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1. Introduction

As it is known, the theory of inequality is one of the most important branches of mathematics.
Especially in functional analysis, differential equations and mathematical analysis, inequalities have
a great impact. Fundamental research in this area belongs to the great mathematicians such as
Hardy, Cauchy, Hölder, Littlewood, Minkowski and others. One of the curious topics of the theory of
inequality are inequalities related to trigonometric and hyperbolic functions. The most famous studies
on this subject belong to mathematicians such as Wilker, Huygen’s, Mitrinovic, Wu, Srivastava,
Adamovic, and Cusa. In this study, we will give analogues and some new improvements of these
inequalities for hyperbolic Lucas functions. Hyperbolic Lucas functions are defined by inspiring the
Binet formula for Lucas numbers, which are interesting in number theory and on which many studies
have been made. The reason that makes these functions special is that they are related to the golden
ratio. Because the golden ratio has many incredible applications in nature. Therefore, it would be
interesting to give analogues of theorems related to classical hyperbolic and trigonometric functions
for hyperbolic Lucas functions.

Now we will give some famous inequalities:

i. The Wilker’s inequality is given as (see [1–15]).(
sinx

x

)2

+
tanx

x
> 2 (1)

ii. The Huygens inequality is given as (see [3, 4, 11,12]).

2 sinx

x
+

tanx

x
> 3 (2)
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iii. The Cusa-Huygens inequality is given as (see [12,16]).

sinx

x
<

cosx+ 2

3
(3)

iv. The Wu-Srivastava inequality is given as (see [9]).( x

sinx

)2
+

x

tanx
> 2 (4)

v. The Wilker’s-Anglesio inequality is given as (see [5] [17]).(
sinh(x)

x

)2

+
tanh(x)

x
> 2 +

8

45
x3 tanh(x) (5)

Inequalities (1), (2), (3), (4) and (5) are satisfied for x ∈
(
0,

π

2

)
.

2. Preliminaries

This section provides some of the basic notions needed for the following sections. The classical hyper-
bolic functions are as follows.

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
, and tanh(x) =

ex − e−x

ex + e−x
(6)

Similarly, Stakhov and Rozin described hyperbolic Lucas functions in 2005 (see [8, 18,19]).

Definition 2.1. The symmetrical hyperbolic Lucas sine, cosine, and tangent functions are defined as
follows, respectively.

sLh(x) = αx − α−x, cLh(x) = αx + α−x, and tLh(x) =
αx − α−x

αx + α−x
for all x ∈ R (7)

where α = 1+
√
5

2 .

Definition 2.2. [20, 21] The generalized hyperbolic sine, cosine, and tangent functions are defined
as follows, respectively.

i. sinhφ(x) =
φx − φ−x

2

ii. tanhφ(x) =
φx − φ−x

φx + φ−x

iii. coshφ(x) =
φx + φ−x

2

Some basic properties of hyperbolic Lucas functions are as follows:

i. cLh(x) = cLh(−x)

ii. sLh(x) = −sLh(−x)

iii. tLh(x) = −tLh(−x)

iv. sLh
′
(x) = cLh(x) ln(α)

v. cLh
′
(x) = sLh(x) ln(α)
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vi. tLh
′
(x) =

4 ln(α)

cLh2(x)

Lemma 2.3. If x ∈ [0,∞), then the following inequalities hold:

i. sLh(x) ≥ 2x ln(α)

ii. x ln(α) ≥ tLh(x)

Proof. i) Let f : R+ → R be a function defined by

f(x) = sLh(x)− 2x ln(α)

The derivative of f(x) is
f

′
(x) = ln(α)(cLh(x)− 2) ≥ 0

Because cLh(x) ≥ 2 .Then we obtain f(x) is an increasing function on the interval [0,∞), this means
that f(x) ≥ f(0) = 0 Therefore

sLh(x) ≥ 2x ln(α)

Similarly, we can proof ii.

Lemma 2.4. [8] If x ̸= 0, then the following inequality holds:

cLh(x) <
1

4(ln(α))3

(
sLh(x)

x

)3

(8)

Proof. From the properties of hyperbolic Lucas functions, it is clear that it is sufficient to prove the
theorem for x > 0.

