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1. Introduction 

There are estimation methods that estimate the speed and po-

sition of a pedestrian, automobile, aircraft or any transportation 

vehicle in indoor and outdoor environments. These methods can 

use Inertial Measurement Unit (IMU) data, camera images or 

Global Positioning System (GPS) data in the estimation phase. 

GPS, which is one of the most widely used navigation systems 

in our daily life, becomes useless in closed areas or in places 

where the phone signal strength is weak. Therefore, alternative 

navigation systems to GPS are being developed. One of the al-

ternative navigation system to GPS is the Inertial Navigation 

Systems (INS). INS are capable of providing speed and position 

information without an extra stimulus or any external signal [1]. 

INS consist of internal accelerometers, gyroscope and magne-

tometers. This group of sensors is called the Inertial Measure-

ment Unit. The data coming from the IMU is processed by com-

bining the data with sensor fusion algorithms and the result is 

obtained by estimating speed or position information by using 

various estimation algorithms. The Kalman Filter (KF) [2] is 

commonly used in IMU-assisted navigation applications. In ad-

dition to the Kalman Filter, which is a traditional estimation 

method, deep learning networks such as Long Term-Short 

Memory (LSTM) [3] are also used in the field of estimation. 

In this study, Kalman Filter, Long Short-Term Memory 

(LSTM), Bidirectional Long Short-Term Memory (BLSTM), 

Gated Recurrent Unit (GRU) algorithms are used for speed esti-

mation of an automobile. With the help of these algorithms, ac-

celeration data from sensors were processed and state estimation 

was performed. As a result of the velocity estimation, the state 

estimation performances of the algorithms were compared, the 

effects of the Q (process noise covariance) and R (measurement 
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noise covariance) parameters of the Kalman filter on the estima-

tion results were examined, and in addition, the optimizers in the 

deep learning network algorithms were changed and their effects 

on the velocity estimation results were observed. The speed es-

timation values obtained as a result of the studies are compared 

with GPS speed data and the performances of RMSE estimation 

algorithms are compared. 

2. Related Works 

In the literature, there is a large number of estimation studies 

based on IMU. These studies generally include running speed 

estimation for sports people, aircraft speed estimation, or gait 

speed estimation for gait analysis of sick individuals. 

In their study [4], Liu et al. used multi-sensor data to estimate 

the speed and position of a pedestrian. They used the Kalman 

filter combined with the Zero Velocity Update (ZVO) algorithm.  

They also tried to increase their estimation accuracy by add-

ing some adjustable parameters to their filters. They have 

demonstrated the accuracy of their proposed methods in a pe-

destrian test environment. They also created a test environment 

under long-haul conditions and showed that their proposed 

methods gave successful results here as well. 

In their study [5], Svacha et al. took UAV engine speed meas-

urements at the PERCH laboratory in the indoor test environ-

ment at the University of Pennsylvania. The conventional 

RANSAC algorithm was used to estimate the UAV roll rate and 

Unscented Kalman Filter (UKF) was used to estimate the UAV 

speed and altitude. Smaller RMS values were obtained by using 

camera images. 

In their study [6], Wang et al. collected acceleration data from 

a wearable device while exercising on a treadmill. A deep con-

volutional neural network (CNN) model was used for motion 

speed estimation. The model outputs were shown to be accurate 

in RMSE within 7% and 18% of the actual running and walking 

test speeds respectively. 

In their study [7], Gençoğlu et al. had people shoot balls at one-

minute rest intervals. They used the Generalized Linear Model, 

Gradient Augmented Trees, and Support Vector Machine to pre-

dict the ball flight. They compared the ball velocities recorded 

with a radar velocity gun with the prediction results. The perfor-

mance measures of the Generalized Linear Model, Gradient 

Augmented Trees and Support Vector Machine were calculated 

in terms of root mean square errors, absolute errors and correla-

tion coefficients. As a result, it was shown that the data obtained 

from accelerometers accurately predicted the ball firing speed 

with the help of machine learning models. 

In their study [8], Jain et al. collected global satellite navigation 

system (GNSS) and IMU data in an urban area for two hours 

with a vehicle. Velocity estimation was performed by using least 

squares (LS) and LKF (Linearized Kalman Filter). The velocity 

estimates were compared with a reference trajectory and the de-

viations of the variance models were evaluated. They found that 

the estimated velocity root mean square error (RMSE) was a 

minimum of less than 16% and a maximum of about 41%. 

3. Data Set 

During the creation of the data set, the acceleration data of a 

car was obtained with the help of the sensors of a smartphone. 

