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Introduction 

One of the earliest mathematical models for the 
dynamic change of populations was provided by Thomas 
Malthus. The Malthusian model posits that the rate of 
population growth in a country is directly proportional to 
its total population, denoted as 𝒫(𝑡) at any given time 𝑡. 
Based on this theory, the growth of the population at a 
given time is directly proportional to the projected 
increase in population in the future. From a mathematical 
perspective, this assumption can be expressed such that 𝜅 
is a constant of proportionality. The proportionality can be 
expressed using the following differential equation: 

 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝜅𝑃(𝑡).                                                                    (1) 

 
The mathematical representation of population growth is 
described as a first-order ordinary linear differential 
equation, 

 
𝑑𝑃

𝑑𝑡
= 𝜅𝑃 

 
with initial condition 

 
𝑃(𝑡0) = 𝑃0 

 
where, 𝑃 represents the population at time 𝑡, 𝑃0 indicates 
the starting population at time 𝑡0 and 𝜅 is a real number 
greater than zero. Mathematically, the decay problem of 
substances is written as a first-order ordinary linear 
differential equation 

 
𝑑𝑃

𝑑𝑡
= −𝜅𝑃                                                                             (2) 

 
with initial condition 

 
𝑃(𝑡0) = 𝑃0 

 
where, 𝑃 represents the population at time 𝑡, 𝑃0 
represents the initial population at time 𝑡0 and 𝜅 is a real 
number greater than zero. Based on these equations, it 
can be deduced that the population graph demonstrates 
exponential growth [1]. 

Due to limited resources such as food, space, and 
other factors, competition arises, resulting in a deviation 
from exponential population growth.  As a result, the 
logistic model serves as a replacement for the Malthus 
model.  The nonlinear biological models encompass a 
logistic growth model within a population, represented by 
the equation 

 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑟𝑃(𝑡) (1 −

𝑃(𝑡)

𝜅
)                                           (3) 

 
where 𝑟 is a positive constant and 𝜅 is the carrying 
capacity. The function 𝑃(𝑡) denotes the population of the 

species at time 𝑡, while the expression 𝑟𝑃(𝑡) (1 −
𝑃(𝑡)

𝜅
) 

represents the per capita growth rate. The non-
dimensionalization of equation (3) is achieved by 

 

𝜈(𝜏) =
𝑃(𝑡)

𝜅
, 𝜏 = 𝑟𝑡 
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which yields 
 

𝑑𝜈

𝑑𝜏
= 𝜈(1 − 𝜈).                                                                   (4) 

 
If the initial condition is given as 𝑃(0) = 𝑃0, then 𝜈(0) =
𝑃0

𝜅
 . Therefore, the analytical solution of equation (4) is 

obtained as 
 

𝜈(𝜏) =
1

1 + (
𝜅
𝑃0

− 1) 𝑒−𝜏
 .                                            (5) 

 
A predator-prey relationship describes the dynamic 

between two species and how they affect one another. In 
this case, one species is in fact consuming the other 
species for food. A predator is an organism that consumes 
or hunts other organisms for food, while a prey is an 
organism that is slain by another organism for food. 
Examples of predators with their prey are the fox and the 
rabbit, the lion, and the zebra. The concept of predator-
prey dynamics extends beyond animals and encompasses 
plants as well. The relationship between the grasshopper 
and the leaf serves as an illustrative example in this 
context. Consider the predator–prey models: Lotka–
Volterra systems as an interacting species model to serve 
as a model for interacting species that are governed by 

 
𝑑𝑁

𝑑𝑡
= 𝑁(𝑎 − 𝑏𝑃)                                                                (6) 

𝑑𝑃

𝑑𝑡
= 𝑃(𝑐𝑁 − 𝑑)                                                                 (7) 

 
where 𝑎, 𝑏, 𝑐 and 𝑑 are constants [2]. Here 𝑁 = 𝑁(𝑡) 
represents the prey population, and 𝑃 = 𝑃(𝑡)  represents 
the population of predators at the time 𝑡. The non-
dimensionalization of the system (6)-(7) is achieved by 

 

𝑤(𝜏) =
𝑐𝑁(𝑡)

𝑑
,   𝜈(𝜏) =

𝑏𝑃(𝑡)

𝑎
,       𝜏 = 𝑎𝑡, 𝜇 = 𝑑/𝑎 

 
and it turns into 

 
𝑑𝑤

𝑑𝜏
= 𝑤(1 − 𝜈)                                                                   (8) 

𝑑𝜈

𝑑𝜏
= 𝜇[𝑔(𝑤, 𝜈) − 𝜈].                                                         (9) 

 
Integral transforms are a valuable mathematical tool 

for solving a wide range of processes and phenomena in 
the fields of science, engineering, and real-life 
applications. These transforms allow us to express various 
complex problems in a mathematical framework, enabling 
their solution through rigorous mathematical techniques. 
The Laplace transform is widely recognized as the most 
commonly used among these various transforms. Many 
novel integral transformations, such as Laplace-Carson, 
Sumudu, Aboodh, Elzaki, Mohand, Sawi, Shehu, Sadik, 

Anuj, Rishi, Kamal, Kharrat-Toma, and Kashuri-Fundo have 
been developed in recent years in an effort to help 
scientists and engineers tackle increasingly complex issues 
in a variety of fields. Many researchers have analyzed the 
duality between various integral transforms, particularly 
the Laplace transform [3-10]. Rao [11] used the ZZ 
transform to handle natural growth and decay problems. 
Aggarwal et al. [12-18] applied Laplace, Elzaki, Kamal, 
Aboodh, Mahgoub, Mohand, Shehu transforms to solve 
growth and decay problems. Aggarwal and Bhatnagar [19] 
demonstrated how to use the Sadik transform to resolve 
growth and decay problems. Singh and Aggarwal [20] 
investigated population growth and decay problems with 
the Sawi transform. Verma et al. [21] scrutinized the 
applications of the Dines Verma Transform for handling 
population growth and decay problems. Bansal et al. [22] 
provided examples of applications for the Anuj transform. 
Pamuk and Soylu [23] utilized the Laplace transform 
method for logistic population growth and predator 
models. Additional works on integral transforms can be 
found in references [23-30]. 

