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Abstract: Penalized linear regression methods are used for the accurate prediction of new observations and to obtain 
interpretable models. The performance of these methods depends on the properties of the true coefficient vector. The LASSO 
method is a penalized regression method that can simultaneously perform coefficient shrinkage and variable selection in a 
continuous process. Depending on the structure of the dataset, different estimators have been proposed to overcome the 
problems faced by LASSO. The estimation method used in the second stage of the post-LASSO two-stage regression method 
proposed as an alternative to LASSO has a considerable effect on model performance. 

In this study, the performance of the post-LASSO is compared with classical penalized regression methods ridge, LASSO, 
elastic net, adaptive LASSO and Post-LASSO by using different estimation methods in the second stage of the post-LASSO. 
In addition, the effect of the magnitude and position of the signal values in the real coefficient vector on the performance of 
the models obtained by these methods is analyzed. The mean squared error and standard deviation of the predictions calculated 
on the test set are used to compare the prediction performance of the models, while the active set sizes are used to compare 
their performance in variable selection. According to the findings obtained from the simulation studies, the choice of the 
second-stage estimator and the structure of the true coefficient vector significantly affect the success of the post-LASSO method 
compared to other methods.  
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Post-LASSO Yönteminde İkinci Aşama Tahmin Edicisinin Model Performansına Etkisi  
 
Öz: Cezalı doğrusal regresyon yöntemleri yeni gözlemlerin doğru ön tahmini ve yorumlanabilir modeller elde edilmesi için 
kullanılır. Bu yöntemlerin performansı gerçek katsayı vektörünün özelliklerine bağlı olarak değişmektedir. LASSO yöntemi 
sürekli bir süreçte eşanlı olarak katsayı büzme ve değişken seçimi yapabilen bir cezalı regresyon yöntemidir. Veri kümesinin 
yapısına bağlı olarak LASSO’nun karşılaştığı problemlerin aşılabilmesi için farklı tahmin ediciler önerilmiştir. LASSO’ya 
alternatif olarak önerilen Post-LASSO iki aşamalı regresyon yönteminin ikinci aşamasında kullanılan tahmin yöntemi model 
performansı üzerinde kayda değer bir etkiye sahiptir.  

Bu çalışmada Post-LASSO’nun ikinci aşamasında farklı tahminleme yöntemleri kullanılarak klasik cezalı regresyon 
yöntemleri olan ridge, LASSO, elastik net, uyarlanabilir LASSO ile Post-LASSO’nun performansı karşılaştırılmıştır. Ayrıca 
gerçek katsayı vektöründeki sinyal değerlerinin büyüklük ve konumunun söz konusu yöntemlerle elde edilen modellerin 
performansı üzerindeki etkisi incelenmiştir. Modellerin ön tahmin performansının karşılaştırılması için test kümesi üzerinde 
hesaplanan hata kareler ortalaması ve tahminlerin standart sapması; değişken seçimindeki performanslarının karşılaştırılması 
için aktif küme büyüklükleri kullanılmıştır. Simülasyon çalışmalarından elde edilen bulgulara göre ikinci aşama tahmin 
edicinin seçimi ile gerçek katsayı vektörünün yapısı Post-LASSO yönteminin diğer yöntemlere göre başarısını önemli ölçüde 
etkilemektedir. 
 
Anahtar kelimeler: Doğrusal regresyon, LASSO, Post-LASSO, Çoklu İç İlişki. 
 
1. Introduction 

In statistical modeling, linear regression analysis is a technique used to estimate the relationship between a 
continuous response variable and explanatory variables. The regression analysis has many applications in different 
disciplines 1, 2, 3. The first step in forming a linear regression model is the estimation of regression coefficients.  