Before starting to create the data set, a suitable measurement en-

vironment was created. While the smartphone was placed on the 

console between the driver's seat and the side seat of the car for 

measurement, the roll, pitch and yaw angles were adjusted to 0º 

with the help of the smartphone's spirit level application and a 

suitable measurement environment was created by fixing the 

smartphone. While creating the data set, an intercity road with a 

road length of 30.4 km was used where the slope was not very 

variable, and measurements were also taken on winding and 

sloping roads and measurements were made under different road 

and driving dynamics. Figure 1 shows a representative view of 

the smartphone on which the sensor readings were taken.  

 

Fig.1. Smartphone sensor axes. 

The data set includes time-series sensor data from the phone's 

accelerometer and rotation meter sensors. GPS data at a fre-

quency of 1 Hz (every 1 second) was also recorded during the 

measurement to compare the estimation results in this study. 

During the measurements, Apple Iphone 13 Pro running IOS 

15.0 was used as a smartphone. Data from the sensors were sam-

pled at a frequency of 20 Hz (every 50 milliseconds). The details 

of the data set are presented in Table 1. 

Table 1. The details of the data set used. 

The number of activity during 

measurement 
4 

Application used MATLAB mobile 

The distance of measurements 30,4 km 

Sensor sampling frequency 20 Hz 

Used smartphone Apple Iphone 13 Pro 

Total number of raw measurement 176274 

In this study, only the accelerometer sensor data of the 

smartphone was used from the created data set, and the meas-

urements of the car in the -y axes were processed. The unit for 

the accelerometer sensor is specified as m/s2 in the MATLAB 

mobile program output. The data set information used in the 

studies is given in Table 2. While creating the data set, 4 differ-

ent scenarios were followed. 
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In the first scenario, the smartphone was held without accel-

eration to determine the constant drift error of the sensors. 

In the second measurement scenario, measurements were 

taken with the cruise control feature of the car and the data was 

recorded to obtain sensor noise by comparing the data under 

speed with the speed data obtained with GPS. In the third meas-

urement scenario, acceleration data was measured and recorded 

under variable speeds to be used for speed estimation within the 

scope of this study. 

In the final measurement case, the fourth measurement sce-

nario, a driving environment with sudden increases and de-

creases in acceleration was created in order to observe how the 

speed estimation algorithms designed within the scope of this 

study would react to acceleration changes even more drastic 

than the third measurement scenario. The data set information 

used in the studies is given in Table 2. 

Table 2. Data set information used in the studies. 

Driving Style Axis information 
Number of  

measurements 

Scenario 1 -y 56580 

Scenario 2 -y 6534 

Scenario 3 -y 56580 

Scenario 4 -y 56580 

4. Method 

4.1 System Model 

In this study, velocity estimation was performed by Kalman 

Filter, LSTM, BLSTM and GRU algorithms by using the meas-

urements in the data set. For the estimation methods, the math-

ematical model of the system was first created. Newton's equa-

tions of motion and the discrete white noise model (Gaussian 

White Noise) were used to create the mathematical model of the 

system. Since the data in x and y axis are used in this study, the 

system model consists of the position and velocity parameters in 

x and y axis. In this case, the system dynamics equations are 

given by equations (1-5). 

Equations (1) and (2) show the comparison between the cur-

rent value of the velocity and its value in the next step for the x 

and y axis. In the equations, k is the time index. When formulat-

ing the formulas, the velocity is assumed to be constant and the 

system is modeled accordingly. In Equations (3) and (4), the po-

sition information for the x and y axes in the next step is given 

in terms of current position, current velocity and time infor-

mation. 

𝑉𝑥(𝑘 + 1) = 𝑉𝑥(𝑘) (1) 

𝑉𝑦(𝑘 + 1) = 𝑉𝑦(𝑘) (2) 

 

Here, Vx is the velocity on the x-axis and Vy is the velocity on 

the y-axis.  

𝑋𝑥(𝑘 + 1) = 𝑋𝑥(𝑘) + 𝛥𝑡𝑉𝑥(𝑘) (3) 

𝑋𝑦(𝑘 + 1) = 𝑋𝑦(𝑘) + 𝛥𝑡𝑉𝑦(𝑘) (4) 

Here, Xx is the position on the x-axis, Xy is the position on the 

y-axis and Δt represents the sensor sampling period 

Based on the equations obtained above, the state matrix of the 

system is obtained as in equation (5). The term Δt in the equa-

tions indicates the periods at which the data were received from 

the sensors. In the data set described in Section 3.1, the meas-

urement frequency of both smartphone and smartwatch sensors 

is 20 Hz. In other words, data is acquired at every 50 ms. There-

fore, the Δt value is 0.05 s. When the GWN model (discrete 

white noise model) in Equation (5) is added, Equation (6) is ob-

tained. The output response of the system is then given by equa-

tion (7). 

