=0, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅                                    (29) 

has only the zero solution. If we multiply the 𝑗𝑡ℎ equation of system (29) by −𝑐𝑗  and add from 1 to 𝑁, we obtain 

〈𝑢𝑁𝑥𝑥
+ ∆𝑦𝑢𝑁 +

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑢𝑁 , −𝑢𝑁〉=0. 

Then, from equality (17), we have 

 ∫ (𝑢𝑁𝑥
2 + ∑ 𝑢𝑁𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑢𝑁

2 )𝑑𝑄
𝑄

= 0.                 

  In this case, 𝑢𝑁 = 0 in the domain 𝑄 and therefore, we write 

 ∑ 𝑐𝑖𝑤𝑖(𝑥, 𝑦)𝑁
𝑖=1 = 0. 

Since 𝑤𝑖(𝑥, 𝑦) is linearly independent, we have 𝑐𝑖 = 0, ( 𝑖 = 1,2, … , 𝑁). Thus, the homogeneous system (28) has 
only zero solution. Therefore, there is only one solution for every 𝐹(𝑥, 𝑦) of system (28). 

Now, we take an a priori estimate for 𝑢𝑁(𝑥, 𝑦). For this, if we multiply the 𝑗𝑡ℎ equation of system (28) by −𝑐𝑗  and 

add from 1 to 𝑁, we obtain 

〈𝑢𝑁𝑥𝑥
+ ∆𝑦𝑢𝑁 +

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑢𝑁 − 𝐹, −𝑢𝑁〉=0,  

〈𝑢𝑁𝑥𝑥
+ ∆𝑦𝑢𝑁 +

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑢𝑁 , −𝑢𝑁〉=〈𝐹, −𝑢𝑁〉.                                                                                            (30) 

By inequality (26), we see that 

𝐶1 ∫ 𝑢𝑁
2 𝑑𝑄 + ∫ (∑ 𝑢𝑁𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
) 𝑢𝑁

2 ) 𝑑𝑄
𝑄

 ≤ 𝛽2 ∫ 𝐹2𝑑𝑄,
𝑄

  
𝑄

                                                                                                                                         

𝐶1 ∫ 𝑢𝑁
2 𝑑𝑄 ≤ 𝛽2 ∫ 𝐹2𝑑𝑄

𝑄
  

𝑄
                                                                                                                                                        (31) 

and 

∫ (∑ 𝑢𝑁𝑦𝑖

2𝑛
𝑖=1 + (

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑢𝑁

2 )𝑑𝑄
𝑄

 ≤ 𝛽2 ∫ 𝐹2𝑑𝑄.
𝑄

                                                                                                     (32) 

Since the right sides of inequalities (31) and (32) are independent of N, there is a constant 𝐶2 independent of N such 
that 

∫ 𝑢𝑁
2 𝑑𝑄 ≤ 𝐶2.

𝑄
                                                                                                                                                        (33)  

Similarly, we get 

∫ ∑ 𝑢𝑁𝑦𝑖

2𝑛
𝑖=1𝑄

 𝑑𝑄 ≤ 𝐶2, ∫ (
𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑢𝑁

2 )𝑑𝑄
𝑄

 ≤ 𝐶2.                                                                                          (34) 

Then, the sequence {𝑢𝑁} is bounded in the Hilbert space 𝐻0
1(𝑄). Since a bounded set in a Hilbert space is weakly 

compact, there is a weakly convergent subsequence of {𝑢𝑁}. Let this subsequence be {𝑢𝑁} for the sake of simplicity. 
We can write system (28) in the form 

〈𝑢𝑁𝑥𝑥
+ ∆𝑦𝑢𝑁 +

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 −

𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑢𝑁 , 𝑤𝑗〉=〈𝐹, 𝑤𝑗〉, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅.                                                                                  (35) 

By using the equalities  

∆𝑦𝑢𝑁 ⋅ 𝑤𝑗 = ∫ ∆𝑦𝑢𝑁𝑤𝑗𝑄
 𝑑𝑄 = ∫ ∑ 𝑢𝑁𝑦𝑖𝑦𝑖

𝑛
𝑖=1 𝑤𝑗𝑄

 𝑑𝑄,                                     
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𝑢𝑁𝑥𝑥
⋅ 𝑤𝑗 = (𝑢𝑁𝑥