Let f : R+ → R be a function defined by f(x) =
sLh3(x)

x3cLh(x)
The derivative of f(x) is

f
′
(x) =

sLh2(x)

x4cLh2(x)

[
2xcLh2(x) ln(α) + 4x ln(α)− 3cLh(x)sLh(x)

]
Now let g : R+ → R be a function defined by

g(x) = 2xcLh2(x) ln(α) + 4x ln(α)− 3cLh(x)sLh(x)

The derivative of g(x) is

g
′
(x) = 2 ln(α)[2xsLh(2x)− 3cLh(2x)) + cLh2(x) + 2]

Now let h : R+ → R be a function defined by

h(x) = 2xsLh(2x)− 3cLh(2x)) + cLh2(x) + 2

The derivative of h(x) is
h

′
(x) = 2sLh(2x)[1− 2 ln(α)] + 4xcLh(2x)

this show h
′
(x) > 0 Then we obtain h(x), g(x) are increasing and positive functions on (0,∞). Hence,

we get f(x) is an increasing on (0,∞), by using limx→0+ f(x) = 4(ln(α))3. We conclude that

f(x) > 4(ln(α))3

Lemma 2.5. [22, 23] If x, y > 0, and µ ∈ [0, 1], then

µx+ (1− µ)y ≥ xµy1−µ



Journal of New Theory 41 (2022) 51-61 / New Inequalities for Hyperbolic Lucas Functions 54

Lemma 2.6. [22, 23] (Cauchy-Schwarz inequality) If xi, yi > 0, then(
n∑

i=1

xiyi

)2

≤
n∑

i=1

x2i

n∑
i=1

y2i

Lemma 2.7. If xi, yi > 0, i = 1, 2, ..., n, then(
n∑

i=1

(xi + yi)

)2

≥ 4

(
n∑

i=1

√
xiyi

)(
n∑

i=1

√
x2i + y2i

2

)
(9)

Proof. We know that: 4xy ≤ (x+ y)2,∀x, y > 0

4

(
n∑

i=1

√
xiyi

)(
n∑

i=1

√
x2i + y2i

2

)
≤

[(
n∑

i=1

√
xiyi

)
+

(
n∑

i=1

√
x2i + y2i

2

)]2

=

[
n∑

i=1

(
√
xiyi +

√
x2i + y2i

2

)]2
And by Lemma 2.6, we get[

n∑
i=1

(
√
xiyi +

√
x2i + y2i

2

)]2
≤

[
n∑

i=1

√
(1 + 1)

(
xiyi +

x2i + y2i
2

)]2
=

(
n∑

i=1

(xi + yi)

)2

Lemma 2.8. If x, y > 0, x ≥ y and µ ∈ [12 , 1], then the following inequality holds:

µx+ (1− µ)y ≥ x1−µyµ + (2µ− 1)(x− y) ≥ xµy1−µ (10)

Proof. We obtain the first part of the inequality directly from Lemma 2.5

µx+ (1− µ)y = (2µ− 1)(x− y) + (1− µ)x+ µy

≥ x1−µyµ + (2µ− 1)(x− y)

Now, we have to illustrate that the below inequality holds :

x1−µyµ + (2µ− 1)(x− y) ≥ xµy1−µ

For this let’s define a function f : [1,∞) → R

f(t) = t1−µ + (2µ− 1)(t− 1)− tµ

f ′(t) = (1− µ)t−µ + (2µ− 1)− µtµ−1

f ′′(t) = (1− µ)(−µ)t−µ−1 − µ(µ− 1)tµ−2 = µ(µ− 1)

[
1

tµ+1
− 1

t2−µ

]
≥ 0,∀t ≥ 1

then we obtain :
∀t ≥ 1, f ′(t) ≥ f ′(1) = 0

thus f(t) is an increasing and positive function for all t ≥ 1. If we take t =
x

y
and multiply both sides

of the inequality by y, then we obtain :(
x

y

)1−µ

y + (2µ− 1)(x− y) ≥
(
x

y

)µ

y

or
x1−µyµ + (2µ− 1)(x− y) ≥ xµy1−µ
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Lemma 2.9. If x, y > 0, x ≥ y and µ ∈ [12 ,
3
4 ], then the following inequality is satisfied

µx+ (1− µ)y ≥ xµ−
1
2 y

3
2
−µ +

x− y

2
≥ xµy1−µ (11)

