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Abstract

In this article we describe new predictors under multicollinearity situation in the partially linear mixed measurement error models.
In order to achieve this aim, we refer to some preliminary information and use it in order to suggest the modified Kernel ridge
predictors in the partially linear mixed measurement error models. In addition, we also attain some mean square error comparisons
between our new described modified Kernel ridge predictors and predictors previously described in literature for the partially linear
mixed measurement error model. In conclusion, the article showcases real data analysis and a simulation study to illusrate our
theoretical findings.
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0z

Bu calismada, 6l¢iim hatali kismi lineer karma modellerde ¢oklu i¢ iliski durumu altinda yeni 6ntahmin ediciler tanimlanmaktadir. Bu
amaca ulasmak icin, bazi 6n bilgiler ele alinmistir ve bu bilgi hesaba katilarak, 6l¢tim hatali kismi lineer karma modellerde modified
Kernel ridge 6ntahmin edicileri 6énerilmistir. Ek olarak, dl¢lim hatali kismi lineer karma model literatiiriinde daha énce tanimlanan

ontahmin ediciler ile yeni tanimlanan modified Kernel ridge dntahmin ediciler arasinda bazi hata kareler ortalama karsilastirmalari
da yapilmistir. Daha sonra, teorik bulgularimizi kanitlamak i¢in gercek bir veri analizi ve simiilasyon g¢alismasi ile makale

sonlandirilmistir.

Anahtar Kelimeler: Lineer Karma Model, Olgiim Hatasi, Coklu I¢ Iliski, Kismi Lineer Model, Ridge Ontahmin Ediciler

1. Introduction

Linear mixed model (LMM) [1] is an expanded version of linear
model (LM). LMM has both fixed and random effects, and are
especially employed to study clustered data such as longitudinal
data, repeated measures data, multilevel data and etc. Another
commonly studied statistical model in literature is
nonparametric model (NPM) under the measurement error
problem [2]. This model introduces the functional form of LM
where heterogeneity is not handled. For the purpose of taking
advantage of the favorable ideas of these two favored models
together, partially linear mixed measurement error model
(PLMMeM), a combination of LMM and the NPM under the
measurement error problem, is defined by [3].

The PLMMeM based on a sample of size n with measured error in
parametric part component X; is considered as

Y, =XT8+g(T) +Z'b; +¢,

Wi = Xi + Ui’

1)

T
where fixed effects design matrices are X; = (xl-l, s xip) and for
ti1, .., tig defined on [0,1] T; = (t;q,...,t;q)7, random effects
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design matrix is Z; = (3, ..., z;) , a parameter vector of fixed

effects design matrix is § = (B, ...,Bp)T, an unknown function
defined from R% to R! is g(.), independent and identically
distributed (i.i.d.), unobservable vector of the random effects
design matrix is b; and i.i.d. random vector of errors is ;.
Independent b; and €; are chosen from a Gaussian process with
mean zero and covariance matrix D; and X;, respectively.

When X;’s are observable, the conditional distribution of ¥; for a
given b; is Yi|b; ~ N(XiTﬁ +9(T) + Zini,Zi). However, we
observe WW; instead of observing X; in model (1), assuming that
the measurement error U; has a known i.i.d. with mean zero and
covariance matrix X,,,, and independent of (Y;, X;, T;, Z;).

If we introduce the conditional expectations also known as the
kernel regressions of Y, X and Z with bandwidth h, respectively,
as

wy(Ty) = EVITY),
wx(Ty) = EQX|T),
w,(T;) = E(Z|Ty).
then the matrix form of model (1) is obtained as
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Y=XB+7b+e (2)
where 17~= Y —w,(T) = (171:...,17n~)T, X=X—w,(T) =
Ky X)) 2 =7 = w0, (T) = (Zy, ., Z)".

Letting V = ZDZ" + I be the covariance matrix of ¥, [3] defined
the Kernel estimator and the Kernel predictor under model (2)
respectively, as

B

= (WTV_1W (3)
—tr(V"H)Z,) " Y(WTV 1Y),
b=DZTv-Y(Y - Wp). (4)

By denoting wy;(t) = —f:‘ 11(’(—)ds 1 <i<n, wheresy, =0,

sp,=1 and s; _E(Ti +Tiy1),1<i<n-—1, where K() is a
kernel function, supported to have compact support and satisfy
supp(K) = [-1,1], suplK(x)|<C <o, [K(s)ds=1 and
K(s) = K(—s) and h,, is a sequence of bandwidth parameters
which tends to zero asn — oo, W = (W, ..., W,,) with W, = W; —
ww(T) = Wi = X7y 0y (MW, ¥ = (¥, ..,7,) with ¥, =Y, -
wy(T) =Y, =Xy wp;(T)Y;and Z = (Zy, ..., Z,) with Z; = Z; —
w,(Ty) = Z;y — X7=; wyj(T)Z;, we can get the nonparametric
function estimation as §(t) = E(Y; — X;8 — Z;b|T =t) = E(Y; —
WiB — Z;bIT = t) = i wn;(D(Y; — W;B — Z;b).