A linear regression model is defined as 
 

𝐲 = 𝐗𝜷 + 𝜺  (1) 
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where 𝐲 is an 𝑛 × 1 vector of response variables, 𝐗 is an 𝑛 × 𝑝 matrix of explanatory variables, 𝜷 is an 𝑝 × 1 
vector of unknown coefficients, and 𝜺 is an 𝑛 × 1 vector of error terms with mean 𝟎 and covariance matrix 𝜎!𝐈. 
The most used method for coefficient estimation in linear regression is the ordinary least squares (OLS) method. 
The OLS estimator of the coefficients for the regression model in Equation (1) is 
 
𝜷."## = (𝐗$𝐗)%&𝐗$𝐲.   (2) 

 
A dataset becomes ill-conditioned if there is multicollinearity, which is defined as a high degree of the linear 
relationship between explanatory variables. Although the OLS is often used to estimate regression coefficients, 
the OLS estimator yields unsatisfactory estimates due to inflation of the variance of the coefficients when the 
matrix of explanatory variables is ill-conditioned. Moreover, by its nature, the OLS estimator cannot estimate any 
coefficient as zero. Therefore, it cannot perform automatic variable selection. New estimators have been proposed 
to overcome these drawbacks of the OLS estimator. The ridge 4, Liu 5 restricted least squares 6 and restricted 
ridge estimator 7 are the methods that can produce more accurate prediction accuracy than the OLS by using some 
constraints on the coefficients. In contrast, the non-negative garrote 8, bridge regression 9, LASSO (least absolute 
shrinkage and selection operator) 10, elastic net 11 and adaptive LASSO 12 are methods that provide automatic 
variable selection as well as shrinkage of regression coefficients. The Bridge regression is a penalized regression 
method with ‖𝛽‖&

', 𝛾 > 0 penalty function. The 𝛾 = 1 case of the penalty function of the Bridge regression 
corresponds to the LASSO method. The elastic net is obtained by adding the ℓ! norm term to the penalty function 
of the LASSO and is more flexible than the LASSO. The adaptive LASSO is a method based on the calculation 
of LASSO estimates using adaptive weights. 

The Post-LASSO estimator is a two-stage regression analysis method. In the first stage of the post-LASSO, 
the coefficient estimates are calculated. The variables with the non-zero coefficients (signals) among these 
estimates are selected. In the second stage, the regression coefficients of the explanatory variables selected at the 
end of the first stage on the original response variable are calculated by using a certain estimator. There are various 
studies in the literature on such two-stage methods. 13 proposed a post-LASSO estimator based on the 
implementation of the LASSO in the first stage and the OLS in the second stage and showed that this estimator is 
at least as good as LASSO in terms of convergence speed while being less biased than LASSO. 14 takes into 
consideration a two-step estimation technique for estimating the interaction effects in a spatial autoregressive panel 
model with a potentially large spatial dimension. 15 used the post-LASSO estimator with the ridge in the second 
stage for selecting the nested groups of the relevant genes from microarray data. 16 proposed the double LASSO 
and compared its performance with some estimators performing variable selection via simulation studies and 
applied it to Parents’ Life Satisfaction data. 

In the literature, there are various studies conducted to compare different linear regression methods through 
simulation studies. 17 conducted a simulation study for variable selection using the bootstrap method in principal 
component regression for high-dimensional data analysis. 18 conducted a study on the performance of penalized 
regression methods on high-dimensional datasets. 19 conducted a study on the comparison of convex penalized 
regression methods depending on the structure of the true coefficient vector in classical datasets. 

This study investigates the performance of the post-LASSO two-stage method depending on the second-stage 
estimator, the characteristics of the true coefficient vector and the amount and location of the signals. The classical 
penalized regression methods the ridge, LASSO, elastic net, adaptive LASSO, and the post-LASSO methods are 
used for comparison. In the second stage of the post-LASSO, the OLS, ridge and LASSO methods are used 
respectively and the effect of the selected method in the second stage on the performance of post-LASSO is 
analyzed. 

In Section 2 of the study, the penalized regression methods compared are summarized and the comparison 
criteria are given. The characteristics of the simulation studies used in the comparison are also mentioned. In 
Section 3 of the study, the findings obtained from the simulation studies are presented and the results are discussed 
in detail. In section 4 of the study, conclusions are given, and the study is completed. 

 
2. Material and Method 
 
2.1. Penalized Regression Methods 
 

Since the OLS fails to predict new observations accurately depending on the structure of the dataset and fails 
to select variables, various methods based on the calculation of model coefficients under certain constraints have 
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been proposed as an alternative to the OLS. These methods are known as penalized regression methods and are 
widely used 20. These methods are used to obtain stable regression coefficient estimates by dealing with the 
problem of inflation of the variance of the coefficients. Some of the penalized regression methods can also perform 
automatic variable selection. 