[
 
 
 
 
𝑋𝑥(𝑘 + 1)

𝑉𝑥(𝑘 + 1)

𝑋𝑦(𝑘 + 1)

𝑉𝑦(𝑘 + 1)]
 
 
 
 

= [

1 𝛥𝑡 0 0
0 1 0 0
0 0 1 𝛥𝑡
0 0 0 1

]

[
 
 
 
 
𝑥𝑥(𝑘)

𝑣𝑥(𝑘)

𝑥𝑦(𝑘)

𝑣𝑦(𝑘)]
 
 
 
 

+ 𝐺𝑤𝑛 (5) 

 

[
 
 
 
 
𝑋𝑥(𝑘 + 1)

𝑉𝑥(𝑘 + 1)

𝑋𝑦(𝑘 + 1)

𝑉𝑦(𝑘 + 1)]
 
 
 
 

= [

1 𝛥𝑡 0 0
0 1 0 0
0 0 1 𝛥𝑡
0 0 0 1

]

[
 
 
 
 
𝑥𝑥(𝑘)

𝑣𝑥(𝑘)

𝑥𝑦(𝑘)

𝑣𝑦(𝑘)]
 
 
 
 

+

[
 
 
 
 
 
𝛥𝑡2

2
0

𝛥𝑡 0

0
𝛥𝑡2

2
0 𝛥𝑡 ]

 
 
 
 
 

[
𝑤𝑥(𝑛)

𝑤𝑦(𝑛)
] 

 

(6) 

[
𝑉𝑥(𝑘)

𝑉𝑦(𝑘)
] = [

0 1 0 0
0 0 0 1

]

[
 
 
 
 
𝑋𝑥(𝑘)

𝑉𝑥(𝑘)

𝑋𝑦(𝑘)

𝑉𝑦(𝑘) ]
 
 
 
 

+ 𝑣𝑛 (7) 

4.2 Rotation Matrix 

Smartphones express the data obtained through their sensors 

using a 3-axis coordinate axis. When the smartphone is in its 

default posture, the axes are defined according to the screen of 

the device. In the data set created for use in this study, the sensor 

axes of the smartphone from which the measurements were 

taken are described in Chapter 3 under the data set heading. 

While creating the data set, it is difficult to take a linear ac-

celeration measurement, even though the path where the meas-

urements are taken should be straight and without slopes. While 

taking measurements for the data set, the automobile is under 

the influence of roll angle, pitch angle and yaw angle due to the 

disturbances on the measured road. When the smartphone sen-

sors in the car exposed to these angles measure acceleration data, 

the effect of gravity will be observed in axis other than the z-

axis where gravitational acceleration is measured. In this case, 

the measurements in other axes must be gravity-free before the 
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acquired acceleration data can be used. If this is not done, veloc-

ity estimation from acceleration data will give erroneous results. 

As an example, Figure 2 shows the representation of the angles 

on the vehicle 

 

Fig. 2. Representation of angles on a car (9). 

In the data set obtained with the help of smartphone sensors, 

the acceleration on the x and y axes, which is distorted by the 

acceleration of gravity, is corrected with the help of data rotation 

matrices. The rotation matrix is denoted by the letter R in Equa-

tion (8) (10). 

R=[

𝐸𝑥 𝐸𝑦 𝐸𝑧

𝑁𝑥 𝑁𝑦 𝑁𝑧

𝐺𝑥 𝐺𝑦 𝐺𝑧

] (8) 

x, y and z in matrix R represent the axis of the smartphone. E 

and N are unit vectors pointing east and north respectively. G is 

the gravity vector. 

The Euler angles used in the rotation matrix are denoted by ψ, 

θ and φ. The azimuth angle is denoted by the letter ψ and refers 

to rotation about the vector G. The pitch angle is denoted by the 

letter θ and refers to the rotation around the E vector. Finally, 

the roll angle is denoted by the letter φ and refers to the rotation 

around the N vector. 

 When smartphone sensors are exposed to any angle during 

the measurement and are affected by gravity, the measurements 

are de-gravitated with the help of the rotation matrix. For this 

purpose, there is a rotation matrix for azimuth, pitch and roll an-

gles. These matrices are given in equations (9), 10) and (11) re-

spectively. 

𝑅𝜓 = [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0
−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

] 
(9) 

𝑅𝜃 = [
1 0 0
0 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
0 −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] 
(10) 

𝑅𝜑 = [

𝑐𝑜𝑠 𝜑 0 𝑠𝑖𝑛 𝜑
0 1 0

−𝑠𝑖𝑛 𝜑 0 𝑐𝑜𝑠 𝜑
] 

(11) 

The transformation of the data measured by the smartphone 

sensors from the phone coordinate system to the world coordi-

nate system is given in equation (12). 