In the real data world, it is quite natural that strong linear
dependence arises between the columns of X and this linear
dependence situation is called as multicollinearity. Under
multicollinearity case, we may encounter some undesirable
result like a large variance of f that deviates from its true value.
To solve this undesirable result, estimators and predictors
alternative to § and b can be suggested.

The most commonly preferred approach to overcome
multicollinearity problem is the ridge approach [4] in LMs. By
following [5-6] in LMMs, the Kernel ridge predictors which are
the Kernel ridge estimator and predictor in PLMMeMs for a given
ridge biasing parameter k > 0 are derived by [7] respectively, as

Bie=WTVIW — tr(V ™) Iy, +
k1) Y(WTV-1Y), (5)

by = DZTVYY — Wy). (6)
Then, using the Kernel ridge predictors given by Egs. (5) and (6),
the estimate of the ridge nonparametric function is obtained as

i) = X7y wnj (Y — Wby — Z;by).

Another popular attempt is Liu’s approach [8] in LMs. With the
help of [9] in LMs and [10] in LMMs, the Kernel Liu predictors
which are the Kernel Liu estimator and predictor in PLMMeMs
for a given Liu biasing parameter 0 < d < 1 are given by [11],
respectively as

Ba=WTVIW —tr(V-H)Z,, + 7N
L) Y(WTV=1Y +dl,),
by =DZTV-YY - Why), (8)

Then, using the Kernel Liu predictors given by Egs. (7) and (8),
the estimate of the Liu nonparametric function is obtained as

Ga(t) = Xy wn (Y — WiBa — Z;by).
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Both Kernel ridge and Kernel Liu predictors given by Egs. (5-8)
are biased prediction approaches that are suggested by using
some prior information [9] in order to eliminate the negative
effects of the multicollinearity problem in PLMMeMs. In addition
to these two approaches, our goal in this article is to propose a
new biased prediction approach in PLMMeMs by taking a convex
combination of Kernel ridge and Kernel Liu predictors as prior
information. This new approach called the modified Kernel ridge
is such a convex combined approach that it results in unifying the
advantages of the Kernel ridge prediction and Kernel Liu
prediction. Since it is a combination of both Kernel ridge and
Kernel Liu approaches, it is thought to be more successful than
Kernel ridge and Kernel Liu approaches in minimizing the
negative effects of multicollinearity. Then, the rest of this paper
is structured as follows: Section 2, the new predictors in
PLMMeMs are characterized. In Section 3, we make some mean
square error comparisons and Covid-19 data analysis under
known measurement errors and covariance matrix is done in
Section 4. In Section 5, a simulation study is also done. Finally,
concluding remarks are given in Section 6.

2. The Modified Kernel Ridge Predictors

Our aim in this section is to suggest the modified Kernel ridge
prediction approach for PLMMeMs using the idea of the modified
ridge estimation in linear models [9] and in LMMs [12]. We know

([Xﬁ] 5 PZ']) which means

that b and Y are jointly Gaussian dlstrlbuted. For a given b the
conditional distribution of ¥ is given as Y|b~N(Xg + Zb,X).
Then, the joint density of ¥ and b is

f(¥,b) = f(Y|b)f (b) = (2m)~(+@/2|z|~4/2| D=1/

X exp {—%[(17 -XB _Zb)Tz‘l(V - %8 - Zb) + bTD—lb]}‘

that under model (2), [Y

where |.| denotes the determinant of a matrix. logf(Y,b) is
derived by dropping the constant term as

= logf(Y|b) + logf (b)
1 ~ ~ 5\ w_1/c 5 5 -
= —2{{(7 - %8 - Zb)"s~1(Y — X — Zb) + b™D b3,
and so, a penalization term with regularization parameter § =
—~ > Oisadded to logf (7, b),

logf (7,b) — k(1 + d)Tp. 9)

Here, we use the prior information from [9] and [13] to chose the
stochastic linear restriction 0 =.,/k(1 +d)f + €. The partial
derivatives of Eq. (9) with respect to the elements of § and b are

taken equal to zero, then, by switching § and b by [)A’k,d and Bk'd,
respectively.