Let (𝐱&, 𝑦&), (𝐱!, 𝑦!), … , (𝐱(, 𝑦() be an independent and identically distributed dataset, where 𝐱) is the 𝑖-th 
observation vector of size 𝑝 × 1 and 𝑦) is the response of 𝑖-th observation. The objective function of the linear 
regression model given in Equation (1) is 

 
𝑄(𝜷) = ‖𝐲 − 𝐗𝜷‖!!/2𝑛 + 𝑝*(𝜷)  (3) 

 
where 𝜷 is the vector of unknown coefficients, 𝑝*(⋅) is the penalty function and 𝜆 is the tuning parameter. In these 
methods, coefficient estimates are obtained by minimizing the objective function given in Equation (3). 

The OLS estimator in Equation (2) has the smallest variance in the class of unbiased estimators. However, in 
the case of multicollinearity in the dataset, The OLS estimates are far from being satisfactory. To overcome this 
problem, penalty functions that affect the coefficient estimates in different ways have been proposed in the 
literature. 

Among penalized regression methods, there are one-stage methods where coefficient estimates are obtained 
directly or two-stage methods where coefficient estimates are obtained after two stages. One-stage and two-stage 
penalized regression methods have been proposed whose performance varies depending on the characteristics of 
the datasets. 

In the literature, there are various penalized regression methods that shrink the regression coefficients to 
achieve higher prediction accuracy than the OLS. 4 proposed ridge regression as a method based on the trade-off 
between the bias and variance of regression coefficients. Ridge regression aims to overcome the problem of over-
inflation of variance by compromising the unbiasedness of the model coefficients. In ridge regression, coefficient 
estimates are obtained by solving the problem 

 
𝜷.+ = argmin

𝜷
{‖𝐲 − 𝐗𝜷‖!!/2𝑛 + 𝜆‖𝜷‖!!}  (4) 

 
where 𝜆 > 0 is the tuning parameter. The larger 𝜆, the greater the shrinkage of the coefficients. The ridge 
regression coefficient estimates are found as 
 
𝜷.+ = K𝐗$𝐗 + 𝜆𝑛𝐈-L

%&𝐗$𝐲  (5) 
 
by solving the problem given in Equation (4) where 𝐈- is the 𝑝 × 𝑝 identity matrix. If the dataset is ill-conditioned, 
ridge regression gives more accurate preliminary prediction values than EKK. Despite its prediction success, ridge 
regression cannot perform automatic variable selection. Therefore, estimators that can perform variable selection 
have been proposed as an alternative to ridge regression. 

Considering the deficiency of ridge regression in variable selection, 10 proposed the LASSO method. In the 
LASSO method, coefficient estimates are obtained by solving the problem. 

 
𝜷.. = argmin

𝜷
{‖𝐲 − 𝐗𝜷‖!!/2𝑛 + 𝜆‖𝜷‖&}.  (6) 

 
Due to the ℓ& norm term in Equation (6), some of the LASSO coefficient estimates become zero for sufficiently 
large tuning parameter values. Therefore, the LASSO is not only a coefficient shrinkage method but also an 
automatic variable selection method. The problem in Equation (6) does not have a closed-form solution. Therefore, 
various algorithms have been proposed to obtain the LASSO estimates. The least angle regression 21, alternating 
direction method of multipliers 22, and coordinate descent 23 are some of the algorithms that can be used to obtain 
the LASSO estimates. 

As the correlation between explanatory variables increases, the prediction success of LASSO regression 
reduces 10. In this case, an alternative to the LASSO is the elastic net (ENET) 11 method. ENET is obtained by 
adding an ℓ! norm term to the penalty function of the LASSO. The ENET estimator is obtained by solving the 
problem 
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𝜷./ = argmin
𝜷

{‖𝐲 − 𝐗𝜷‖!!/2𝑛 + 𝜆(𝛼‖𝜷‖& + (1 − 𝛼)‖𝜷‖!!)}  (7) 
 
where 0 ≤ 𝛼 ≤ 1 is the second tuning parameter. The ridge and LASSO correspond to 𝛼 = 1 and 𝛼 = 0 
respectively in the ENET. In addition, due to the ridge-type penalization term, the ENET has the ability to group 
highly correlated variables. Therefore, the ENET is expected to perform better than the LASSO when there are 
highly correlated variables in the dataset. 