[

𝐴𝑥

𝐴𝑦

𝐴𝑧

] = 𝑅(𝜓, 𝜃, 𝜑)[𝑎𝑥   𝑎𝑦  𝑎𝑧]
𝑇
 (12) 

With the last step, the acceleration data is transformed from 

the phone coordinate system to the world coordinate system and 

only the z-axis of the transformed acceleration data contains 

gravitational acceleration. Equation (13) is applied to subtract 

the gravitational effect from the z-axis component. The expres-

sion g in the equation represents gravity and its value is 

9.81m/s2. 

𝐴𝑙𝑖𝑛𝑒𝑎𝑟 = [

𝐴𝑥

𝐴𝑦

𝐴𝑧

] − 𝑔[0  0  1]𝑇 (13) 

The linear matrix A obtained in the last step consists of grav-

ity-adjusted acceleration data and is made available for pro-

cessing. 

4.3 Kalman Filter 

The method used to estimate the values of some variables 

from data observed in a certain period is called Kalman filtering 

[11]. The Kalman filter has been a fundamental method for an-

alyzing and solving estimation problems with different varia-

tions [12]. Basically, the Kalman filter is a set of mathematical 

formulas that minimizes the estimated error covariance under 

certain conditions and corrects the estimates. When making pre-

dictions, it also supports past, present and future state predic-

tions. One of the strength of the filter is that it can do this even 

when the structure of the system model is not known in an ab-

solute way [13]. 

The process model of the linear dynamic system in state space 

format is given in equation (14). The state variables of the sys-

tem are assumed to have zero mean (equation (15,17)). The 

measurement model is also given in equation (16). 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐺𝑢𝑘−1 + 𝑤𝑘−1     (14) 

𝑤𝑘~(0, 𝑄) (15) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘  (16) 

𝑣𝑘~(0, 𝑅) (17) 

Here, F is the state transition matrix, 𝑥𝑘−1  is the previous 

state vector, 𝐺 is the control input matrix and 𝑢𝑘−1 is the input 

control vector. 𝑤𝑘−1 represents the process noise vector and Q 

and R are covariance matrices. 

4.4 Long-Short Term Memory (LSTM) 

It is a recurrent neural network (RNN) model introduced to 

the literature by Sepp Hochreiter and Jürgen Schmidhuber in 
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1997. These structures differ from traditional feed-forward neu-

ral networks in that they have feedback structures. LSTM has 

applications in many fields such as audio processing [14], image 

processing [15], language processing [16]. A standard LSTM 

block consists of four gates. Figure 3 shows an illustration of an 

LSTM block. 

4.5 Bidirectional Long Short-Term Memory (BLSTM) 

BLSTM was introduced in 1997 by Schuster and Paliwall, 

BLSTM is a type of feedback neural network. These neural net-

work structures allow processing data from both the next layer 

and the previous layer. In other words, the difference from a tra-

ditional RNN (Recurrent Neural Network) structure is that cal-

culations are made according to the values coming from two lay-

ers. One layer receives its input from the forward direction and 

the other from the backward direction. In this way, applying the 

LSTM twice leads to better learning for long-term data and 

therefore leads to improved model accuracy [18]. Figure 4 

shows the general structure of BLSTM. 

4.6 Gated recurrent unit (GRU) 

The GRU neural network, proposed by Kyunghyun Cho and 

colleagues in 2014, draws attention with its similarity to LSTM. 

However, it has fewer parameters compared to LSTM and has 

been shown to perform better in smaller data sets [20]. There are 

also studies in the literature where the GRU neural network 

achieves more successful results than the LSTM neural network 

[21], [22]. The general representation of the GRU deep learning 

network is given in Figure 5. 

 
Fig. 3. A standard LSTM block [17]. 

 

Fig. 4. BLSTM structure [19]. 

 

Fig. 5. A standard GRU structure [20]. 

5. Results 

5.1 Kalman Filter Simulation Results 

The data set used in this study is given in Figure 6. 

 

Fig. 6. Y-axis acceleration data obtained from smartphone  
accelerometer sensors. 

To compare the Kalman filter speed estimates with the deep 

learning-based estimation results, the estimation results with the 

last 10% of our data set are given in Figure 7. When the graph 

is analyzed, the Kalman filter is subject to a cumulative error 

due to sensor measurement errors as time passes and after a 

while there is a large difference between the speed estimation 

and GPS values. 