A novel integral transform, the Formable transform, 
was described by Saadeh and Ghazal [31]. They proved 
some properties of this transform for handling both 
ordinary and partial differential equations. Additionally, 
they investigated the duality between the new transform 
and some existing transforms. Güngör [32] utilized 
Formable transform to solve linear Volterra integral 
equations of the convolution type.  Ghazal et al. [33] 
introduced the concept of the double Formable 
transform, demonstrated its characteristics, and used it to 
solve partial integro-differential equations. Saadeh et al. 
[34] gave illustrative applications of heat equations via the 
use of numerical examples. For the purpose of resolving 
time-fractional partial differential equations, Saadeh et al. 
[35] used the Formable transform decomposition 
method. Prajapati and Meher [36] investigated a time-
fractional Rosenau-Hyman model based on a KdV-like 
equation with compacton solutions using a robust 
homotopy analysis method with a formable transform. 
The Formable integral transform of the Hilfer-Prabhakar 
and its regularized variant of the Hilfer-Prabhakar 
fractional derivative were developed by Khalid and Alha 
[37]. 

The aim of this study is to present the concept of 
Formable transform as a technique that facilitates the 
solution of linear differential equations through growth 
and decay models as well as nonlinear differential 
equations through biological models, specifically those 
comprising a logistic growth model to study population 
dynamics and the prey-predator model to analyze 
ecological interactions. 

 

Materials and Methods 

This section will present the definition of the Formable 
transform, along with an exploration of its properties and 
its relationship to other widely recognized transforms. 

 



Güngör / Cumhuriyet Sci. J., 44(4) (2023) 741-752 

743 

Definition 1.  [31] If there exists a positive number 𝑀 
that satisfying 

 
|𝜈(𝑡)| ≤ 𝑀𝑒𝛼𝑡 , 𝑀 > 0, 𝛼 > 0, ∀𝑡 ≥ 0 

 
then the function 𝜈(𝑡) is said to have exponential order 
on every finite interval in [0, +∞). 

 
Definition 2. [31] Over the set of functions 
 

𝒲 = {𝜈(𝑡): ∃𝛾, 𝜌1, 𝜌2 > 0, |𝜈(𝑡)| < 𝛾𝑒
𝑡

𝜌𝑖 , if 𝑡 ∈ [0, ∞)}, 

 
the Formable integral transform of an exponential order 
function 𝜈(𝑡) is described as 

 

ℜ[𝜈(𝑡)] = 𝒱(𝑠, 𝑢) = 𝑠 ∫  
∞

0

𝑒−𝑠𝑡𝜈(𝑢𝑡)𝑑𝑡.                    (10) 

 
This is equivalent to 
 

ℜ[𝜈(𝑡)] =
𝑠

𝑢
 ∫  

∞

0

𝑒
−𝑠𝑡

𝑢 𝜈(𝑡)𝑑𝑡                                         (11) 

 

where 𝑠 and 𝑢 are the variables of Formable transform. 
The expression  
 

ℜ−1[𝒱(𝑠, 𝑢)] = 𝜈(𝑡) =
1

2𝜋𝑖
∫

1

𝑠
 

𝑐+𝑖∞

𝑐−𝑖∞

𝑒
𝑠𝑡
𝑢 𝒱(𝑠, 𝑢)𝑑𝑠. 

 
denotes the inverse Formable transform of a function 
𝜈(𝑡). 

 
Theorem 1. (Linearity property) [31] If 𝜈1(𝑡) and 𝜈2(𝑡) 

are two functions in 𝒲, then 𝑐1𝜈1(𝑡) + 𝑐2𝜈2(𝑡) ∈ 𝒲 
where 𝑐1 and 𝑐2 are arbitrary constants, and 

 
ℜ[𝑐1𝜈1(𝑡) + 𝑐2𝜈2(𝑡)] = 𝑐1ℜ[𝜈1(𝑡)] + 𝑐2ℜ[𝜈2(𝑡)]. 

 
Theorem 2. (Formable transform of the derivative) 

[31] Let’s take the function 𝜈(𝑘)(𝑡) is the 𝑘-th derivative 

of the function 𝜈(𝑡). If 𝜈(𝑘)(𝑡) ∈ 𝒲 for 𝑘 = 0,1,2, …, then  
 

ℜ[𝜈(𝑘)(𝑡)] =
𝑠𝑘

𝑢𝑘
𝒱(𝑠, 𝑢) − ∑  

𝑘−1

𝑚=0

(
𝑠

𝑢
)

𝑘−𝑚

𝜈(𝑚)(0). 

 
 

The Formal transform and inverse of certain functions are presented below [31]: 

𝜈(𝑡) ℜ[𝜈(𝑡)] = 𝒱(𝑠, 𝑢) 

1 1 

𝑡 
𝑢

𝑠
 

𝑡𝑛

𝑛!
 

𝑢𝑛

𝑠𝑛
 

𝑒𝛽𝑡  
𝑠

𝑠 − 𝛽𝑢
 

𝑡𝑛

𝑛!
𝑒𝛽𝑡  

𝑠𝑢𝑛

(𝑠 − 𝛽𝑢)𝑛+1
 

sin (𝛽𝑡) 
𝛽𝑠𝑢

𝑠2 + 𝛽2𝑢2
 

cos (𝛽𝑡) 
𝑠2

𝑠2 + 𝛽2𝑢2
 

sinh (𝛽𝑡) 
𝛽𝑠𝑢

𝑠2 − 𝛽2𝑢2
 

cosh (𝛽𝑡) 
𝑠2

𝑠2 − 𝛽2𝑢2
 

 

 

𝒱(𝑠, 𝑢) 𝜈(𝑡) = ℜ−1[𝒱(𝑠, 𝑢)] 

1 1 

𝑢

𝑠
 𝑡 

𝑢𝑛

𝑠𝑛
 

𝑡𝑛

𝑛!
 

𝑠

𝑠 − 𝛽𝑢
 𝑒𝛽𝑡  

𝑠𝑢𝑛

(𝑠 − 𝛽𝑢)𝑛+1
 

𝑡𝑛

𝑛!
𝑒𝛽𝑡 

𝛽𝑠𝑢

𝑠2 + 𝛽2𝑢2
 sin (𝛽𝑡) 

𝑠2

𝑠2 + 𝛽2𝑢2
 cos (𝛽𝑡) 

𝛽𝑠𝑢

𝑠2 − 𝛽2𝑢2
 sinh (𝛽𝑡) 

𝑠2

𝑠2 − 𝛽2𝑢2
 cosh (𝛽𝑡) 

 



Güngör / Cumhuriyet Sci. J., 44(4) (2023) 741-752 

744 

The definitions of many integral transforms that can be found in [3-5, 7-10, 12-15, 17, 18, 20, 31] are given in a 
tabular format below: 
Table 1. Definitions of some integral transforms  