In cases where the LASSO is not consistent in variable selection, the adaptive LASSO (A-LASSO) proposed 
by 12 can be used to estimate the model coefficients. The A-LASSO is consistent in variable selection and is 
approximately minimax optimal 12. The A-LASSO is based on the principle of using adaptive weights in the 
penalty function of the LASSO. The coefficient estimates of the A-LASSO are obtained by solving the problem 

 

𝜷.0%.0112 = argmin
𝜷

O‖𝐲 − 𝐗𝜷‖!!/2𝑛 +P𝑤3R𝛽3R
-

34&

S  (8) 

 
where 𝑤3, 𝑖 = 1,2, … , 𝑝 are adaptive weights. 12, selected the vector of adaptive weights as 𝒘U = 1/R𝜷."##R. 
Accordingly, there are two stages for the calculation of A-LASSO: 

1. Calculation of the EKK coefficient estimates and the vector of adaptive weights using these estimates.  
2. Solving the problem in Equation (8) by reweighting the LASSO penalty function with the weights from 

stage 1. 
The Post-LASSO estimator is a two-stage method like the A-LASSO. However, its stages are quite different 

from the stages of the A-LASSO. The stages of the Post-LASSO are 
1. Finding LASSO coefficient estimates and detecting the signals by solving the minimization problem 

given in Equation (6), 
2. Regression modeling of the response variable on the subset of the original dataset corresponding to the 

signals. 
In this study, the OLS estimator given in Equation (2) (post-LO, 13), the ridge estimator given in Equation 

(5) (post-LR, 15) and the LASSO estimator given in Equation (6) (post-LL, 16) are used in the second stage of 
post-LASSO.  
 
2.2. Simulation Studies and Comparison Criteria 

 
In this study, classical penalized regression methods ridge, LASSO, ENET and A-LASSO, and two-stage 

post-LASSO type methods post-LO, post-LR and post-LL are compared through simulation studies. In the 
simulation studies, datasets are generated according to the model given in Equation (1) based on the method 
described in 10.  In each simulation study, 100 datasets consisting of 50 explanatory variables are generated. In 
the simulation studies, the correlation between 𝑖. and 𝑗. explanatory variables is 𝜌|)%3| and the values of 𝜌 are 
chosen as 0.5 and 0.7, which are commonly used in the literature 10, 24, 25. coefficients vector on the performance 
of the methods, simulation studies are classified into two groups. 

S1. In the first group of simulation studies, the signals of the true coefficients vector precede the noise 
(represented by a zero-valued coefficient). In this group, the true coefficient vector has the form 𝜷 =

X1.5…1.5Z[[\[[]
6/!

, 0.5…0.5Z[[\[[]
6/!

, 0,0, … ,0Z[\[]
89%6

^. The number of signals, 𝑠, is taken as 𝑠 = 5,10,25,50 to represent 

different sparsity levels. As the value of 𝑠 increases, the sparsity level reduces.  
S2. In the second group of simulation studies, the magnitude of the signals is taken equal, and the number 

and position of the noises are changed to examine the effect of sparsity and position. In the simulation 
studies in this group, the real coefficient vector has the form 𝜷 = [𝑎, 𝟎# , 𝑎, 𝟎# , … , 𝑎, 𝟎#]. Here 𝑎 is the 
signal value and 𝑘 is the dimension of the zero vector. The value of 𝑘 represents the sparsity level of the 
true coefficient vector. In this study, 𝑎 = 0.5,1,5 and 𝑘 = 1,4,9.  

For tuning parameter selection and calculation of performance criteria, it is common to decompose the dataset 
into training, validation and test sets 11, 26. First, the penalized regression methods to be compared are trained on 
the selected tuning parameter values. The mean squared error for these models is calculated using the validation 
set. The model with the smallest mean squared error in the validation set is determined as the best model. The 
performance of the models is compared with the mean squared error on the test set.   
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Table 1. Quality measures of methods for S1 group simulation studies. 
 

