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the recently studied the Anlı-Güngör (AG) scattering function. The analytical calculations are performed by HN 
method. The numerical results are calculated with Wolfram Mathematica software for the varying secondary 
neutron number, the varying scattering parameter, and the varying reflection coefficient. The critical slab 
thickness values decrease for increasing reflection coefficient as expected.  

Keywords: Legendre expansion of scattering function, Anlı-Güngör scattering function, HN method, The critical 
slab problem, Reflecting boundary condition. 

 
a  cemreelif@yahoo.com  https://orcid.org/0000-0001-8038-219X b  tureci@gmail.com  https://orcid.org/0000-0002-8996-3385 

 

Introduction 

In this study the critical slab problem is investigated 
with the reflecting boundary condition for the Anlı-
Güngör (AG) scattering function [1] with quadratic term. 
The criticality equation defines the relation between the 
secondary neutron number and the thickness of medium.  

The critical slab problem was investigated by Mitsis [2] 
with the Case method [3,4], Carlvik [5], Sahni and 
Sjöstrand [6-8], Sahni [9], Dahl and Sjöstrand [10]. It was 
investigated for the reflecting boundary conditions by 
Garis [11], Garis and Sjöstrand [12], Atalay [13], Türeci et 
al. [14]. The problem was investigated with different 
methods such as the Case method, CN Method [15], FN 
method [16] and HN method [17]. The effects of the 
anisotropic scatterings were also investigated with 
İnönü’s scattering function [18]. Siewert and Williams [19] 
searched the effect of the anisotropy for the critical slab 
problem.  The different types of the Legendre expansion 
of scattering function [20] were studied by different 
researchers [21-26].  

The AG scattering function is  
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where t  is the scattering parameter, ( )nP  is the 

Legendre polynomial with nth order. Here the defining 
interval of the scattering parameter for all scattering 

situations is given as 1t . The Legendre expansion of 

scattering function is  
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where nf  is the scattering coefficients, and ( )nP  is 

the Legendre polynomial with nth order.  
It is obvious that both scattering functions are the 

same for only linear anisotropic scattering. Although both 
scattering functions are similar, these functions have 
different properties. One of differences between the 
Legendre expansion of scattering function and AG 
anisotropic scattering function is about the scattering 
coefficients. t  parameter in AG scattering is defined in 

 1,1 −t . But the determination of the defining interval 

of the scattering coefficients in Legendre expansion of 
scattering function is a difficult job. A detailed analysis was 
performed by Gülderen et al. [27] in the Milne problem 
for linear-triplet Legendre expansion of scattering 
function. A different analysis was given by Köklü and Özer 
[28] for the tetra Legendre expansion of scattering 
function. Although the scattering parameter is defined in 

the interval  1,1 −t , the parameter is defined in 

 0.54,0.54 −t  for the quadratic AG scattering because 

of the rule that the sum of probabilities is equal to one. 
This result can be determined by the solving of an 
inequality relation of Eq.(1), which defines the rule that 
the sum of probabilities is equal to one.  

The other difference appears for the further scattering 
terms. For instance, if we take 

1 0=f ,
2 0f  and 

3nf  , 

then the scattering is called as pure-quadratic anisotropic 
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scattering in Legendre expansion of scattering function. 
But a similar selection is not possible in the AG scattering 
function. If any researcher wants to study the quadratic 
AG scattering as in this study, then the linear anisotropic 
scattering term will automatically be in the scattering 
function.  

The AG scattering function which has been recently 
studied with PN method [29] for the criticality problem. It 
also has been studied for half-space albedo problem [30], 
the Milne problem [31], slab albedo problem [32] and the 
criticality problem [33] for quadratic AG scattering with HN 

method. Maleki [34] used the scattering function to solve 
the half-space albedo and slab albedo problems with 
Monte Carlo method.   

In this study the reflection situation is taken into 
account. Thus, the effect of the reflection could be 
investigated.  The results are interesting for being closed 

to unity of the scattering term values for fixed c . The 
thickness of the medium represents the parabolic 
behaviour for this situation. 

 

 
The Case Method Solution for the Anlı-Güngör Scattering Function  

The analytical calculations are performed by HN method. The method is based on the usage the Case method 
relations. Therefore, the relations of the Case method must be derived for the AG scattering function. This analysis was 
performed by Türeci and Bülbül [35].  