Integral Transform Definition 

Laplace transform 
ℒ[𝜈(𝑡)] = ∫  

∞

0

𝜈(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 𝐹(𝑠) 

Sumudu transform 
𝒮[𝜈(𝑡)] = ∫  

∞

0

𝜈(𝑠𝑡)𝑒−𝑡𝑑𝑡 = 𝐺(𝑠) 

Elzaki transform 
𝐸[𝜈(𝑡)] = 𝑠 ∫  

∞

0

𝜈(𝑡)𝑒
−𝑡
𝑠 𝑑𝑡 = 𝐶(𝑠) 

Natural transform 
ℕ+[𝜈(𝑡)](𝑠, 𝑢) =

1

𝑢
∫  

∞

0

𝑒
−𝑠𝑡

𝑢 𝜈(𝑡)𝑑𝑡 = 𝑁(𝑠, 𝑢) 

Shehu transform 
𝕊[𝜈(𝑡)] = ∫  

∞

0

𝑒
−𝑠𝑡

𝑢 𝑣(𝑡)𝑑𝑡 = 𝑄(𝑠, 𝑢) 

Aboodh transform 
 

𝒜[𝜈(𝑡)] =
1

𝑠
∫ 

0

𝜈(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 𝐴(𝑠) 

Kamal transform 
𝒦[𝜈(𝑡)] = ∫  

∞

0

𝜈(𝑡)𝑒
−𝑡
𝑠 𝑑𝑡 = 𝐻(𝑠) 

Mohand transform 
ℳ[𝜈(𝑡)] = 𝑠2 ∫  

∞

0

𝜈(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 𝐼(𝑠) 

Sawi transform 
𝑆[𝜈(𝑡)] =

1

𝑠2
∫  

∞

0

𝑣(𝑡)𝑒
−𝑡
𝑠 𝑑𝑡 = 𝐽(𝑠) 

Let 𝒱(𝑠, 𝑢) be the Formable transform of the function 
𝑣(𝑡). Hence, the relationships between the Formable 
transform and other certain integral transforms are 
illustrated in the following manner: 

 

• Formable–Laplace duality [31]: If 𝐹(𝑠) is the 
Laplace transform of the function 𝑣(𝑡), then 

 
𝒱(𝑠, 1) = 𝑠𝐹(𝑠).  
 

Indeed, it is clear that 𝒱(𝑠, 1) = 𝑠 ∫  
∞

0
𝑒−𝑠𝑡𝜈(𝑡)𝑑𝑡 =

𝑠𝐹(𝑠) from (10). 
 

• Formable–Sumudu duality [31]: If 𝐺(𝑢) 
represents the Sumudu transform of the function 
𝑣(𝑡), then 

 
𝒱(1, 𝑢) = 𝐺(𝑢). 
 

In fact, it is evident that 𝒱(1, 𝑢) = ∫  
∞

0
𝑒−𝑡𝜈(𝑢𝑡)𝑑𝑡 =

𝐺(𝑢) from (10). 
 

• Formable–Elzaki duality [31]: If 𝐶(𝑢) is the Elzaki 
transform of the function 𝑣(𝑡), then 

 

 𝒱(1, 𝑢) =
1

𝑢2 𝐶(𝑢). 

 
By using the equation (11), one gets 𝒱(1, 𝑢) =

1

𝑢
 ∫  

∞

0
𝑒

−𝑡

𝑢 𝜈(𝑡)𝑑𝑡 =
1

𝑢2 (𝑢 ∫  
∞

0
𝜈(𝑡)𝑒

−𝑡

𝑢 𝑑𝑡) =
1

𝑢2 𝐶(𝑢). 

 

• Formable–Natural duality [31]: If 𝑁(𝑠, 𝑢) is the 
Natural transform of the function 𝑣(𝑡), then 

 

𝒱(𝑠, 𝑢) = 𝑠𝑁(𝑠, 𝑢). 
 

In fact, one obtains 𝒱(𝑠, 𝑢) =
𝑠

𝑢
 ∫  

∞

0
𝑒

−𝑠𝑡

𝑢 𝜈(𝑡)𝑑𝑡 =

𝑠
1

𝑢
∫  

∞

0
𝑒

−𝑠𝑡

𝑢 𝜈(𝑡)𝑑𝑡 = 𝑠𝑁(𝑠, 𝑢) from (11). 

 

• Formable–Shehu duality: If 𝑄(𝑠, 𝑢) is the Shehu 
transform of the function 𝑣(𝑡), then 

 

𝒱(𝑠, 𝑢) =
𝑠

𝑢
𝑄(𝑠, 𝑢). 

 

It is readily apparent that 𝒱(𝑠, 𝑢) =
𝑠

𝑢
 ∫  

∞

0
𝑒

−𝑠𝑡

𝑢 𝜈(𝑡)𝑑𝑡 =
𝑠

𝑢
𝑄(𝑠, 𝑢) from (11). 

 

• Formable–Aboodh duality: If 𝐴(𝑢) is the Aboodh 
transform of the function 𝑣(𝑡), then 

 

𝒱(1, 𝑢) =
1

𝑢2 𝐴 (
1

𝑢
). 

 

Indeed, one gets 𝒱(1, 𝑢) =
1

𝑢
 ∫  

∞

0
𝑒

−𝑡

𝑢 𝜈(𝑡)𝑑𝑡 =

1

𝑢2 𝑢 ∫  
∞

0
𝑒

−𝑡

𝑢 𝜈(𝑡)𝑑𝑡 =
1

𝑢2 𝐴 (
1

𝑢
) by using the equation (11). 

 

• Formable–Kamal duality: If 𝐻(𝑢) is the Kamal 
transform of the function 𝑣(𝑡), then 

 

𝒱(1, 𝑢) =
1

𝑢
𝐻(𝑢). 

 

It is clear that 𝒱(1, 𝑢) =
1

𝑢
 ∫  

∞

0
𝑒

−𝑡

𝑢 𝜈(𝑡)𝑑𝑡 =
1

𝑢
𝐻(𝑢) from 

(11). 
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Applying of Formable Transform for Exponential 
Growth and Decay Model  

In this part, the Formable transform is applied to find 
solutions to the problems of population growth and 
decay, which are mathematically described by equations 
by (1) and (2). Taking Formable transform on either side 
of the equation (1), we find 

 

 ℜ [
𝑑𝑃(𝑡)

𝑑𝑡
] = 𝑘ℜ[𝑃(𝑡)]. 