𝜌  𝑠   Comparison 
Criterion Ridge LASSO ENET A-LASSO Post-LO  Post-LR  Post-LL 

0.5 5 Median of 
TMSE 2.2937 0.8678 1.1947 0.9517 2.1560 1.4641 0.7039 

   Standard 
Deviation 0.08 0.10 0.07 0.06 0.08 0.10 0.05 

    Active Set Size 50 9 17 6 9 9 9 

0.5 10 Median of 
TMSE 3.1850 1.8068 2.0322 2.2592 3.1778 2.0364 1.4044 

    Standard 
Deviation 0.12 0.07 0.08 0.08 0.13 0.08 0.10 

    Active Set Size 50 18 26 12.5 18 18 18 

0.5 25 Median of 
TMSE 3.9187 4.0861 3.4786 5.7695 5.4639 3.2915 3.3642 

    Standard 
Deviation 0.15 0.13 0.14 0.26 0.22 0.13 0.11 

    Active Set Size 50 30 36 26 30 30 30 

0.5 50 Median of 
TMSE 4.8628 6.9273 5.4853 9.5477 7.5741 4.3638 6.4777 

    Standard 
Deviation 0.14 0.24 0.11 0.37 0.23 0.15 0.15 

    Active Set Size 50 46 47 43 46 46 46 

0.7 5 Median of 
TMSE 1.9134 0.7022 0.9238 1.0306 1.7544 0.9893 0.4967 

    Standard 
Deviation 0.08 0.05 0.06 0.06 0.12 0.09 0.04 

    Active Set Size 50 8 15.5 6 8 8 8 

0.7 10 Median of 
TMSE 2.4281 1.5319 1.5066 2.5802 2.8661 1.6802 1.1579 

    Standard 
Deviation 0.07 0.06 0.05 0.13 0.14 0.08 0.08 

    Active Set Size 50 16 24 13 16 16 15 

0.7 25 Median of 
TMSE 2.7236 3.4224 2.4956 5.4789 5.3446 2.6762 3.1084 

    Standard 
Deviation 0.09 0.17 0.09 0.32 0.25 0.14 0.16 

    Active Set Size 50 27 34.5 25 27 27 27 

0.7 50 Median of 
TMSE 3.4368 6.3575 4.3326 9.3805 8.7705 4.4902 7.1900 

    Standard 
Deviation 0.15 0.29 0.18 0.30 0.35 0.16 0.25 

    Active Set Size 50 44 47 40 44 44 44 
 

In this study, independent training sets of 100 observations, validation sets of 100 observations and test sets 
of 400 observations are formed for each simulation run. The standard deviation of the errors in Equation (1) is 
taken 𝜎 = 3 as in 10. 𝛼 = 0.5 is chosen in order to observe the level of difference between the ridge, LASSO and 
ENET methods. 

Various criteria are used to compare the performance of the models produced by the methods. Let 𝚺, the 
covariance matrix of the explanatory variables and 𝜷h, the coefficients vector of the related penalized regression 
method. The mean squared error on the test set 
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𝑇𝑀𝑆𝐸 = K𝜷 − 𝜷hL$𝚺K𝜷 − 𝜷hL   
 
is used to compare the performance of the models in the prediction. The standard deviations of the TMSE values 
are also given. Finally, the active set sizes obtained based on each method are reported as an estimate of the number 
of signals in the true model. 
 
3. Findings and Discussion 

 
The results of the S1 group simulation studies are summarized in Table 1. According to Table 1, when the 

correlation level between variables is low and the sparsity level is high, the methods that can select variables give 
a better TMSE value than ridge regression. As the sparsity level reduces, the performance of these methods 
decreases compared to ridge regression. The ENET is the least affected method by the ridge-type penalty term and 
is always better than ridge except when the sparsity level is zero. At fixed correlation values, the TMSE value of 
all methods increases as the sparsity level reduces. When the correlation level is low, at least one post-LASSO 
type method gave a superior TMSE value compared to the other methods. The post-LL is better than the other 
methods when the sparsity level is high while the post-LR is better when it is low. The post-LO improved over the 
ridge at high sparsity, however, is dominated by the ridge as the sparsity level is reduced. As the correlation level 
increases, the sparsity level determines the performance of the post-LASSO methods. More precisely, in terms of 
TMSE, the post-LASSO type methods are superior in sparse models, while in other cases the ENET is superior to 
other methods.    

In terms of active set size, A-LASSO always yielded the sparsest models. In most cases, the post-LASSO 
type methods have the same sparsity level as the LASSO while the ENET produced the densest models. 

 
The line plots of the TMSE values obtained with the ridge, LASSO, ENET, A-LASSO, Post-LO, Post-LO, 

Post-LR and Post-LL penalized regression methods in the simulation studies in the S1 group are shown in Figure 
1. The line plots support the inferences given in Table 1. 
 