𝑤𝑗)𝑥 − 𝑢𝑁𝑥
𝑤𝑗𝑥 , 

𝑢𝑁𝑦𝑖𝑦𝑖
⋅ 𝑤𝑗 = (𝑢𝑁𝑦𝑖

𝑤𝑗)𝑦𝑖
− 𝑢𝑁𝑦𝑖

𝑤𝑗𝑦𝑖
,                                     

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 ⋅ 𝑤𝑗 = (

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑤𝑗)𝑥 −

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑤𝑗𝑥 −

𝑘

 𝑎′(𝑥,�̅�)
𝑢𝑁𝑤𝑗 ,                                     

〈𝑢𝑁𝑥𝑥
, 𝑤𝑗〉 = − ∫ 𝑢𝑁𝑥

𝑤𝑗𝑥𝑄
 𝑑𝑄,                                     

〈∆𝑦𝑢𝑁 , 𝑤𝑗〉 = − ∫ ∑ 𝑢𝑁𝑦𝑖

𝑛
𝑖=1 𝑤𝑗𝑦𝑖𝑄

 𝑑𝑄,                                      

〈
𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑥 , 𝑤𝑗〉 = − ∫

𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑤𝑗𝑥𝑄

 𝑑𝑄 − ∫
𝑘

 𝑎′(𝑥,�̅�)
𝑢𝑁𝑤𝑗𝑄

 𝑑𝑄                                     

in (35), we obtain 

− ∫ 𝑢𝑁𝑥
𝑤𝑗𝑥𝑄

 𝑑𝑄 − ∫ ∑ 𝑢𝑁𝑦𝑖

𝑛
𝑖=1 𝑤𝑗𝑦𝑖𝑄

 𝑑𝑄 − ∫
𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑤𝑗𝑥𝑄

 𝑑𝑄                                     

− ∫
𝑘

 𝑎′(𝑥,�̅�)
𝑢𝑁𝑤𝑗𝑄

 𝑑𝑄 − ∫
𝑘

𝑎(𝑥,�̅�)
𝑢𝑁𝑤𝑗𝑥𝑄

 𝑑𝑄 − ∫
𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
𝑢𝑁𝑄

 𝑤𝑗𝑑𝑄                                     

= ∫ 𝐹
𝑄

 𝑤𝑗𝑑𝑄.                                     

Taking the limit for 𝑁 → ∞, in the sense of the generalized function (𝑢𝑁

𝐻0
1(𝑄)
⇀ 𝑣 converges), we get 

〈𝑣, 𝑃∗𝑤𝑗〉 = 〈𝐹, 𝑤𝑗〉                                                                                                                                                                (36) 

or 

〈𝑃𝑣 − 𝐹, 𝑤𝑗〉 = 0.                                                                                                                                                                  (37) 

Since the system {𝑤𝑗}  in (37) is complete in 𝐿2(𝑄), we can write 

𝑃𝑣 − 𝐹 = 0.                         

 Then, 𝑣 is a solution to equation (22). By 𝑢𝑁

𝐻0
1(𝑄)
⇀ 𝑣 and 𝑢𝑁|𝜎0

= 0, we have 𝑢|𝜎0
= 0. Thus, problem 

(22)-(23) has a generalized solution in the space 𝐻0
1(𝑄). 

Finally, by (32), we have 

∫ (
𝑄

∑ 𝑣𝑦𝑖
2𝑛

𝑖=1 + (
𝑏(𝑥,�̅�)

𝑎(𝑥,�̅�)
−

1

2

𝑘

 𝑎′(𝑥,�̅�)
)𝑣2)𝑑𝑄 ≤ 𝛽2 ∫ 𝐹2𝑑𝑄,

𝑄
                                    

as  𝑁 → ∞ which show that the solution depends continuously on the data.                       
 

Conclusion 

In this study, we deal with an inverse problem for an 
elliptic equation. We prove the uniqueness, existence and 
stability of the solution of the problem. Our main tools are 
Fredholm Alternative Theorem and Galerkin method. 
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