 
By implementing the Formable transform of the derivative 
of the function, we get 

 

 
𝑠

𝑢
ℜ[𝑃(𝑡)] −

𝑠

𝑢
𝑃(0) = 𝑘ℜ[𝑃(𝑡)]. 

 
Hence, we have  

 

 (
𝑠

𝑢
− 𝑘) ℜ[𝑃(𝑡)] =

𝑠

𝑢
𝑃0 

 ℜ[𝑃(𝑡)] =
𝑠

𝑠−𝑘𝑢
𝑃0.                                                  (12) 

 
After applying the inverse Formable transform to either 
side of (12), we can write the result as 

 

𝑃(𝑡) = ℜ−1 [
𝑠

𝑠 − 𝑢𝑘
𝑃0] 

𝑃(𝑡) = 𝑃0ℜ−1 [
𝑠

𝑠 − 𝑘𝑢
] 

𝑃(𝑡) = 𝑃0𝑒𝑘𝑡 

which represents the desired population at the time 𝑡.  
 

Applying the Formable transform on either side of 
equation (2), we find 

 

 ℜ [
𝑑𝑃(𝑡)

𝑑𝑡
] = −𝑘ℜ[𝑃(𝑡)]. 

 
Now, by implementing the Formable transform of the 
derivative of the function, we obtain 

 

 
𝑠

𝑢
ℜ[𝑃(𝑡)] −

𝑠

𝑢
𝑃(0) = −𝑘ℜ[𝑃(𝑡)]. 

 
 Therefore, we have  

 

 (
𝑠

𝑢
+ 𝑘) ℜ[𝑃(𝑡)] =

𝑠

𝑢
𝑃0 

 ℜ[𝑃(𝑡)] =
𝑠

𝑠+𝑘𝑢
𝑃0.                                                     (13) 

 
After applying the inverse Formable transform on either 
side of (13), we get 

 

𝑃(𝑡) = ℜ−1 [
𝑠

𝑠 + 𝑘𝑢
𝑃0] 

𝑃(𝑡) = 𝑃0ℜ−1 [
𝑠

𝑠 + 𝑘𝑢
] 

𝑃(𝑡) = 𝑃0𝑒−𝑘𝑡 
 

which represents the desired population at time 𝑡. 
 

Applying of Formable Transform for Logistic 
Growth Model 

Take into account the model equation in the form of 
 

 
𝑑𝜈

𝑑𝑡
= 𝜈 − ℎ(𝜈), 𝜈(0) = 𝜈0                                        (14) 

 
where ℎ represents a nonlinear function of 𝜈. Therefore, 
we suppose that the solution, 𝜈 of (14) has a 
representation in the form of an infinite series 

 
 𝜈 = 𝜈(𝑡) = ∑  ∞

𝑛=0 𝑐𝑛𝑡𝑛                                             (15) 
 

and it fulfills the necessary requirements for the existence 
of the Formable transform. Once Formable transform is 
applied to either side of the Equation (14), it is obtained 
as  

 

  ℜ [
𝑑𝜈

𝑑𝑡
] = ℜ[𝜈] −  ℜ[ℎ(𝜈)] 

  
𝑠

𝑢
𝒱(𝑠, 𝑢) −

𝑠

𝑢
𝜈(0) = 𝒱(𝑠, 𝑢) − ℋ(𝑠, 𝑢) 

 
where ℜ[𝜈] = 𝒱(𝑠, 𝑢) and ℜ[ℎ(𝜈)] = ℋ(𝑠, 𝑢) are 
Formable transforms of the functions 𝜈(𝑡) and ℎ(𝜈), 
respectively. By rearranging the terms in the equation, the 
expression 𝒱(𝑠, 𝑢) can be determined as 

 𝒱(𝑠, 𝑢) = 𝜈0
𝑠

𝑠−𝑢
−

𝑢ℋ(𝑠,𝑢)

𝑠−𝑢
.                                      (16) 

 
Therefore, under the assumption that the inverse 
Formable transform ℜ−1 exists and applying it to the 
expression (16), the equation can be expressed as follows: 

 𝜈(𝑡) = 𝜈0𝑒𝑡 − ℜ−1 [
𝑢ℋ(𝑠,𝑢)

𝑠−𝑢
]. 

 

Applying of Formable Transform for Prey-Predator 
Model 

Let us consider the system of non-linear differential 
equations that determines the predator-prey model. 

 
𝑑𝑤

𝑑𝑡
= 𝑤 − ℎ(𝑤, 𝜈)                                                       (17) 

𝑑𝜈

𝑑𝑡
= 𝜇[𝑔(𝑤, 𝜈) − 𝜈]                                                  (18) 

   
with initial conditions 

 
𝑤(0) = 𝑤0, 𝜈(0) = 𝜈0                                                 (19) 
 

where ℎ and 𝑔 are nonlinear functions of 𝑤 and 𝜈 and also 
𝜇 be a positive constant. It is assumed that the solutions 
𝑤 and 𝜈 of the system (17)-(18) possess infinite series 
expansions in the following form: 
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𝑤(𝑡) = ∑  

∞

𝑛=𝑜

𝑎𝑛𝑡𝑛, 𝜈(𝑡) = ∑  

∞

𝑛=0

𝑐𝑛𝑡𝑛.                     (20) 

 
Furthermore, the necessary criteria for the existence of 
their Formable transforms are satisfied by them. By 
utilizing the Formable transform for the equations (17)-
(18) and utilizing equation (19), we obtain 

  
𝑠

𝑢
𝒲(𝑠, 𝑢) −

𝑠

𝑢
𝑤0 = 𝒲(𝑠, 𝑢) −  ℋ(𝑠, 𝑢)            (21) 

𝑠

𝑢
𝒱(𝑠, 𝑢) −

𝑠

𝑢
𝜈0 = 𝜇[𝐺(𝑠, 𝑢) − 𝒱(𝑠, 𝑢)]            (22) 

 
where  

ℜ[𝑤(𝑡)] = 𝒲(𝑠, 𝑢), ℜ[ℎ(𝑤(𝑡), 𝜈(𝑡))] = ℋ(𝑠, 𝑢),

ℜ[𝜈(𝑡)] = 𝒱(𝑠, 𝑢), ℜ[𝑔(𝑤(𝑡), 𝜈(𝑡))] = 𝐺(𝑠, 𝑢) are the 

Formable transforms of the functions 

𝑤(𝑡), ℎ(𝑤(𝑡), 𝜈(𝑡)), 𝜈(𝑡) and 𝑔(𝑤(𝑡), 𝜈(𝑡)), respectively. 