Proof. By Lemma 2.5, we obtain

µx+ (1− µ)y = (µ− 1

2
)x+ (

3

2
− µ)y +

x− y

2
≥ xµ−

1
2 y

3
2
−µ +

x− y

2

Now we have to demonstrate that the following inequality is satisfied:

xµ−
1
2 y

3
2
−µ +

x− y

2
≥ xµy1−µ (12)

By Lemma 2.5, we obtain

1

2

[(
x

y

) 1
2

+ 1

]
≥
(
x

y

) 1
4

Also we know for all µ ∈ [12 ,
3
4 ] (

x

y

) 3
4
−µ

≥ 1

or (
x

y

) 1
4

≥
(
x

y

)µ− 1
2

is true. Then we get:

1

2

[(
x

y

) 1
2

+ 1

]
≥
(
x

y

) 1
4

≥
(
x

y

)µ− 1
2

(13)

It is clear that the inequality (12) is equivalent to the following inequality:

x− y

2
≥ xµ−

1
2 y1−µ

[√
x−√

y
]

If x = y, the inequality is trivial. So let’s assume x > y and divide both side of the inequality by√
y(
√
x−√

y) then we get the following inequality:

1

2

[(
x

y

) 1
2

+ 1

]
>

(
x

y

)µ− 1
2

This inequality is true according to the (13).

Ibrahimov [24] proved the below inequalities for generalized hyperbolic functions

Theorem 2.10. If x ≥ 0 and s > f > 1 then the following inequalities are satisfied:

i. sinhs(x) ln f ≥ sinhf (x) ln s

ii. tanhs(x) ln f ≤ tanhf (x) ln s

iii. coshs(x) ln f ≥ coshf (x) ln s
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3.Main Results

Theorem 3.1. (Wu-Srivastava type inequality) If x nonzero real number then the following inequality
holds: (

x

sLh(x)

)2

+
x

tLh(x)
>

1

lnα

(
1

4 lnα
+ 1

)
(14)

Proof. From the properties of hyperbolic Lucas functions, obviously that it is sufficient to prove the
theorem for x > 0.
Let f : R+ → R be a function defined by

f(x) = x2 + xsLh(2x)− 1

lnα

(
1

4 lnα
+ 1

)
sLh2(x)

The derivatives of f(x) are

f
′
(x) = 2x−

(
1 +

1

2 lnα

)
sLh(2x) + 2xcLh(2x) lnα

f
′′
(x) = (2− cLh(2x) + 4xsLh(2x)) (ln(α))2

f
′′′
(x) = −2sLh(2x) ln(α) + 4sLh(2x)(ln(α))2 + 8xcLh(2x)(ln(α))3

f (4)(x) = −4cLh(2x)(ln(α))2 + 16cLh(2x)(ln(α))3 + 16xsLh(2x)(ln(α))4

= 4cLh(2x)(ln(α))2(4 ln(α)− 1) + 16xsLh(2x)(ln(α))4

This means that f (4)(x) ≥ f (4)(0) = 8(ln(α))2(4 ln(α)− 1) > 0, f
′′′
(0) = 0, f

′′
(0) = 0, f

′
(0) = 0. Thus

f
′′′
(x), f

′′
(x), f

′
(x) and f(x) are increasing and positive functions on the interval [0,∞), this means

that f(x) ≥ f(0) = 0, for all x ≥ 0. Therefore

x2 + xsLh(2x) ≥ 1

lnα

(
1

4 lnα
+ 1

)
sLh2(x)

By dividing both sides of the inequality by sLh2(x) for x > 0, we obtain(
x

sLh(x)

)2

+
x

tLh(x)
>

1

lnα

(
1

4 lnα
+ 1

)

In addition we give Cusa-Huygens type inequality for hyperbolic Lucas functions.

Theorem 3.2. If x ̸= 0, then the following inequality is satisfied:

sLh(x)

x
<

(
cLh(x)

2
+ 1

)
ln(α) (15)

Proof. From the properties of hyperbolic Lucas functions, obviously that it is sufficient to prove the
theorem for x > 0.