When the velocity estimation results obtained with the Kal-

man Filter are examined, as can be seen in Figure 7, it is thought 

that there may be a constant shift in the acceleration data due to 

temperature changes and sensor calibration errors during the 

measurement from the sensors, as well as the effect of noise cou-

pling. For this reason, we tried to remove the constant drift of 

the smartphone sensor data as much as possible. The constant 

drift of the acceleration data was removed by using the moving 

average of the smartphone acceleration data. The cleaned ver-

sion of the acceleration data is given in Figure 8. 
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Fig. 7. Kalman Filter speed estimation graph (138 seconds). 

The acceleration data, which is free of constant drift, is ap-

plied to the Kalman Filter velocity estimation algorithm. Veloc-

ity estimation results are given in Figure 9. When the velocity 

estimation graph with the cleaned acceleration data is analyzed, 

it is seen that much more successful estimation results are ob-

tained compared to the velocity estimation in Figure 7. The lin-

ear drift in Figure 7 is largely eliminated.  

 

Fig. 8. Acceleration data adjusted for constant drift. 

In Figure 9, there are small shifts in the speed estimation out-

puts. Although there is a shift in the speed estimation outputs, 

the speed estimation outputs also respond to changes in GPS 

speed data. As a result, the large shifts in the estimation results 

previously obtained through the Kalman Filter were removed by 

taking a moving average of the smartphone acceleration data, 

and more successful results were obtained. 

The velocity estimations carried out by the Kalman Filter us-

ing the acceleration data free of fixed drifts are given in Figure 

9. When the graph is analyzed, there are shifts in the Kalman 

filter velocity estimation results. However, compared to the first 

velocity estimation case in Figure 7, it provided more successful 

results. 

 

Fig. 9. Kalman Filter velocity estimation with purified acceleration 
data (138 seconds). 

In the last 138 seconds of the velocity estimation result ob-

tained by the Kalman filter using the acceleration data adjusted 

for the constant drift, the RMSE value was 2.9322 and its graph 

is given in Figure 10. As can be seen, more successful results 

were obtained as compared to the estimation results of the pre-

vious case given in Figure 7. The RMSE plot of the velocity es-

timation using the acceleration data adjusted for the constant 

drift is given in Figure 10. 

 

Fig. 10. RMSE values obtained from estimation (138 seconds). 

5.2 LSTM Deep Learning Network Simulation Results 

LSTM requires a training set to learn the long-term depend-

encies in the data to start the estimation process. The data set 

used in this study is divided into training and test sets as 9:1, 

respectively. 1380 samples were taken from the data set and 

1242 out of these samples were used to build the LSTM model, 

while the remaining 138 were used to test the model. 

The standardized velocity data are given as input to the LSTM 

layer, transformed into a single vector with the fully coupled 

layer, and in the final stage, the regression layer is used to pro-

duce the model outputs. In the algorithm, maximum training 

round (Max. Epoch), gradient threshold, initial learning rate, 
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number of hidden units (NumHiddenUnits), mini batch size, 

shuffle, L2 regularization, validation frequency, gradient thresh-

old method and momentum parameters are kept constant. In ad-

dition, Adam, RMSprop and SGDM optimizers were used to op-

timize the model by changing the learning step size (Learn Rate 

Drop Period) and the learning rate drop factor (Learn Rate Drop 

Factor), which affect the algorithm success the most. 

There are 3 types of optimization algorithms in the LSTM 

method used in this study.  For each optimization algorithm, 

four parameter groups were selected and RMSE values of the 

deep learning network were obtained under different conditions. 

The RMSE values obtained in this study are given in Table 3. In 

order to examine the effects of the learning rate on the prediction 

success of the algorithm, the Initial Learn Rate was chosen as 

0.005 and this value was kept constant for each parameter state. 

The initial learning rate was varied in certain steps with the help 

of the parameters Learn Rate Drop Period and Learn Rate Drop 

Factor in order to have an updatable structure throughout the 

training phase of the LSTM network. 

Considering the LSTM speed estimation RMSE values of the 

first parameter case, which is considered as the best success  

obtained with the Adam optimizer, and the estimation graph 

with RMSE values in this scenario are given in Figure 11. When 

the graph is analyzed, there is a speed estimation consisting of 

138 seconds. Since the velocity data used to train the LSTM 

deep learning network is calculated from acceleration data con-

taining noise residuals and shifts, the velocity estimation graph 

also contains shifts as a result of these noise residuals and shifts. 

 

Fig. 11. LSTM speed estimation graph with IMU. 

Figure 12 shows the RMSE value per second. Significant 

drifts are observed especially at the endpoints.  

In the first part of the study, the speed estimation was done 

with the data obtained from the IMU sensors. We also found it 

useful to carry out the same speed estimation with GPS data. 