By solving the equations (21)-(22) for 𝒲(𝑠, 𝑢) and 
𝒱(𝑠, 𝑢), one gets 

 

𝒲(𝑠, 𝑢) =
𝑠

𝑠 − 𝑢
𝑤0 −  

𝑢

𝑠 − 𝑢
ℋ(𝑠, 𝑢)                       (23) 

𝒱(𝑠, 𝑢) =
𝑠

𝑠 + 𝜇𝑢
𝜈0 +

𝑢𝜇

𝑠 + 𝜇𝑢
𝐺(𝑠, 𝑢).                     (24) 

 
Assuming inverse Formable transforms exist and utilizing 
them to the system, we obtain  

 

𝑤(𝑡) = 𝑤0𝑒𝑡 − ℜ−1 [
𝑢ℋ(𝑠, 𝑢)

𝑠 − 𝑢
] 

𝑣(𝑡) = 𝑣0𝑒−𝜇𝑡 + 𝜇ℜ−1 [
𝑢

𝑠 + 𝜇𝑢
𝐺(𝑠, 𝑢)] 

 
desired solutions to the initial value problem (17)-(19). 

Applications 

This section presents numerical examples to illustrate 
the efficacy of the Formable transform in problem-solving. 
 
Example 1. The population of a city experiences growth at 
a rate that is directly proportional to the current number 
of people living there. Estimate how many people lived in 
the city at the beginning if the population has doubled 
after three years and 30000 after four years. 
The mathematical model of the mentioned problem can 
be expressed as 
 

 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑘𝑃(𝑡).                                                     (25) 

 
where 𝑘 is the constant of proportionality and 𝑃 
represents number of individuals that are currently living 
in the city at any given time 𝑡. Suppose that 𝑃0  represents 
the beginning population of the city at 𝑡 = 0. By applying 

the Formable transform to both sides of equation (25), the 
following result is obtained: 
 

ℜ [
𝑑𝑃(𝑡)

𝑑𝑡
] = 𝑘ℜ[𝑃(𝑡)] 

𝑠

𝑢
ℜ[𝑃(𝑡)] −

𝑠

𝑢
𝑃(0) = 𝑘ℜ[𝑃(𝑡)]. 

 
Substituting the condition 𝑃(0) = 𝑃0 at 𝑡 = 0, we acquire 
  

(
𝑠

𝑢
− 𝑘) ℜ[𝑃(𝑡)] =

𝑠

𝑢
𝑃0 

 ℜ[𝑃(𝑡)] =
𝑠

𝑠 − 𝑘𝑢
𝑃0.                                                 (26) 

 

Upon applying the inverse Formable transform on either 
side of (26), we find 
 

𝑃(𝑡) = ℜ−1 [
𝑠

𝑠 − 𝑘𝑢
𝑃0] 

𝑃(𝑡) = 𝑃0ℜ−1 [
𝑠

𝑠 − 𝑘𝑢
] 

𝑃(𝑡) = 𝑃0𝑒𝑘𝑡 . 

 
Since 𝑃 = 2𝑃0  at 𝑡 = 3, we can write  
 

𝑃0𝑒3𝑘 = 2𝑃0 

𝑒3𝑘 = 2     

 𝑘 =
1

3
ln 2 ≅ 0.23104.                                              (27)   

Now, substituting the value of 𝑘 found in (27) and using 
the condition 𝑃 = 30000 at 𝑡 = 4, we have  
 

30000 = 𝑃0𝑒4
1
3

ln 2 

𝑃0 ≅ 11905 

 
which is the required number of people who lived in the 
city at the beginning. 
 
Example 2. Bacteria in a certain culture increase at a rate 
proportional to the number present. Estimate the number 
of bacteria at the beginning of a certain culture after six 
hours, if the number of bacteria grows from 500 to 1500 
in three hours. 
The mathematical model of the mentioned problem can 
be expressed as 
 

  
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑘𝑃(𝑡).                                                          (28) 

 
where 𝑃 denotes the number of bacteria at any time 𝑡 and 
𝑘 is the constant of proportionality. The result of using the 
Formable transform on either side of (28) is 
 

𝑠

𝑢
ℜ[𝑃(𝑡)] −

𝑠

𝑢
𝑃(0) = 𝑘ℜ[𝑃(𝑡)]. 
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Since the initial amount is 500 at 𝑡 = 0, we have  
 

(
𝑠

𝑢
− 𝑘) ℜ[𝑃(𝑡)] = 500

𝑠

𝑢
 

ℜ[𝑃(𝑡)] =
𝑠

𝑠 − 𝑘𝑢
500                                              (29) 

 
Having applied inverse Formable transform on either side 
of (29), we find 
 

𝑃(𝑡) = ℜ−1 [
𝑠

𝑠 − 𝑘𝑢
500] 

𝑃(𝑡) = 500ℜ−1 [
𝑠

𝑠 − 𝑘𝑢
] 

𝑃(𝑡) = 500𝑒𝑘𝑡 . 

 
By using the another given condition 𝑃 = 1500  at 𝑡 = 3, 
we find  
 

500𝑒3𝑘 = 1500 

𝑒3𝑘 = 3 

 𝑘 =
1

3
ln 3 ≅ 0.23104                                               (30) 

 
We are looking for 𝑡 = 6, so we get the number of 
bacteria present in a certain culture as  
 

𝑃(6) = 500𝑒6
1
3

ln 3 ≅ 4500 
 
by substituting the value of 𝑘 found in (30). 
 
Example 3. The decay of a radioactive substance is 
recognized to occur at a rate that is directly proportional 
to the quantity of the substance present. Find the half-life 
of the radioactive substance, if 50 milligrams of the 
substance are originally present and the radioactive 
substance has lost 20 percent of its original mass after five 
hours.  
The mathematical model of the mentioned problem can 
be expressed as 
 

 
𝑑𝑃(𝑡)

𝑑𝑡
= −𝑘𝑃(𝑡)                                                   (31) 

 
where 𝑃 represents the quantity of radioactive substance 
at time 𝑡 and 𝑘 is the proportionality constant. Suppose 
that 𝑃0 is the initial amount of the radioactive substance 
at time 𝑡 = 0. When we apply the Formable transform on 
either side of (31), we get the following result: 
 

ℜ [
𝑑𝑃(𝑡)

𝑑𝑡
] = −𝑘ℜ[𝑃(𝑡)] 

𝑠

𝑢
ℜ[𝑃(𝑡)] −

𝑠

𝑢
𝑃(0) = −𝑘ℜ[𝑃(𝑡)]. 