Let f : R+ → R be a function defined by

f(x) =

(
cLh(x)

2
+ 1

)
ln(α)− sLh(x)

x

The derivative of f(x) is

f
′
(x) =

sLh(x)

2x
(ln(α))2 − xcLh(x) ln(α)− sLh(x)

x2

=
x2sLh(x)(ln(α))2 − 2xcLh(x) ln(α) + 2sLh(x)

2x2
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In addition, let g : R+ → R be a function defined by

g(x) = x2sLh(x)(ln(α))2 − 2xcLh(x) ln(α) + 2sLh(x)

The derivative of g(x) is
g
′
(x) = x2cLh(x)(ln(α))3 > 0

Then we obtain g(x) is an increasing function on (0,∞). This means that g(x) > g(0) = 0. Hence, we
get f(x) is an increasing on (0,∞), by using

lim
x→0+

[(
cLh(x)

2
+ 1

)
ln(α)− sLh(x)

x

]
= 0

We conclude that f(x) > 0.

Furthermore, we give Huygens type inequality for hyperbolic Lucas functions.

Theorem 3.3. If x ̸= 0, then the following inequality is satisfied:

2
sLh(x)

x
+

tLh(x)

x
> 3 (4)

1
3 ln(α) (16)

Proof. By Lemmas 2.4, 2.5, we get

2

3

sLh(x)

x
+

1

3

tLh(x)

x
>

(
sLh(x)

x

) 2
3
(
tLh(x)

x

) 1
3

=
sLh(x)

x

1
3
√
cLh(x)

> (4)
1
3 ln(α)

Besides, we give two Refinements of Huygens inequality for hyperbolic Lucas functions.

Theorem 3.4. If x ̸= 0, then the following inequality is satisfied:

2
sLh(x)

x
+

tLh(x)

x
> 3

(
sLh(x)

x

) 1
3
(
tLh(x)

x

) 2
3

+
sLh(x)− tLh(x)

x
> 3(4)

1
3 ln(α)

Proof. From the properties of hyperbolic Lucas functions, obviously that it is sufficient to prove the
theorem for x > 0. By using Lemmas 2.4, 2.8 we get

2

3

sLh(x)

x
+

1

3

tLh(x)

x
>

(
sLh(x)

x

) 1
3
(
tLh(x)

x

) 2
3

+
1

3

(
sLh(x)− tLh(x)

x

)
>

>

(
sLh(x)

x

) 2
3
(
tLh(x)

x

) 1
3

=
sLh(x)

x

1
3
√
cLh(x)

> (4)
1
3 ln(α)

Theorem 3.5. If x ̸= 0, then the following inequality is satisfied:

2
sLh(x)

x
+

tLh(x)

x
> 3

[(
sLh(x)

x

) 1
6
(
tLh(x)

x

) 5
6

+
sLh(x)− tLh(x)

2x

]
> 3(4)

1
3 ln(α)

Proof. From the properties of hyperbolic Lucas functions, clearly that it is sufficient to prove the
theorem for x > 0. By Lemmas 2.4, 2.9 we get

2

3

sLh(x)

x
+

1

3

tLh(x)

x
>

(
sLh(x)

x

) 1
6
(
tLh(x)

x

) 5
6

+
sLh(x)− tLh(x)

2x
>

>

(
sLh(x)

x

) 2
3
(
tLh(x)

x

) 1
3

=
sLh(x)

x

1
3
√
cLh(x)

> (4)
1
3 ln(α)
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Next, we give Wilker’s inequality for hyperbolic Lucas functions.

Theorem 3.6. If x ̸= 0 then the following inequality is satisfied:(
sLh(x)

x

)2

+
tLh(x)

x
> 4(lnα)

3
2 (17)

Proof. From the properties of hyperbolic Lucas functions, clearly that it is sufficient to prove the
theorem for x > 0. By Lemmas 2.4, 2.5 we get

1

2
(
sLh(x)

x
)2 +

1

2

tLh(x)

x
>

sLh(x)

x

√
tLh(x)

x
=

√(
sLh(x)

x

)3

.
1

cLh(x)
> 2(lnα)

3
2

Finally, we give Wilker’s-Anglesio inequality for hyperbolic Lucas functions.