XTZ7HY — KBra) — k(1 + d)Pra — (10)

XTZ_IZBk‘d = 0,

TNV — XBra) — (27277 + (11)
D_l)Bkld = O,

are obtained. Egs. (10) and (11) are also equal the matrix form

given by

XTy17

()?Tz‘l)? +k(1+dI,
VAPV

VAP

L) a2
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(i
bk,d

)

With [14]’s approach, Eq. (12) can be rewritten as

()?Tl‘lf’)
ZTyy )

Cop=aTs7 7 +9, (13)

where ¢ = (B4, br )7, w = (X,2), 9 = (k(1+ d)BT,0T)T and
1

C=w'2'w+D*" is full rank with D* = [k(1+d) by 0] and
0 D

k(1 + d)lp D(il] where Moore-Penrose inverse shown

b
0
by the superscript ‘+’. With the regularization of Eq. (13) § is

obtained as

$=Clw™s 1Y + c1Y, (14)

where C~1 is the inverse formula of the partitioned matrix [15].
After ™1 is found and putting into Eq. (14), the modified Kernel
ridge estimator and predictor are obtained, respectively, as

ﬁk,d = (X~TV_1X + k(l +
dDI,) H(XTVY),

Bk,d = DZTV_l(? - Wﬁk,d)'
Since the disturbance of measurement error U is existed, we need

to carry out correction for attenuation. Thus, we redefine the
modified Kernel ridge estimator and predictor, respectively, as

Bra=WTVAIW —tr(V"1) 2 + (15)
k(1 +d)L,) Y (WTv-1Y),
Ek,d = DZTV_I(}; - Wﬁ’\k,d)r (16)

with an estimate of the modified Kernel ridge nonparametric
component gy q(t) = X7, wnj(t)(yj —WiBka — Zjbk,d)-
3. Some Mean Square Error Comparisons

Under specific matrices L € RP*S" and M € R, we
demonstrate the prediction of PLMMeM as u = LT + MTb
[16,17] for s" = 1. By using Egs. (3)-(8) and Egs. (15) and (16),
the predictors of u under the Kernel, the Kernel ridge, the Kernel
Liu and the modified Kernel ridge predictors are definable,
respectively, as

f=L"g+M'h=Qp+MDI"VY,

fix = "By + M"hy = QB + MTDZTV'Y,

fig =L"Bg +M"by = QB + MTDZTV Y,

fira = L B + M bya = QBya + MTDZTV'Y,
where Q = LT — MTDZTV1W.

The matrix mean square error (MMSE) criterion is used to
compare the betterness of f, fly, fig and fiy 4. By following [18],
the MMSE:s for f, fix, fig and fiy 4 are calculated, respectively, as

MMSE () = QMMSE(B)QT + M (D — DZTV~-'ZD)M,
MMSE (fi,,) = QMMSE(8,)QT + M (D — DZTV~'ZD)M,
MMSE (fig) = QMMSE (8,)QT + MT(D — DZTV-1ZD)M,

MMSE (A.q) = QUMSE (B, )Q” + MT(D — DZTV-1ZD)M,
where
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MMSE(B) =N~1,

MMSE(B,) = No*NN;t + k2N BBTNY,

MMSE(f4) = Ny 'NgN~INgNy L + (1 — d)2N, 1 BBTN, 2,
MMSE (Bia) = NNig + (Nia = Ip)BB” (Nia — I,), where
N=WTVW — tr(V")Zu).Np = (N + ),

N = (WTVIW — tr(V" )y, + k),

Ny = (WTVIW — tr(V"1)Zyy + dl,),

Nia = WTVIW — tr(V"1)Z,, + k(1 + A)y). the

following theorems can be presented:

Then,

Theorem 3.1. The estimator ,[?k,d dominates the estimator £ in
the MMSE sense iff

BT (Nya — p)T(N_1 - Nk,dN_lNkT,d)_l(Nk,d -L)B <1

Theorem 3.2. The estimator f; ; dominates the estimator f in
the MMSE sense iff

T _ — -
BT (Nia — p) ((NgINNgt = Nigg NN ) +
K2NZBBTNTY) (N — 1,)B < 1.