 

Substituting the condition 𝑃(0) = 𝑃0 at 𝑡 = 0, we acquire 
  

(
𝑠

𝑢
+ 𝑘) ℜ[𝑃(𝑡)] =

𝑠

𝑢
𝑃0 

ℜ[𝑃(𝑡)] =
𝑠

𝑠 + 𝑘𝑢
50.                                                 (32) 

 

Having applied the inverse Formable transform on either 
side of (32), we obtain 
 

𝑃(𝑡) = ℜ−1 [
𝑠

𝑠 + 𝑘𝑢
50] 

𝑃(𝑡) = 50ℜ−1 [
𝑠

𝑠 + 𝑘𝑢
] 

 𝑃(𝑡) = 50𝑒−𝑘𝑡 .                                                             (33) 

 
At time 𝑡 = 5, the radioactive substance has lost 20 
percent of its original mass of 50 milligrams. Hence 𝑃 =
50 − 10 = 40. By using this in (33), we get 
 

40 = 50𝑒−5𝑘. 

𝑒−5𝑘 = 0.8 

 𝑘 = −
1

5
ln 0.8 ≅ 0.04462 …                                    (34) 

 

We required 𝑡 when 𝑃 =
𝑃0

2
= 25. Therefore, we can 

write  
 

25 = 50𝑒−𝑘𝑡 
 
from (31). By substituting the value of 𝑘 from (34), we 
obtain  
 

25 = 50𝑒−0.04462𝑡 

𝑒−0.04462𝑡 = 0.5 

𝑡 = −
1

0.04462
ln 0.5 

𝑡 ≅15.531 hours 

 
which is the desired half-time of the radioactive 
substance. 
 

In Examples 1-3, it is demonstrated that Formable 
transform successfully determines the solutions to 
population growth and decay problems solved by other 
integral transforms studied in [11-22]. Upon individually 
solving the instances provided in the references, it will be 
seen that the same results are obtained with the Formable 
transform. 
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Example 4. Let us consider the logistic growth model equation (14) where 𝑃0 = 2 and 𝜅 = 1. Hence 𝜈0 can be expressed 

as 𝜈0 =
𝑃0

𝜅
= 2. We set ℎ(𝜈) = 𝜈2 as in (4) so that one finds 

 

ℎ(𝜈) = (∑  

∞

𝑛=0

𝑐𝑛𝑡𝑛)

2

= (𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋯ ⋅ +𝑐𝑛𝑡𝑛 + ⋯ )2 

                = 𝑐0
2 + 2𝑐0𝑐1𝑡 + (2𝑐0𝑐2 + 𝑐1

2)𝑡2 + (2𝑐0𝑐3 + 2𝑐1𝑐2)𝑡3 + ⋯. 
 

Implementing Formable transform to each side of the equation 
 

ℜ[ℎ(𝜈)] = ℋ(𝑠, 𝑢) = 𝑐0
2 + 2𝑐0𝑐1  

𝑢

𝑠
+ (2𝑐0𝑐2 + 𝑐1

2) 2!  
𝑢2

𝑠2
+ (2𝑐0𝑐3 + 2𝑐1𝑐2) 3!  

𝑢3

𝑠3
+ ⋯. 

 
One obtains 

 

𝒱(𝑠, 𝑢) = 𝜈0

𝑠

𝑠 − 𝑢
−

𝑢ℋ(𝑠, 𝑢)

𝑠 − 𝑢
 

               =
2𝑠

𝑠 − 𝑢
− [

𝑢𝑐0
2

𝑠 − 𝑢
+

2𝑐0𝑐1𝑢2

𝑠(𝑠 − 𝑢)
+ 2!

(2𝑐0𝑐2 + 𝑐1
2)𝑢3

𝑠2(𝑠 − 𝑢)
+ 3!

(2𝑐0𝑐3 + 2𝑐1𝑐2)𝑢4

𝑠3(𝑠 − 𝑢)
+ ⋯ ] 

              =
2𝑠

𝑠 − 𝑢
− [(

𝑠

𝑠 − 𝑢
− 1) 𝑐0

2 + (
𝑠

𝑠 − 𝑢
− 1 −

𝑢

𝑠
) 2𝑐0𝑐1 + 2! (

𝑠

𝑠 − 𝑢
− 1 −

𝑢

𝑠
−

𝑢2

𝑠2
) (2𝑐0𝑐2 + 𝑐1

2) 

                   +3! (
𝑠

𝑠 − 𝑢
− 1 −

𝑢

𝑠
−

𝑢2

𝑠2
−

𝑢3

𝑠3
) (2𝑐0𝑐3 + 2𝑐1𝑐2) + ⋯ ] 

 
by using (16). Upon application of the inverse Formable transform to this equation yields 

 

𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2+𝑐3𝑡3 + ⋯ = 2 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+ ⋯ ) 

−(𝑐0
2 + 2𝑐0𝑐1 + 4𝑐0𝑐2 + 2𝑐1

2 + 12𝑐0
22𝑐0𝑐3 + 12𝑐1𝑐2 + ⋯ ) (1 + 𝑡 +

𝑡2

2!
+

𝑡3

3!
+ ⋯ ) 

                                                      +(𝑐0
2 + 2𝑐0𝑐1 + 4𝑐0𝑐2 + 2𝑐1

2 + 12𝑐0
22𝑐0𝑐3 + 12𝑐1𝑐2 + ⋯ ) 

                                                      +(2𝑐0𝑐1 + 4𝑐0𝑐2 + 2𝑐1
2 + 12𝑐0

22𝑐0𝑐3 + 12𝑐1𝑐2 + ⋯ )𝑡 

                                                      +(2𝑐0𝑐1 + 𝑐1
2 + 6𝑐0

22𝑐0𝑐3 + 6𝑐1𝑐2 + ⋯ )𝑡2 + (2𝑐0𝑐3 + 2𝑐1𝑐2 + ⋯ )𝑡3 + ⋯ 

                                               = 2 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+ ⋯ ) − 𝑐0

2𝑡 − (
𝑐0

2

2
+ 𝑐0𝑐1) 𝑡2 − (

𝑐0
2

6
+

𝑐0𝑐1

3
+

2𝑐0𝑐2

3
+

𝑐1
2

3
) 𝑡3 − ⋯ 

                                              = 2 + (2 − 𝑐0
2)𝑡 + (1 −

𝑐0
2

2
− 𝑐0𝑐1) 𝑡2 + (

1

3
−

𝑐0
2

6
−

𝑐0𝑐1

3
−

2𝑐0𝑐2

3
−

𝑐1
2

3
) 𝑡3 + ⋯ 

 
from (15). When the coefficients of power 𝑡 are equated, 
the result is 

 
𝑐0 = 2, 
𝑐1 = 2 − 𝑐0

2 ⟹ 𝑐1 = −2, 

𝑐2 = 1 −
𝑐0

2

2
− 𝑐0𝑐1 ⟹ 𝑐2 = 3, 

𝑐3 =
1

3
−

𝑐0
2

6
−

𝑐0𝑐1

3
−

2𝑐0𝑐2

3
−

𝑐1
2

3
⟹ 𝑐3 = −

13

3
, 

      ⋮ 
and so on. Consequently, the solution 𝜈(𝑡) is obtained 
from (15) as follows 

𝜈(𝑡) = 2 − 2𝑡 + 3𝑡2 −
13

3
𝑡3 + ⋯ 

 
that is the closed form exact solution obtained in (5). This 
solution is identical to the one discovered in [23]. 