Theorem 3.7. If x ̸= 0 then the following inequality is satisfied:(
sLh(x)

x

)2

+
tLh(x)

x
> 2 lnα+

8

45
(lnα)4x3tLh(x) (18)

Proof. From the properties of hyperbolic Lucas functions, clearly that it is sufficient to prove the
theorem for x > 0. Let B : R+ → R be a function defined by

B(x) =

1

4(lnα)2

(
sLh(x)

x

)2

+
1

lnα

tLh(x)

x
− 2

x3tLh(x)

Bahşi [8] proved that this function is increasing on (0,∞) and

lim
x→0+

B(x) =
8(lnα)3

45
(19)

This means that
1

4(lnα)2

(
sLh(x)

x

)2

+
1

lnα

tLh(x)

x
> 2 +

8(lnα)3

45
x3tLh(x)

It is obvious

1

lnα

[(
sLh(x)

x

)2

+
tLh(x)

x

]
>

1

4(lnα)2

(
sLh(x)

x

)2

+
1

lnα

tLh(x)

x
> 2 +

8(lnα)3

45
x3tLh(x)

Hence (
sLh(x)

x

)2

+
tLh(x)

x
> 2 lnα+

8

45
(lnα)4x3tLh(x) (20)

Corollary 3.8. If x ̸= 0, then the following inequalities are satisfied:

2

x
sLh(x) +

1

x
tLh(x) >

sLh(x)

x

1 + 2 4

√
1 + cLh2(x)

2cLh3(x)

 (21)

sLh(x)

x

1 + 2 4

√
1 + cLh2(x)

2cLh3(x)

 >
sLh(x)

x

(
1 +

2√
cLh(x)

)
(22)

sLh(x)

x

(
1 +

2√
cLh(x)

)
> 3

3
√
4 ln(α) (23)
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Proof. By Lemma 2.7 we obtain:

2sLh(x) + tLh(x) > sLh(x) + 2
4

√
sLh(x)tLh(x)

2
(sLh2(x) + tLh2(x))

= sLh(x)

1 + 2 4

√
1 + cLh2(x)

2cLh3(x)


Hence, (21) is proved. By Lemma 2.5 we obtain:

1 + cLh2(x) ≥ 2cLh(x) (24)

1 +
2√

cLh(x)
≥ 3

3
√
cLh(x)

(25)

and by inequality (24), we get the inequality (22). Also by using Lemma 2.4 and inequality (25) we
obtain the inequality (23).

Now we calculate the limit using Theorem 3.2 and Lemma 2.4 without using L’Hôpital’s rule.

Corollary 3.9.

lim
x→0

sLh(x)

x
= 2 ln(α) (26)

Proof. By Lemma 2.4 and Theorem 3.2, we obtain

3
√
4cLh(x)ln(α) <

sLh(x)

x
<

(
cLh(x)

2
+ 1

)
ln(α)

Take f(x) = 3
√

4cLh(x) ln(α); g(x) =
sLh(x)

x
; h(x) =

(
cLh(x)

2
+ 1

)
ln(α)

Then
lim
x→0

f(x) = lim
x→0

3
√
4cLh(x) ln(α) = 2 ln(α)

and

lim
x→0

h(x) = lim
x→0

(
cLh(x)

2
+ 1

)
ln(α) = 2 ln(α)

By Sandwich theorem,

lim
x→0

sLh(x)

x
= 2 ln(α)

Corollary 3.10. If x ≥ 0, then the following inequality is satisfied:

2 sinh(x)(lnα)2 + tLh(x) lnα ≥ sLh(x) + tanh(x) (27)

Proof. Let f be a function defined by

f(x) = 2 sinh(x)(lnα)2 + tLh(x) lnα− sLh(x)− tanh(x)

The derivative of f(x) is

f
′
(x) = lnα (2 cosh(x) lnα− clh(x)) +

(
4(lnα)2

(clh(x))2
− 1

(cosh(x))2

)
≥ 0

According to Theorem 2.10 f(x) is an increasing function on [0,∞), this means that

f(x) ≥ f(0) = 0



Journal of New Theory 41 (2022) 51-61 / New Inequalities for Hyperbolic Lucas Functions 60

4. Conclusion

In this study, analogues of some important inequalities related to hyperbolic and trigonometric func-
tions are obtained for hyperbolic Lucas functions. In addition, some modifications of Young’s in-
equality have been proved and new results have been obtained for Lucas functions as a result of
these modifications. In the future studies can investigate improvements and generalizations of these
inequalities.
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