First, we can start with the source-free, one-speed, time-independent, homogeneous medium and plane geometry 
neutron transport equation: 
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where x  is the spatial variable in mfp unit,   is the direction cosine, c  is the secondary neutron number, and ( ),f  
 

is the AG  scattering function. The Case eigenfunction for the AG scattering is 
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( )J
n  obeys the recursion relation, and it is given by  
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( )
0
J  corresponds to the normalization of the Case eigenfunction. The normalization condition is   

( )
1

, 1

1

    =
−

d . (8) 

 

If  1,1  − , then the solution of the Eq. (8) gives one pair discrete eigenvalues, 
0

 . If  1,1  − , then we have a 

singular point at  = . We are interested in the quadratic AG scattering here. Therefore, the upper limit of the 

scattering is 2=N  in the expansion of Eq. (2), and the fourth and beyond terms, 2N , are assumed to be small enough 

to be neglected. Thus, the scattering function studied in this study is  
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( ) ( ) ( ) ( ) ( )2, 1 1 1 2 2f t P P t P P       = + + . (9) 

The explicit form of Eq. (5) is 
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and the Case eigenfunction is 
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The normalization condition for the quadratic AG scattering given in Eq. (8) is  
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The discrete eigenvalues, 0 , are the numerical solutions of Eq. (12). Equation (12) is a transcendental equation, 

and it can be only solved as numerical methods such as Newton-Raphson method [36, 37] or Muller’s method [36, 38]. 

Both methods can give real and complex roots of any function. The criticality problem is studied for 1c , and Eq. (12) 

has complex roots, 
0

i  where 
2

1= −i .   Finally, the discrete and the continuum eigenfunctions are  
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where P  corresponds to the Cauchy principal value, and ( )   is  
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The explicit form of Eq. (16) is  
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These eigenfunctions obey the orthogonality relations:  
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Finally, the solution of Eq. (3) for the AG scattering function is  
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where ( )0A  and ( )A  are the arbitrary expansion coefficients. The explicit form of Eq. (18) for the scattering 

function is  
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where  
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and the explicit form of Eq. (20) is  
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where ( )1 P  and ( )2 P  are the Legendre polynomials in terms of the continuum eigenvalue,  . 

 

The criticality equation with HN method 

We are interesting a slab reactor which is placed in  , −x a a . Thus, the thickness of the slab is 2 = a . It is assumed 

that the inside of the slab is the medium, and the outside is the vacuum. The interaction of the neutrons with the 
medium is thought as the quadratic AG scattering.  

The neutron flux has a symmetry condition over the right and left walls over the boundaries of the medium. This 
condition implies that the outgoing fluxes are the same. The outgoing neutron fluxes are defined as a power series 
expansion: 

( ) ( )  , , , 0,1

0

G
a a a    − − = = 

=

l
l

l  
(25) 

The reflection boundary condition means that there are reflected neutrons from the boundaries to the medium. The 
reflection is defined with the reflection coefficient. Therefore, the reflected neutron flux from the boundaries is 

proportional with the outgoing flux with the reflection coefficient, R ,  0,1R . Thus, the reflection boundary conditions 

are 

( ) ( ), , , 0a R a   − =   , 
(26) 

( ) ( ), , , 0a R a   − =  − −  . 
(27) 
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If the symmetry condition given in Eq. (25) is used in the solution, Eq. (21), then the arbitrary expansion coefficients 
in the solution of the transport equation become 

( ) ( )0 0A A = −
  and   ( ) ( )A A = −

. (28) 

Thus, the solution of Eq. (3) turns into  
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(29) 

If Eq. (29) is written for =x a , then we get the following equation: 
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(30) 

Now, the aim is to determine the arbitrary expansion coefficients in Eq. (30) by using the neutron flux definitions in Eqs. 
(25-27), and the orthogonality properties given in Eqs. (18-20). Since the neutron flux must go to zero when x  goes to 

infinity, we want to eliminate the positive exponential terms in the application of the orthogonality relations. Therefore, 

the equation is multiplied by ( ),0  − , and integrated over  1,1  − . Thus, we find  
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Similarly, if Eq. (30) is multiplied by ( ),  −  and integrated over  1,1  − , then we find the arbitrary coefficient 

for the continuum part: 
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where  ,   and   for 
0 ,  =   are defined in Eqs. (23). ( )lA  and ( )lB  satisfy own recursion relations:  
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Now, if Eq. (25) is written for  0,1  , then we have   
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If the expansion coefficients given in Eqs. (33, 34) are written in Eq. (41), and equation is multiplied to 
1


+m

 and 

integrated over  0,1  , then we get the following equation system. m  is an integer number, and it takes its value 

from 0  to G .  
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This last equation can be written as  

0

0

G
a T m=

=
l l

l . 