The 𝑛th partial sums of the series (15) is represented by 
𝜑𝑛(𝑡) which is equivalent to  

𝜑𝑛(𝑡) = ∑  

𝑛

𝑚=0

𝑐𝑚𝑡𝑚.                                                         (35) 

 
Based on the observation of Figure 1, it is evident that 

a highly accurate approximation of the exact solution for 
the logistic growth model within the time interval [0,0.20] 
has been achieved by computing only four terms of the 
series in (35). This indicates that the rate at which the 
Formable transform method converges is highly rapid.  
Furthermore, it is possible to minimize the overall errors 
and obtain a reasonably accurate estimation of the exact 
solution for 𝑡 ≥ 0.2 by incorporating new terms into the 
series. 
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Figure 1. The resolution of the logistic growth model in 
population dynamics 

Example 5. Consider the differential equation system that 
governs the predator and prey model 

 
𝑑𝑤

𝑑𝑡
= 𝑤 − 𝑤𝜈                                                                (36) 

 
𝑑𝜈

𝑑𝜏
= 𝑤𝜈 − 𝜈                                                                  (37) 

 
with initial data 𝑤(0) = 1.3, 𝜈(0) = 0.6 . 
Assume that 𝑤(𝑡) = ∑  ∞

𝑛=𝑜 𝑎𝑛𝑡𝑛, 𝜈(𝑡) = ∑  ∞
𝑛=0 𝑐𝑛𝑡𝑛 be 

solutions of the system of (36)-(37). Therefore, we have 
 
 
 
 
 
 
 

 

ℎ(𝑤, 𝜈) = 𝑔(𝑤, 𝜈) = 𝑤𝜈 = (∑  

∞

𝑛=0

𝑎𝑛𝑡𝑛) (∑  

∞

𝑛=0

𝑐𝑛𝑡𝑛) 

                                         = 𝑎0𝑐0 + (𝑎0𝑐1 + 𝑎1𝑐0)𝑡 + (𝑎0𝑐2 + 𝑎1𝑐1 + 𝑎2𝑐0)𝑡2 + (𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎2𝑐1 + 𝑎3𝑐0)𝑡3 + ⋯. 

The corresponding Formable transform of these functions are 
 
ℜ[𝑤𝜈] = 𝑎0𝑐0ℜ[1] + (𝑎0𝑐1 + 𝑎1𝑐0)ℜ[𝑡] + (𝑎0𝑐2 + 𝑎1𝑐1 + 𝑎2𝑐0)ℜ[𝑡2] + (𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎2𝑐1 + 𝑎3𝑐0)ℜ[𝑡3] + ⋯ 
 

              = 𝑎0𝑐0 + (𝑎0𝑐1 + 𝑎1𝑐0)
𝑢

s
+ (2𝑎0𝑐2 + 2𝑎1𝑐1 + 2𝑎2𝑐0)

𝑢2

𝑠2
+ (6𝑎0𝑐3 + 6𝑎1𝑐2 + 6𝑎2𝑐1 + 6𝑎3𝑐0)

𝑢3

𝑠3
+ ⋯. 

 
Here ℋ(𝑠, 𝑢) = 𝐺(𝑠, 𝑢) = ℜ[𝑤𝜈]. From (23) and (24), it is found that 

 

𝒲(𝑠, 𝑢) =
𝑠

𝑠 − 𝑢
1.3 − 

𝑢

𝑠 − 𝑢
ℋ(𝑠, 𝑢) 

                        =
𝑠

𝑠 − 𝑢
1.3 −

𝑢

𝑠 − 𝑢
𝑎0𝑐0 − (𝑎0𝑐1 + 𝑎1𝑐0)

𝑢2

𝑠(𝑠 − 𝑢)
− (𝑎0𝑐2 + 𝑎1𝑐1 + 𝑎2𝑐0)

2𝑢3

𝑠2(𝑠 − 𝑢)
 

                            −(𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎2𝑐1 + 𝑎3𝑐0)
6𝑢4

𝑠3(𝑠 − 𝑢)
+ ⋯ 

                        =
𝑠

𝑠 − 𝑢
1.3 − 𝑎0𝑐0 (

𝑠

𝑠 − 𝑢
− 1) − (𝑎0𝑐1 + 𝑎1𝑐0) (

𝑠

𝑠 − 𝑢
− 1 −

𝑢

𝑠
) 

                            −2! (𝑎0𝑐2 + 𝑎1𝑐1 + 𝑎2𝑐0) (
𝑠

𝑠 − 𝑢
− 1 −

𝑢

𝑠
−

𝑢2

𝑠2
) 

                            −3! (𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎2𝑐1 + 𝑎3𝑐0) (
𝑠

𝑠 − 𝑢
− 1 −

𝑢

𝑠
−

𝑢2

𝑠2
−

𝑢3

𝑠3
) + ⋯ 

𝒱(𝑠, 𝑢) =
𝑠

𝑠 + 𝑢
0.6 +

𝑢

𝑠 + 𝑢
𝐺(𝑠, 𝑢)  

                     =
𝑠

𝑠 + 𝑢
0.6 +

𝑢

𝑠 + 𝑢
𝑎0𝑐0 + (𝑎0𝑐1 + 𝑎1𝑐0)

𝑢2

𝑠(𝑠 + 𝑢)
+ (𝑎0𝑐2 + 𝑎1𝑐1 + 𝑎2𝑐0)

2𝑢3

𝑠2(𝑠 + 𝑢)
 

                        +(𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎2𝑐1 + 𝑎3𝑐0)
6𝑢4

𝑠3(𝑠 + 1)
+ ⋯ 

                     =
𝑠

𝑠 + 𝑢
0.6 + 𝑎0𝑐0 (1 −

𝑠

𝑠 + 𝑢
) + (𝑎0𝑐1 + 𝑎1𝑐0) (−1 +

𝑢

𝑠
+

𝑠

𝑠 + 𝑢
) 

                       +2! (𝑎0𝑐2 + 𝑎1𝑐1 + 𝑎2𝑐0) (1 −
𝑢

𝑠
+

𝑢2

𝑠2
−

𝑠

𝑠 + 𝑢
) 

                      +3! (𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎2𝑐1 + 𝑎3𝑐0) (−1 +
𝑢

𝑠
−

𝑢2

𝑠2
+

𝑢3

𝑠3
+

𝑠

𝑠 + 𝑢
) + ⋯  . 