    
 

Figure 1. Line plots of TMSE values of the methods in S1 group simulation studies. 
 

The results obtained from the S2 group simulation studies are given in Table 2,3,4. According to Table 2,3,4, 
when the correlation level is low and the signal value is small, at least one post-LASSO type method dominates 
the other methods in terms of TMSE. When the signal value is large, the A-LASSO method is more successful 
than the other methods at both correlation levels. As the correlation level increases, the post-LASSO type methods 
are superior in the case of a sparse model, while the ridge gives a better result when the model is dense. In sparse 
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model cases where the signal value is not small, the post-LL is superior to the post-LR, while the post-LR 
dominates the post-LL as the sparsity level decreases.   

In terms of active set sizes, the models produced by the A-LASSO are sparser than those of the other methods. 
The LASSO and post-LASSO type methods mostly produced models with the same sparsity level.  
 

Table 2. Quality measures of methods for S2 group simulation studies (𝑘 = 1). 
 

𝜌  𝑎  Comparison 
Criterion Ridge LASSO ENET A-LASSO Post-LO  Post-LR  Post-LL 

0.5 0.
5 

Median of 
TMSE 2.5747 3.5612 3.0367 4.8732 4.7599 1.4948 2.2906 

   Standard 
Deviation 0.09 0.09 0.08 0.09 0.18 0.08 0.11 

    Active Set Size 50 29 35 22 29 29 29 

0.5 1 Median of 
TMSE 4.7383 5.5140 4.9097 7.3843 6.7050 4.1501 4.9141 

    Standard 
Deviation 0.12 0.18 0.13 0.31 0.26 0.14 0.22 

    Active Set Size 50 39 43 34 39 39 39 

0.5 5 Median of 
TMSE 11.2373 5.8086 8.7083 3.4424 7.3974 9.6831 5.8456 

    Standard 
Deviation 0.47 0.20 0.35 0.11 0.26 0.44 0.21 

    Active Set Size 50 41 49 27 41 41 41 

0.7 0.
5 

Median of 
TMSE 1.8008 2.9484 2.3976 4.2599 6.0278 2.2575 3.3732 

    Standard 
Deviation 0.05 0.10 0.05 0.17 0.20 0.14 0.14 

    Active Set Size 50 29 35 20 29 29 29 

0.7 1 Median of 
TMSE 3.6069 4.8343 3.9805 7.0343 7.0497 3.8334 4.9598 

    Standard 
Deviation 0.09 0.15 0.15 0.29 0.55 0.19 0.21 

    Active Set Size 50 37 43 32 37 37 37 

0.7 5 Median of 
TMSE 11.3546 5.7803 8.7258 3.5676 7.2909 9.6696 5.7679 

    Standard 
Deviation 0.35 0.16 0.41 0.16 0.28 0.37 0.18 

    Active Set Size 50 40 48 27 40 40 40 
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Table 3. Quality measures of methods for S2 group simulation studies (𝑘 = 4). 
 