(43) 

Now, we can define a square matrix with the elements of 
l

T
m

 so that since 
l

a  can’t become zero, the determinant 

of T  matrix must be equal to zero. This defines the criticality equation:  
 

det 0T= . (44)  

 

Results  

The tabulated results are the numerical solutions of 

Eq. (44) for varying c , t  and R . The results are calculated 

with Wolfram Mathematica [39] software. Equation (42) 
contains two integral term and one of them, first integral 
term, includes the unknown slab thickness variable. 
Gaussian-quadrature method [37] is used to calculate the 
numerical value of this integral. Thus, this integral term is 

written as sum relation by using the Gaussian-quadrature. 
The WorkingPrecision option in Mathematica was 
selected as 32. Therefore, all calculations are performed 
with this precision in the background. 

Table 1 represents the critical thickness results, 

2 = a , for varying c  for varying scattering parameter 

and varying reflection coefficients. Figures 1-3 represent 
the critical thickness values for fixed secondary neutron 
number, varying scattering parameter and reflection 
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coefficient for 1.1, 1.2=c  and 1.5 , respectively. Figures 

4-5 represent the 3D plot for fixed secondary numbers, 

1.1=c  and 1.5 , respectively.  

When the scattering parameter increases for fixed c  

and R , the critical thickness increases. While the critical 
thickness values decrease for the increasing reflection 
coefficient and the fixed c  and t  as we expected.  

As a result of the calculation for the critical thickness, 
it is seen that for small c values the critical thickness shows 
a concave downward decreasing behaviour for increasing 
R values, but for large c values it shows a concave upward 
decreasing behaviour. Accordingly, it can be concluded 
that reflection is more dominant for small c values than 
for large c values. 

  

 

Figure 1. The critical thickness values for c=1.1 and 
varying reflection coefficient. 

 

 

Figure 2. The critical thickness values for c=1.2 and 
varying reflection coefficient. 

 

 

Figure 3. The critical thickness values for c=1.5 and 
varying reflection coefficient. 

 

Figure 4. The critical thickness values for c=1.1 and 
varying t and R. 

 

 

Figure 5. The critical thickness values for c=1.5 and 
varying t and R. 
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Table 1. The critical thickness values for varying c and for varying t  and R with only 6th approximation
c t/R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.1 -0.40 3.80104467 3.54729782 3.25098206 2.90581248 2.50736783 2.05572136 1.55856109 1.03308608 0.50440557 

-0.20 3.88935824 3.62157117 3.31035936 2.95003729 2.53717277 2.07313449 1.56682989 1.03597076 0.50503525 

0.20 4.07880035 3.77846691 3.43336829 3.03938983 2.59543075 2.10561110 1.58109247 1.04014183 0.50552139 

0.40 4.18126050 3.86187248 3.49734950 3.08458338 2.62381989 2.12059592 1.58704169 1.04141439 0.50537625 

1.2 -0.40 2.27973382 2.07674808 1.85196894 1.60639728 1.34311558 1.06755242 0.78717660 0.51053495 0.24589472 

-0.20 2.32758131 2.11439170 1.87989904 1.62563335 1.35517752 1.07428209 0.79043220 0.51186420 0.24632210 

0.20 2.42418263 2.18834355 1.93289863 1.66050297 1.37567202 1.08460617 0.79457662 0.51299478 0.24644826 

0.40 2.47299333 2.22452930 1.95777578 1.67595626 1.38397783 1.08813144 0.79543707 0.51278839 0.24614617 

1.3 -0.40 1.63931760 1.47091460 1.29089088 1.10170522 0.90690300 0.71084003 0.51817916 0.33329141 0.15974203 

-0.20 1.67155373 1.49532402 1.30834922 1.11337952 0.91412681 0.71493846 0.52029633 0.33427534 0.16011436 

0.20 1.73291589 1.53997387 1.33868243 1.13229104 0.92468808 0.72002323 0.52226397 0.33479809 0.16017173 

0.40 1.76172571 1.55989287 1.35129162 1.13934326 0.92791662 0.72095630 0.52209387 0.33433148 0.15985613 

1.4 -0.40 1.27709152 1.13375149 0.98435875 0.83144467 0.67799934 0.52716053 0.38186106 0.24452771 0.11690145 

-0.20 1.30110321 1.15151896 0.99683695 0.83971643 0.68315441 0.53017559 0.38351364 0.24536187 0.11724244 

0.20 1.34426557 1.18181555 1.01669268 0.85167953 0.68963288 0.53321489 0.38466629 0.24566381 0.11727524 

0.40 1.36296781 1.19397747 1.02380653 0.85520440 0.69086466 0.53319621 0.38415019 0.24512731 0.11696650 

1.5 -0.40 1.04230861 0.91794640 0.79080504 0.66313873 0.53731702 0.41558037 0.29982540 0.19146657 0.09139188 

-0.20 1.06129148 0.93179758 0.80045315 0.66954117 0.54136417 0.41802057 0.30122588 0.19221184 0.09170958 

0.20 1.09357304 0.95385306 0.81453772 0.67782785 0.54576006 0.42004838 0.30198515 0.19240896 0.09173081 