Theorem 3.3. The estimator ,l?k,d dominates the estimator 8, in
the MMSE sense iff

B" (Nia — 1,)" (N *NgN~*Ng Ny ' — NigN7Ni ) + (1=
d)2Ny BBTN; D (Nig — I,)B < 1.

For the proofs of the theorems 3.1, 3.2 and 3.3 in PLMMeM, [12,
p.37] in LMM can be examined. We modified [12, p.37]’s proofs
which are obtained for LMM to our model PLMMeMs.

4. Covid-19 Data Analysis

For real data analysis the data taken from the Vaccine Tracker
[19] submitted to ECDC through The European Surveillance
System (TESSy) twice a week by European Union/European
Economic Area (EU/EEA) countries. The data includes the
number of vaccine doses distributed by manufacturers to the
country, the number of first, second and unspecified (number of
doses not known whether it was a first or second dose) doses.
These vaccines are administered by age groups which are
children (<18), adolescent and adult population (18+).

In this data application, we use 187 age-specific 14-day
notification rate of reported Covid-19 cases per 100000
population (rate_14_day_per_100k) selected randomly from the
countries Belgium, Czechia, Denmark, Estonia, Ireland, Greece,
Austria, Hungary, Italy, Spain, Slovenia, Slovakia, Portugal, Malta,
Norway, Luxembourg, Netherlands (17 regions) which were
regularly obtained during the week periods 2021-W01, 2021-
W05, 2021-W09, 2021-W13, 2021-W17, 2021-W21, 2021-W25,
2021-W29, 2021-W33, 2021-W37, 2021-W40. To determine
rate_4_week_per_100k, we employ repeated measurements from
denominator (25-49 years old population), first dose, second
dose and vaccine name. Our Covid-19 data can be extracted from
an official website of the European centre for disease prevention
and control [20].

Rate_4_week per_100k is defined as the response (y),
denominator (x;), first dose (x,) and second dose (x3) are
obtained as the explanatory variables (fixed effects) and vaccines
(t) are expressed as nonparametric variable. When we specify
nonparametric part, firstly, we look at which vaccines are used in
the determined weeks in our data set and these vaccines are COM
= Pfizer/BioNTech, AZ = AstraZeneca, MOD = Moderna, BECNBG
= Beijing CNBG, JANSS = Janssen, SPU = Sputnik V and UNK=
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UNKNOWN. Secondly, we specify the vaccine efficacy rate of each
vaccine (COM=0.95, AZ=0.7469, M0OD=0.941, JANSS=0.7735,
SPU=0.9760, BECNBG=0.7934 and UNK=0.8583 are computed as
by taking the geometric mean of the COM, AZ, MOD, BECNBG,
JANSS, SPU vaccines). And lastly, we create the nonparametric
part by taking the geometric mean of the efficacy rates of the
vaccines. Since the regions are randomly selected from 17
countries, random effect is explained as the regions. We log-
transform the variables to make the data conform more closely to
the normal distribution and to improve the model fit since the
distribution of Covid-19 data is right skewed. Then, the PLMMeM
is written as, fori = 1,...,17,j = 1, ...,11,

Yij = Bo + Pixij1 + Paxijz + Baxijz + by + bytime;; + g(t;;)
+ &,

where the ith observation of the jth region of the explanatory
variable (x,, s = 1,2,3) is indicated as x;js, the jth observation of
the ith region of the response is indicated as y;; and time
corresponding to y;; is demonstrated as time;;. h is chosen using
optimal bandwidth selection rule given by [21]. We use the
quartic kernel function K(u) = (15/16)(1 — ujz)zl(lujl <1) for
kernel smoothing regression with the measurement error which
has normal distribution U — N(0,0.25).

In our real data analysis, we select the restricted maximum
likelihood (REML) method which has the smallest AIC/BIC values
for all models from Table 1. The UN(1) variance-covariance
model under AIC and BIC is seen as the best model in modeling
the variance-covariance matrix structure with respect to the
response.

Table 1. Variance-covariance matrix results

Cov. Est. Met. for
struc. Cov. Par. AlC B¢
ML 568.68 594.35
UN
REML 552.50 578.35
ML 567.91 590.38
UN(1)
REML 551.94 574.56
ML 570.43 589.68
vC
REML 555.51 57490
ML 571.23 593.70
CS
REML 556.08 578.70

The abbreviations ”Cov. Struc.” and "Est. Met. for Cov.Par.”
refer to "Covariance Structures” and "Estimation Methods
for Covariance Parameters”

Dreuy, and Eggyy values given in Table 2. Then, viaV = ZDZT +
formula, Vg, values are found.