𝜌  𝑎  Comparison 
Criterion Ridge LASSO ENET A-LASSO Post-LO  Post-LR  Post-LL 

0.5 0.5 Median of 
TMSE 1.5915 1.8618 1.7361 2.2162 2.6404 0.8594 0.9044 

   Standard 
Deviation 0.07 0.05 0.04 0.08 0.18 0.07 0.09 

    Active Set Size 50 15 19 7.5 16 16 15 

0.5 1 Median of 
TMSE 3.3773 3.0304 2.8857 3.3551 4.2139 2.7540 2.3923 

    Standard 
Deviation 0.07 0.17 0.14 0.16 0.26 0.12 0.10 

    Active Set Size 50 24 32 17 24 24 24 

0.5 5 Median of 
TMSE 8.8303 3.0302 6.7399 1.3167 4.7968 5.3831 2.8519 

    Standard 
Deviation 0.35 0.15 0.26 0.07 0.28 0.29 0.17 

    Active Set Size 50 25 46 12 25 25 25 

0.7 0.5 Median of 
TMSE 1.2716 1.7106 1.5406 2.0603 3.0647 0.9003 1.1739 

    Standard 
Deviation 0.03 0.03 0.03 0.06 0.25 0.07 0.07 

    Active Set Size 50 16 22.5 11 16 16 16 

0.7 1 Median of 
TMSE 2.7524 2.7390 2.6709 3.5810 4.4794 2.4284 2.4504 

    Standard 
Deviation 0.08 0.07 0.08 0.11 0.26 0.08 0.13 

    Active Set Size 50 24 31.5 19 24 24 24 

0.7 5 Median of 
TMSE 8.4963 3.0106 6.7301 1.3705 4.5300 5.5549 2.9878 

    Standard 
Deviation 0.20 0.10 0.33 0.07 0.16 0.21 0.13 

    Active Set Size 50 26.5 45 12 26.5 26.5 25.5 
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Table 4. Quality measures of methods for S2 group simulation studies (𝑘 = 9). 
 

𝜌  𝑎  Comparison 
Criterion Ridge LASSO ENET A-LASSO Post-LO  Post-LR  Post-LL 

0.5 0.5 Median of 
TMSE 0.9863 1.0334 1.0083 1.1286 2.1345 0.4742 0.5186 

   Standard 
Deviation 0.03 0.06 0.05 0.04 0.20 0.06 0.08 

    Active Set Size 50 7 10.5 4 10 10 7 

0.5 1 Median of 
TMSE 2.3335 1.6554 1.7667 1.8022 3.086 1.8000 1.3230 

    Standard 
Deviation 0.07 0.12 0.10 0.11 0.19 0.11 0.08 

    Active Set Size 50 16 22 11 16 16 16 

0.5 5 Median of 
TMSE 7.3924 1.6618 4.8912 0.6125 3.3622 3.5476 1.5437 

    Standard 
Deviation 0.26 0.13 0.29 0.05 0.16 0.18 0.1 

    Active Set Size 50 17 42 6 17 17 17 

0.7 0.5 Median of 
TMSE 0.8695 1.0740 1.0122 1.1994 2.2889 0.5482 0.6073 

    Standard 
Deviation 0.02 0.05 0.04 0.02 0.2 0.06 0.06 

    Active Set Size 50 8 13 4 11 11 8 

0.7 1 Median of 
TMSE 1.9657 1.6302 1.6825 2.1701 2.7410 1.6528 1.4061 

    Standard 
Deviation 0.04 0.10 0.08 0.12 0.24 0.06 0.08 

    Active Set Size 50 15.5 22.5 11 15.5 15.5 15 

0.7 5 Median of 
TMSE 6.8640 1.6598 4.6428 0.6262 2.7658 3.2971 1.5978 

    Standard 
Deviation 0.27 0.10 0.14 0.05 0.28 0.19 0.09 

    Active Set Size 50 16 40 6 16 16 16 
 

The line plots of the TMSE values obtained with the ridge, LASSO, ENET, A-LASSO, Post-LO, Post-LR 
and Post-LL in the S2 group simulation studies are given in Figures 2,3,4. The line plots are consistent with the 
analysis results given in Table 2,3,4. 
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Figure 2. Line plots of TMSE values of the methods in S1 group simulation studies (𝑘 = 1). 
 

 

    
 

Figure 3. Line plots of TMSE values of the methods in S1 group simulation studies (𝑘 = 4). 
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Figure 4. Line plots of TMSE values of the methods in S1 group simulation studies (𝑘 = 9). 
 
4. Conclusions 

 
In this study, the effect of the properties of the true coefficient vector on the performance of classical penalized 

regression methods and two-stage post-LASSO type methods is investigated. A detailed comparison of the ridge, 
LASSO, ENET and A-LASSO classical penalized regression methods with the post-LASSO type penalized 
regression methods, post-LO, post-LR, post-LR and post-LL are performed by considering the size and position 
of the signals.  

According to the results obtained from the comparison criterion, the estimator in the second stage of the post-
LASSO type methods is quite effective in the performance of these methods. In addition, the structure of the true 
coefficient vector of the model is very effective in the performance of classical and post-LASSO type methods. 
According to the active set sizes obtained by the post-LASSO type methods, the true coefficient vector and the 
properties of the dataset have an impact on the success of post-LASSO type methods in variable selection. With 
the simulation studies, the strengths and weaknesses of post-LASSO methods in terms of estimation and variable 
selection in models with different structures in terms of sparsity and signal magnitude are revealed.  
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