Therefore, the same deep learning algorithms were trained with 

GPS data. This will enable us to compare the speed estimation 

based on IMU data and GPS data. The speed estimation results 

obtained by training deep learning networks with GPS data are 

given in Table 4 below in terms of RMSE.  

 

Fig. 12. LSTM speed estimation RMSE values graph 

Table 3. LSTM deep network speed estimation results with IMU. 

Optimizer 
Parameter 

Status 
Parameter Value RMSE 

Adam 

1 
LDP 2 

2,5547 
LDF 0,99 

2 
LDP 5 

2,81425 
LDF 0,89 

3 
LDP 10 

2,84424 
LDF 0,5 

4 
LDP none 

2,9675 
LDF none 

RMSProp 

1 
LDP 2 

3,32687 
LDF 0,99 

2 
LDP 5 

2,9655 
LDF 0,89 

3 
LDP 10 

2,8963 
LDF 0,5 

4 
LDP none 

2,7691 
LDF none 

SGDM 

1 
LDP 2 

2,56546 
LDF 0,99 

2 
LDP 5 

2,57395 
LDF 0,89 

3 
LDP 10 

3,4473 
LDF 0,5 

4 
LDP none 

2,85125 
LDF none 
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Table 4. LSTM deep network speed estimation results with GPS data. 

Optimizer 
Parameter 

Status 
Parameter Value RMSE 

Adam 

1 
LDP 2 

1,98357 
LDF 0,99 

2 
LDP 5 

0,42542 
LDF 0,89 

3 
LDP 10 

0,89424 
LDF 0,5 

4 
LDP none 

0,95758 
LDF none 

RMSProp 

1 
LDP 2 

0,986875 
LDF 0,99 

2 
LDP 5 

1,22855 
LDF 0,89 

3 
LDP 10 

0,86193 
LDF 0,5 

4 
LDP none 

1,31475 
LDF none 

SGDM 

1 
LDP 2 

0,54666 
LDF 0,99 

2 
LDP 5 

0,71395 
LDF 0,89 

3 
LDP 10 

1,0101 
LDF 0,5 

4 
LDP none 

0,94712 
LDF none 

We see that best estimate having the minimum RMSE value 

was obtained with Adam optimizer number 2. The estimation 

results are given in Figure 13.  

The prediction results of the deep learning network trained 

with GPS provided estimates with higher accuracy as compared 

with the results trained with IMU data. The prediction errors are 

also given in Figure 14. 

 

 
Fig. 13. LSTM speed estimation versus GPS data. 

 
Fig. 14. LSTM speed estimation RMSE values. 

5.3 BLSTM Deep Learning Network Simulation Results 

As with the LSTM algorithm, the BLSTM method also re-

quires a training and test set. In order to make a comparison with 

the success obtained from the LSTM model, the data set and pa-

rameters used in the LSTM algorithm were preferred. As applied 

to the LSTM deep learning network, three existing optimizers 

were used to estimate the speed for four different parameter 

cases and the results were tabulated. While the outputs are given 

in Table 5, the SGDM (Stochastic Gradient Descent with Mo-

mentum) optimizer with the first parameter case achieved the 

lowest RMSE value. However, although the Adam optimizer in 

the first parameter case obtained a value close to the SGDM 

speed estimation, the LSTM deep learning network is more ad-

vantageous because it requires longer training time compared to 

the LSTM deep learning network. Another remarkable aspect of 

the BLSTM deep learning network is that it achieves more suc-

cessful results when the parameter values are not updated. 

When RMSE values for the BLSTM velocity estimation are 

considered, the velocity estimation graph for the first parameter 

state, which was found to be the most successful and made with 
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the SGDM optimizer, is given in Figure 15. A shift is observed 

in the speed estimation values compared to GPS. When the 

RMSE values of LSTM deep learning network and BLSTM 

deep learning network are compared in general, BLSTM is more 

inconsistent than LSTM deep learning network and BLSTM 

deep learning network takes longer training time. Therefore, it 

is not reasonable to use the BLSTM deep learning network for 

this kind of prediction problems. 

The RMSE values of the speed estimation results of the 

BLSTM deep learning network at each second are given in Fig-

ure 16. When Figure 16 is analyzed, there are quite high shifts 

especially in the initial speed estimations. The same shifts also 

reached high values at the end point. However, the error values 

are low at the midpoints of the velocity estimation graph. In gen-

eral, results that can be considered successful were obtained for 

the velocity estimation, except at the start and end points.  