Table 2. Covariance structures estimates

b [0.0742 0 ]
REML 0 0.4591
Erem 0.88551,g;
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A, = 0.0162¢%93, 1, = 2.1292¢%% 1, = 0.6513¢*%3 and A, =
0.1312e*%% are obtained from the matrix X7V, X. The
20X = 132,076 is used to
min l

measure the extent of multicollinearity and A‘""“‘ > 100 shows
in

mi

condition number calculated as

moderate multicollinearity.

We determine the estimators of the biasing parameters k and d
with a computational algorithm as follows:

1. By using for each A; value, the k value is estimated from

[7] for PLMMeMs as k =k, = z”LAEZ = 12.4055
i=171Pi

when the covariance parameters are estimated by
REML.

After the k value is found from the point 1, the Liu
biasing parameter d is selected as dj, which is given by
Theorem 4.2 [11] where h is determined as multiplying

the upper bound defined in Theorem 4.2 by 0.99 if
p 1 _ 2

=1 2,(1+2) > Ap(1+2,)

fyr —2

=1 (+4)

as 0.9705.

we determined arbitrarily dj,

2z
Ap(1+p)’

The estimates of the fixed parameters and nonparametric
function, the predictions of the random parameters and the scalar
mean square error (SMSE) values for Kernel, Kernel ridge, Kernel
Liu and modified Kernel ridge cases under PLMeM are presented
in Table 3.

We see that in Table 3 the modified Kernel ridge estimator has
better results in the sense of SMSE for k;,, = 12.4055 and d,, =
0.9705 than the Kernel, Kernel ridge and Kernel Liu estimators.
Moreover, we calculate the conditions given by Theorems 3.1, 3.2
and 3.3, respectively, as -0.3274, -0.3273 and -0.3296, which are
smaller than 1. Thus, we also say that the modified Kernel ridge
estimator dominates the Kernel, Kernel ridge and Kernel Liu
estimators on the MMSE criterion.

1
09r
08r
07
06
05
04

Kemel
+  Kemel ridge
———Kemel Liu
—— - Modified Kemel ridge

03
02}

01F

i ; .
-3 1 2
Figure 1. Comparison of the finite sample and asymptotic
distributions of the estimators

Additionally, comparison between the asymptotic distributions
of Kernel (green), Kernel ridge (red), Kernel Liu (blue), modified
Kernel ridge (magenta) estimators and the finite sample
properties are also examined. In Figure 1 where the abscissa is
Z = (Var(g(t,hn))"?(g(t,hn) — E(g(t,hy))) and  the
ordinate is probability. The empirical cumulative distribution
functions (CDFs) of the estimators agree very well with the
normal CDFs.
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Table 3. Data analysis results

Kernel Kernel ridge Kernel Liu Modified Kernel ridge
Bo -4.0588e 10 -2.3038e710 -4.0519¢71° -1.6234¢710
B 0.0186 0.0168 0.0186 0.0153
B, -0.0172 -0.0161 -0.0172 -0.0152
Bs -0.0095 -0.0094 -0.0095 -0.0093
b, -1.3563¢7%¢ -1.6294e71° -6.4321e713 -2.2625¢71°
b, -0.6394 -0.6401 -0.6394 -0.6408
g 6.3563 6.3727 6.3563 6.3860
SMSE 0.0713 0.0281 0.0711 0.0171

Table 4. Estimated and predicted MSE values with g, (t) function

[Sy)