− 𝜈exact(𝑡) 

 ⋯ 𝜑4(𝑡) 
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When the inverse Formable transform is applied to these equations, one gets 
 

𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + ⋯ = 1.3 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+ ⋯ ) − 𝑎0𝑐0𝑡 − (𝑎0𝑐0 + 𝑎0𝑐1 + 𝑎1𝑐0)

𝑡2

2!
 

                                                            −(𝑎0𝑐0 + 𝑎0𝑐1 + 𝑎1𝑐0 + 2𝑎0𝑐2 + 2𝑎1𝑐1 + 2𝑎2𝑐0)
𝑡3

3!
− ⋯ 

                                                       = 1.3 + (1.3 − 𝑎0𝑐0)𝑡 + (1.3 − 𝑎0𝑐0 − 𝑎0𝑐1 − 𝑎1𝑐0)
𝑡2

2!
 

                                                           +(1.3 − 𝑎0𝑐0 − 𝑎0𝑐1 − 𝑎1𝑐0 − 2𝑎0𝑐2 − 2𝑎1𝑐1 − 2𝑎2𝑐0)
𝑡3

3!
+ ⋯ 

and  

𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + 𝑐3𝑡3 + ⋯ = 0.6 (1 − 𝑡 +
𝑡2

2!
−

𝑡3

3!
+ ⋯ ) − 𝑎0𝑐0𝑡 − (𝑎0𝑐0 + 𝑎0𝑐1 + 𝑎1𝑐0)

𝑡2

2!
 

                                                         −(𝑎0𝑐0 + 𝑎0𝑐1 + 𝑎1𝑐0 + 2𝑎0𝑐2 + 2𝑎1𝑐1 + 2𝑎2𝑐0)
𝑡3

3!
− ⋯ 

                                                     = 0.6 + (𝑎0𝑐0 − 0.6)𝑡 + (0.6 − 𝑎0𝑐0 + 𝑎0𝑐1 + 𝑎1𝑐0)
𝑡2

2!
 

                                                         +(−0.6 + 𝑎0𝑐0 − 𝑎0𝑐1 − 𝑎1𝑐0 + 2𝑎0𝑐2 + 2𝑎1𝑐1 + 2𝑎2𝑐0)
𝑡3

3!
+ ⋯  . 

 
If the coefficients are equalized to powers of 𝑡, it is found as 

 
𝑎0 = 1.3 

 
𝑐0 = 0.6 

𝑎1 = 1.3 − 𝑎0𝑐0 
𝑎1 = 0.52 

 

𝑐1 = 𝑎0𝑐0 − 0.6 
𝑐1 = 0.18 

𝑎2 =
1

2!
(1.3 − 𝑎0𝑐0 − 𝑎0𝑐1 − 𝑎1𝑐0) 

𝑎2 = −0.013 
 

𝑐2 =
1

2!
(0.6 + 𝑎0𝑐1 + 𝑎1𝑐0 − 𝑎0𝑐0) 

𝑐2 = 0.183 

𝑎3 =
1

3!
(1.3 − 𝑎0𝑐0 − 𝑎0𝑐1 − 𝑎1𝑐0 − 2𝑎0𝑐2 

          −2𝑎1𝑐1 − 2𝑎2𝑐0) 
𝑎3 = −0.1122 

𝑐3 =
1

3!
(−0.6 + 𝑎0𝑐0 − 𝑎0𝑐1 − 𝑎1𝑐0 + 2𝑎0𝑐2 

        +2𝑎1𝑐1 + 2𝑎2𝑐0) 
𝑐3 = 0.0469 

⋮ ⋮ 
 
The subsequent terms of the series can be obtained 

using this method. By substituting these terms into 
equation (20), we obtain the approximate solutions for 
the problem described by equations (36)-(37): 

 
𝑤(𝑡) = 1.3 + 0.52𝑡 − 0.013𝑡2 − 0.1122𝑡3 − ⋯ 
𝜈(𝑡) = 0.6 + 0.18𝑡 + 0.183𝑡2 + 0.0469𝑡3 + ⋯  . 

 
The outcomes we have presently achieved exhibit 

congruence with the findings derived from the study 
conducted in reference [23].  

Figure 2 shows the approximate solutions to system 
(36)-(37) which are obtained by Formable transform using 

only four terms of the series (20). This system's numerical 
solutions are shown in Figure 3. The system's numerical 
solutions are obtained using Ode45, which is a built-in 
ordinary differential equation solver in MATLAB. 

The comparison of the two figures reveals a significant 
level of closeness between the two solutions for 𝑤 (prey 
population) and 𝜈 (predator population) within the time 
interval of [0,2]. Adding more terms to the series provides 
an even closer approximation to the numerical answer for 
𝑡 ≥ 1,6, as previously mentioned in the context of the 
logistic growth model. 
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Figure 2. Approximate solutions to the system (36)-(37) 
by Formable transform method 

 

 

Figure 3. Numerical solutions to the system (36)-(37) 

 

Conclusions 

Differential equations are of paramount importance in 
the development of mathematical models to describe 
physical phenomena. In this study, we successfully applied 
the Formable transform to growth and decay problems. 
We further strengthened its application to growth and 
decay problems with several numerical examples, 
showing that the Formable transform is a highly handy 
approach for solving differential equations. These 
applications demonstrate how the Formable transform 
may be used to resolve growth and decay problems 
without complex calculations. The Formable transform 
method provides very accurate approximate solutions to 
nonlinear problems in mathematics, biology, physics, etc. 
Furthermore, it does not necessitate the process of 

linearization or rely on biologically implausible 
assumptions. As a result of its efficiency and convenience, 
this transform is a powerful tool for numerically solving a 
wide variety of interesting mathematical models involving 
differential equations. 
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