Table 5. BLSTM deep network speed estimation results with IMU 

Optimizer 
Parameter 

Status 
Parameter Value RMSE 

Adam 

1 
LDP 2 

2,9296 
LDF 0,99 

2 
LDP 5 

2,7709 
LDF 0,89 

3 
LDP 10 

3,0256 
LDF 0,5 

4 
LDP none 

2,7812 
LDF none 

RMSProp 

1 
LDP 2 

2,84423 
LDF 0,99 

2 
LDP 5 

4,08124 
LDF 0,89 

3 
LDP 10 

3,6455 
LDF 0,5 

4 
LDP none 

2,82871 
LDF none 

SGDM 

1 
LDP 2 

2,7592 
LDF 0,99 

2 
LDP 5 

4,3457 
LDF 0,89 

3 
LDP 10 

5,81412 
LDF 0,5 

4 
LDP none 

2,9105 
LDF none 

The GPS data set was used for training purposes in the 

BLSTM deep learning network as well as in the LSTM deep 

learning network and speed estimation was performed. The re-

sults are given in Table 6. 

 

Fig. 15. BLSTM speed estimation prediction values graph with IMU. 

Table 6. BLSTM deep network speed estimation results with GPS  

Optimizer 
Parameter  

Status 
Parameter Value RMSE 

Adam 

1 
LDP 2 

2,0296 
LDF 0,99 

2 LDP 5 2,3709 
LDF 0,89 

3 LDP 10 2,5865 
LDF 0,5 

4 
LDP none 

1,99435 
LDF none 

RMSProp 

1 LDP 2 2,34423 
LDF 0,99 

2 
LDP 5 

2,8124 
LDF 0,89 

3 
LDP 10 

2,1055 
LDF 0,5 

4 LDP none 3,2871 
LDF none 

SGDM 

1 LDP 2 1,91122 
LDF 0,99 

2 
LDP 5 

2,3457 
LDF 0,89 

3 LDP 10 2,86412 
LDF 0,5 

4 LDP none 2,0105 
LDF none 
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Fig. 16. BLSTM speed estimation RMSE values graph. 

When the BLSTM velocity estimation RMSE values are con-

sidered, SGDM optimizer with number 1 parameter provides the 

best estimate which is also illustrated in Figure 17. Although the 

speed estimation values are able to predict the moments of speed 

change compared to GPS, there are shifts in the graph. When the 

RMSE values of LSTM deep learning network and BLSTM 

deep learning network are compared in general, BLSTM fails as 

compared to LSTM deep learning network and there are shifts 

in the velocity estimation results. 

Fig. 17. BLSTM speed estimation prediction values graph with GPS 

The RMSE values of the speed estimation results of the 

BLSTM deep learning network at each second are given in Fig-

ure 18. When Figure 18 is analyzed, there are shifts at higher 

values throughout the graph compared to the LSTM deep learn-

ing network. 

 

Fig. 18. BLSTM speed estimation RMSE values graph. 

5.4 GRU Deep Learning Network Simulation Results 

In the literature, GRU is a deep learning network model that 

is presented as an alternative to the LSTM algorithm and struc-

turally differentiated from LSTM. For this reason, we wanted to 

make a performance comparison with the LSTM and BLSTM 

methods used in this study. 

The parameters used in previous deep network models are 

also used in this structure. Adam, RMSprop and SGDM opti-

mizers used in LSTM and BLSTM deep learning networks are 

also used in GRU neural network. In order to be able to compare 

the RMSE values with the previous deep learning networks, the 

parameter conditions were also chosen to be the same. The re-

sults are presented in Table 7. 

The velocity estimation results with the best RMSE values 

obtained with the GRU deep learning network are given in 

Fig.19. While the LSTM deep learning network has speed esti-

mation errors in the initial states, the GRU deep learning net-

work eliminates this problem. The GRU deep learning network 

outperformed the LSTM and BLSTM deep learning networks in 

the overall speed estimation of 138 seconds. 

 

Fig. 19. GRU speed estimation prediction values graph with IMU. 
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Table 7. GRU deep network speed estimation results with IMU. 

Optimizer 
Parameter 

Status 
Parameter Value RMSE 

Adam 

1 
LDP 2 

2,81824 
LDF 0,99 

2 
LDP 5 

2,626 
LDF 0,89 

3 
LDP 10 

2,6324 
LDF 0,5 

4 
LDP none 

2,6847 
LDF none 

RMSProp 

1 
LDP 2 

5,0164 
LDF 0,99 

2 
LDP 5 

2,8642 
LDF 0,89 

3 
LDP 10 

3,2396 
LDF 0,5 

4 
LDP none 

2,9462 
LDF none 

SGDM 

1 
LDP 2 

2,5414 
LDF 0,99 

2 
LDP 5 

2,5576 
LDF 0,89 

3 
LDP 10 

3,1982 
LDF 0,5 

4 
LDP none 

2,6726 
LDF none 

 

The speed prediction RMSE graph of the GRU deep learning 

network is given in Figure 20. When the graph is analyzed, alt-

hough the predictions were successful at the starting point, there 

were shifts over time. However, the prediction outputs are gen-

erally in line with GPS speed values.  