m y? g Brow Ba Browa by ba b

kLw.d
090 1309997 1309915 1309914 1.283515  0.008436 0.008435 0.008431 0.008316
15 095 0779188 0779120 0779119 0761362  0.009774 0.009773 0.009769 0.009614
099 0830462 0.830393 0830392 0811062  0.010974 0.010973 0.010969 0.009924
090 0947033 0947019 0947018 0938671  0.002307 0.002306 0.002304 0.002219
30 095 0696424 0.696413 0.696412 0.689989  0.001687 0.001686 0.001682 0.001537
099 0633088 0.633077 0.633076 0.626945  0.003710 0.003709 0.003705 0.003582
090 0976395 0976391 0976390 0971870 0420936 0456935x 0456931x 0456721
10 10 10 10
60 095 0912487 0912484 0912483 0908417  O420959%x  0420958x 0420957x 0420860
10 10 10 10
0.99 0804819 0.804815 0.804814  0.800992 0"‘%3?39)( 0'4%%29)( 04?2%35)( 04?2{?4)(
Table 5. Estimated and predicted MSE values with g, (t) function
m y? g Bruw Ba Bruwa b by ba brypa
090 1.063705 1.063638 1.063631 1.043362  0.008777 0.008776 0.008772 0.008604
15 095 0987899 0987841 0987840 0969730  0.026092 0.026091 0.026090 0.025986
099 1017534 1017466 1.017465 0995898  0.013327 0.013326 0.013324 0.013227
090 0840638 0840625 0840623 0833181  0.001965 0.001964 0.001962 0.001945
30 095 0.800622 0.800609 0.800605 0.792983  0.002950 0.002949 0.002946 0.002845
099 0626170 0626158 0.626157 0.619923  0.003990 0.003989 0.003985 0.003872
090 0985321 0985317 0985316 0980775  CH19945% 0419944x  0.419941x  0419842.x
10 10 10 10
60 095 0896444 0896441 0896440 0892368 421394 0421393x  0.421391x  0.421290x
10 10 10 10
099 0843971 0.843968 0.843967 0.839810 0'4igﬂgx 0'432” 041%%“ 0'43%9”
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5. A Simulation Study

In this section, we will investigate the performances of Kernel,
Kernel ridge, Kernel Liu and modified Kernel ridge estimators in
the sense of the estimated mean square error (EMSE) and the
performances of Kernel, Kernel ridge, Kernel Liu and modified
Kernel ridge predictors in the sense of the predicted mean square
error (PMSE) under known covariance matrix.

By following [22], the fixed effects are calculated as

xijk = (1 - y2)1/2wijk + )/W,:jp+1,i = 1, ., m,
j=1,..n,k=1,.,p,

where wyj, are independent standard normal pseudo-random
numbers and y is specified so that the correlation between any
two fixed effects is given by y? = 0.90,0.95,0.99. And, the fixed
effects number size is selected as p = 3.

We think m = 15,30,60 subjects and n; = 10 observation per
subject and then, we report the simulation results with the
sample sizes of n=Y",n; = 150,300,600. The parameter
vector 8 = (By, ..., Bp)T is chosen as the normalized eigenvector
corresponding to the largest eigenvalue of X7V ~1X so that 878 =
1 (see [23]). Then, the underlying model takes the following form
with ¢ = 2 random effects

Yij = BiXijs + BaXijz + BaXijz + by + bytime;; + g(t;;) + &5,
iid iid
b; = N(0,D),&; = N(0,1,,)

1
where D = [p ll)] is the AR(1) process with p = 0.99 and time;;

shows time which was taken as the same set of occasions, {t;; = j

fori=1,.,m j=1,..,n} k and d are selected as used in the
Covid-19 data analysis.

We think two functions that the first is the piecewise linear
continuous function g, (t) = S(t) as an example of the ordinarily
smooth nonparametric function and the second is the error
function g,(t) =erf (t) as an example of the supersmooth
nonparametric function. Supposing that T — Uniform[0,1],

hy! =1.2(Inn)%?> and using the Gaussian Kernel function
2

o)

e 2

K@) =73
these models with the measurement error which has normal
distribution U - N(0,0.5).

for the models have nonparametric part, we examine

For each choice of m, y and g(t), the experiment is replicated 500
times by generating response variable and the EMSE for any
estimator § of § and the PMSE for any predictor b of b are
calculated, respectively, as

500
1, .
EMSE(f) = %Z(ﬁr -8 (B - B),
r=1

500
- 1 . .
PMSE(B) = =55 > (b, — b) (5, ~ b),
r=1

where the subscript r refers to the rth replication.

The simulation results are summarized in Tables 4 and 5. When
we examine the results of Tables 4 and 5, we see that EMSE values
of the modified Kernel ridge estimator and PMSE values of the
modified Kernel ridge predictor are smaller than the others in all
conditions. However, this superiority situation is more clearly be
seen in large sample (for 600) and high correlation value (for
0.99). Additionally, we can also say that the superiority of the
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estimators/predictors over each other may vary depending on

the selection of the biasing parameters.
6. Concluding Remarks

In this article, the modified Kernel ridge predictors have been
studied with their MMSE comparisons under multicollinearity in
PLMMeMs. To show the theoretical results, a Covid-19 analysis
and a simulation study are given and these analyses demonstrate
that although the modified Kernel ridge estimator is better than
the Kernel, Kernel ridge and Kernel Liu estimators, the
superiority of the modified Kernel ridge estimator depends on
the chosen values of the biasing parameters.
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