0.40 1.10638080 0.96169113 0.81872881 0.67956489 0.54603061 0.41960018 0.30133060 0.19185727 0.09143383 

1.6 -0.40 0.87739918 0.76788463 0.65760987 0.54849023 0.44237478 0.34087438 0.24524057 0.15631335 0.07453353 

-0.20 0.89301557 0.77918514 0.66546139 0.55373000 0.44574013 0.34295851 0.24647900 0.15699598 0.07483198 

0.20 0.91818923 0.79602579 0.67600645 0.55982647 0.44892655 0.34441107 0.24701809 0.15713506 0.07484684 

0.40 0.92725150 0.80121654 0.67847566 0.56055276 0.44867982 0.34374885 0.24630737 0.15658845 0.07456272 

1.7 -0.40 0.75518926 0.65758994 0.56051625 0.46556655 0.37418030 0.28752435 0.20643193 0.13139592 0.06260446 

-0.20 0.76840801 0.66711136 0.56713665 0.47001879 0.37708444 0.28936390 0.20755425 0.13202988 0.06288625 

0.20 0.78864907 0.68042495 0.57534549 0.47470115 0.37950453 0.29045746 0.20795748 0.13213342 0.06289721 

0.40 0.79518965 0.68388960 0.57672966 0.47481501 0.37896089 0.28968475 0.20722847 0.13160027 0.06262585 

1.8 -0.40 0.66105918 0.57321874 0.48673951 0.40294590 0.32295954 0.24762910 0.17750688 0.11286608 0.05374462 

-0.20 0.67249103 0.58143513 0.49246763 0.40683050 0.32552974 0.24928801 0.17853979 0.11345994 0.05401160 

0.20 0.68915399 0.59224378 0.49904953 0.41054499 0.32743291 0.25014220 0.17885320 0.11354012 0.05402001 

0.40 0.69392430 0.59453124 0.49971714 0.41027050 0.32671290 0.24931382 0.17812488 0.11302392 0.05376084 

1.9 -0.40 0.58640447 0.50669193 0.42888889 0.35408971 0.28316927 0.21674402 0.15517213 0.09858288 0.04692188 

-0.20 0.59645745 0.51391331 0.43394201 0.35754548 0.28548511 0.21826234 0.15613270 0.09914250 0.04717555 

0.20 0.61043480 0.52287495 0.43934349 0.36056751 0.28702271 0.21894877 0.15638358 0.09920649 0.04718220 

0.40 0.61392240 0.52433224 0.43952170 0.36003943 0.28619690 0.21809568 0.15566593 0.09870849 0.04693448 
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We can also discuss the scattering functions. If we take 
the first two terms of these scattering functions, then we 
have  

( ) ( ) ( ), 30 1 1 1f f f P PLegendre     = +
, 

(45) 

( ) ( ) ( ), 0 1 1f f tP PAG     = + . 
(46) 

By using an analogue between Eqs. (45 and 46) we can 

take that 3
1
f t . Thus, we can define a relation between 

the scattering coefficients. If we take the first three terms 
of the scattering functions, then we have  

( )
( )2322 1

5 3 12 2 5
= =  =

f
f t f f . (47) 

Therefore, both scattering functions will give the same 
result for the above condition. But the results will be 
different except this condition. If we go on over the 
scattering functions, a similar result will be valid for the 
triplet scattering situation. Then, we can define a 

condition for 
3

f  :  

( )
( )3333 17 33 1 3

7

f
f t f f= =  =

. 
(48) 

But it is important that we cannot separate the 
scattering terms for AG scattering function. If any 
researcher wants to study triplet anisotropic scattering, 
for instance, then the linear and the quadratic scatterings 
will automatically be in the scattering function, except for 
the Legendre expansion of scattering function.  

 

Conclusions  

In this study the critical slab problem was investigated 
for the reflection boundary condition. The criticality 
equation defines the relation between the secondary 

neutron number, c , and the critical thickness, 2 = a , in 

mfp unit. Therefore, c  and the scattering parameter, t ,  

are the independent variable, and   is the dependent 

variable. But, since we take into account the reflection 
boundary condition, another independent variable is the 
reflection boundary condition, R .  

The critical thickness values are investigated for 
varying c , t  and R . The results are given in tables for only 

6th approximation. The critical thickness values decrease 
for increasing c  for certain t   and R  values as we 

expected. Similarly, the critical thickness values decrease 
for increasing R  values.  

Another result is that both Legendre expansion of 
scattering and AG scattering will give the same result for 
certain scattering situations. If the scattering is taken 
quadratic AG scattering; then the situations must be the 

same for 3
1

=t f , and ( )
22

3 1=t f . But other values of t  

will give different results.  
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