Finally, GPS data was also employed as the training data set 

in the GRU deep learning network. The results are given in Ta-

ble 8. 

The speed estimation results with the best RMSE values ob-

tained with the GRU deep learning network are given in Figure 

21. While the LSTM deep learning network has speed estima-

tion errors in the initial conditions, the GRU deep learning net-

work eliminates this problem. In general, the GRU deep learning 

network is more successful than the LSTM and BLSTM deep 

learning networks in terms of speed estimation. 

 

 

Table 8. GRU deep network speed estimation results with GPS. 

Optimizer 
Parameter 

Status 
Parameter Value RMSE 

Adam 

1 LDP 2 0,95824 
LDF 0,99 

2 LDP 5 0,726 
LDF 0,89 

3 
LDP 10 

0,65246 
LDF 0,5 

4 
LDP none 

1,5647 
LDF none 

RMSProp 

1 LDP 2 1,2481 
LDF 0,99 

2 
LDP 5 

0,7112 
LDF 0,89 

3 LDP 10 0,75496 
LDF 0,5 

4 LDP none 0,6521 
LDF none 

SGDM 

1 
LDP 2 

0,32274 
LDF 0,99 

2 LDP 5 0,35624 
LDF 0,89 

3 LDP 10 0,56402 
LDF 0,5 

4 
LDP none 

0,35087 
LDF none 

 

Fig. 20. GRU velocity estimation RMSE values graph. 
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The RMSE values for speed estimation of the GRU deep 

learning network is given in Figure 22. When the graph is ana-

lyzed, it can be seen that the LSTM and BLSTM deep learning 

networks have lower RMSE values even though they make in-

correct speed predictions at the starting point. The GRU deep 

learning network obtained the most successful results among the 

three deep learning networks, even if there are small shifts in the 

speed transitions, which is a common problem associated with 

all the three deep learning networks. 

All of the utilized deep learning networks overall RMSE val-

ues is given in Table 9. 

Table 9. Deep learning networks overall RMSE values. 

Training Data Set LSTM BLSTM GRU 

IMU 2,5547 2,7592 2,5414 

GPS 0,42542 1,91122 0,32274 

 

 
Fig. 21. GRU speed estimation prediction values graph with GPS. 

 

Fig. 22. GRU velocity estimation RMSE values graph. 

 

 

6. Conclusion 

The analysis carried out in this work shows that the Kalman 

filter, one of the traditional estimation methods, is affected by 

small errors in the sensor data and these errors results in large 

shifts in the velocity estimations. In order to prevent these drifts, 

moving average filtering is used to remove the drift in the accel-

eration data and make the Kalman filter more successful. LSTM, 

BLSTM and GRU deep learning networks were used in deep 

learning-based estimation studies. Deep learning network pa-

rameters, which have a direct impact on the prediction accuracy, 

were tested under different conditions. By using Adam, 

RMSprop and SGDM optimizers in deep learning networks, it 

is aimed to examine the effects of optimizers on the speed of 

estimation results. In this study, two different data sets were 

used for speed prediction. LSTM, BLSTM and GRU deep learn-

ing networks were first trained with IMU sensor data for speed 

estimation. RMSE values were obtained as 2.5547, 2.7592 and 

2.5414, respectively. Furthermore, the same deep learning net-

work methods were trained with GPS data. The prediction data 

obtained through LSTM, BLSTM and GRU provided RMSE val-

ues of 0.42542, 1.91122 and 0.32274, respectively. We see that 

the prediction with GPS data have higher accuracy since deep 

learning networks trained with GPS were less affected by noise 

during the training phase. 

 

Nomenclature 

ADAM   Adaptive Moment Estimation 

BLSTM   Bidirectional Long Short-Term Memory 

CNN    Convolutional Neural Network 

EKF    Extended Kalman Filter 

GRU    Gated Recurrent Unit 

GNSS   Global Navigation Satellite Systems 

GPS    Global Positioning System 

GWN   Gaussian White Noise 

IMU    Inertial Measurement Unit  

INS     Inertial Navigation Systems 

KF     Kalman Filter 

LS     Least Squares  

LKF    Linearized Kalman Filter  

LSTM   Long Short-Term Memory 

RNN    Recurrent Neural Network 

RLG    Ring Laser Gyroscope 

RMSE   Root-Mean-Square Error 

SGDM   Stochastic Gradient Descent with Momentum 

UAV    Unmanned Aerial Vehicle 

UKF    Unscented Kalman Filter 

ZVO    Zero Velocity Update 
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