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ABSTRACT 
 
Increasing environmental consciousness, triggered by global climate change awareness, has found a 
response in the composite material industry and has pushed the industry representatives to search for 
environmentally friendly alternatives to conventional materials. To reduce the carbon footprint and 
minimize the damage to nature, the preference for natural fibres instead of synthetic fibres can be 
considered a step taken in this context. Today, it is possible to see natural fibre applications in many 
industrial products, including automobile interior parts. 
The purpose of using flax fibre in composite materials is not different from conventional fibres, 
however, their hydrophilic characteristics make flax fibre composites sensitive to temperature and 
the humidity of the surroundings. This study aims to investigate the moisture content of flax fibre 
composites as well as their hybrids with E-glass fibres at room temperature by using 
thermogravimetric analysis (TGA). It is observed that flax fibre samples have a moisture content of   
4.9%, while E-glass samples have only a moisture content of  0.5%. The hybrid samples lay between 
these two values having a moisture content of 2.5%.  
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ÖZET 
 

Küresel iklim değişikliği fakındalığının tetiklemesiyle artan çevre duyarlılığı, her sektörde olduğu 
gibi kompozit malzeme sektöründe de karşılık bulmuş ve sektör temsilcilerini çevreci çözümler 
araştırmaya itmiştir.  Karbon ayak izini düşürmek ve doğaya verilen zararı minimuma indirmek için 
konvansiyonel malzemeler olan sentetik elyafların yerine doğal elyaflar tercih edilmeye başlanması 
bu bağlamda atılmış bir adım olarak değerlendirilebilir. Otomobil iç parçalarının da dahil olduğu 
birçok endüstriyel üründe doğal  elyaf uygulamaları görmek mümkündür.  
Kompozit malzemelerde keten elyafın kullanılma amacı geleneksel elyaflarda olduğundan farklı 
değildir; ancak keten elyafların hidrofilik karakteristiği, bu elyafın kompozitlerini sıcaklığa ve 
çevrenin nemine duyarlı hale getirir. Bu çalışma, termogravimetrik analiz (TGA) kullanarak keten 
elyaf takviyeli kompozitlerin ve bu elyafların cam elyafla yaptığı hibrit kompozitlerin oda 
sıcaklığında sahip oldukları nem miktarını araştırmayı amaçlamaktadır. Keten elyaf numunelerin nem 
muhteviyatları %4.9 olarak bulunurken, bu değer cam elyaf numuneler için %0.5 olarak bulunmuştur. 
Hibrit numunelerin nem muhteviyatları bu iki değerin arasında %2.5 olarak bulunmuştur.  
 
Anahtar sözcükler: Keten elyaf, Nem oranı, Hibrit kompozitler, TGA 
 
1. INTRODUCTION 
 
Fibre-reinforced composite materials, which 
allow the production of complex structures 
thanks to their easy workability, have also 
become the preferred materials in the maritime 
field thanks to their high corrosion resistance 
(Bulut and Erdoğan, 2011). However, the energy 
consumed to produce synthetic fibres used today, 
and therefore the amount of CO2 released to 
nature has begun to be questioned due to 
increasing global warming awareness. The 
energy consumed for the production of one 
kilogram of the most commonly used fibres 
today, such as carbon fibre and E-glass fibre, is 
approximately 500 MJ (Zhang et al., 2020) and 
54.7 MJ (Joshi et al., 2004). In terms of the 
global warming indicators, the corresponding 
carbon emissions are 36 and 2.7 CO2 kg/kg, 
respectively (Boegler et al., 2014).  
The fact that natural fibres have been used 
instead of synthetic fibres in this period of 
increasing environmental and global warming 
effects shows that environmental awareness has 
also found a response in the field of composites. 
The stems of plants such as flax, jute, ramie, and 
sisal are processed into fibres and used as 
reinforcement material in composite materials 
(Ashori, 2008). Especially in the interior panels 
of automobiles, where lightweight is required to 
reduce fuel consumption (Khalfallah et al., 
2014), the applications of flax and jute fibres are 

increasing day by day. If the values given for 
carbon fibre and E-glass fibre are compared with 
flax fibres, the environmental impact of the 
situation is illustrated more clearly: The energy 
required to produce one kilogram of flax fibre is 
9.55 MJ (Joshi et al., 2004) while the 
corresponding global warming indicator is -1.4 
MJ (Boegler et al., 2014). This means that while 
the flax plant is developing photosynthesis, aside 
from releasing carbon during respiration, it 
releases O2 to nature and captures carbon from 
the atmosphere. 
Switching from synthetic composite materials 
used in many fields to natural composite 
materials that are completely environmentally 
friendly is too optimistic for today (Shah et al., 
2013; Deka et al., 2013). To produce “green” 
composite materials both the resin and fibre must 
have such green properties to achieve this goal 
(Benega et al., 2017).  However, as of today, 
natural resins are not able to compete with 
conventional resins, in terms of mechanical and 
thermal properties, as well as physical properties, 
such as viscosity, etc. (Dallons, 2005). Materials 
based on cashew nut shell liquid hardeners, 
linseed and soybean oils resin, and UV-cured 
systems are being developed (Dallons, 2005). 
However, the best results are found when hybrid 
systems, comprising synthetic and biobased 
materials, are used in tandem (Benega et al., 
2017).  
The mechanical properties of flax fibre, which is 
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one of the most promising natural and 
sustainable fibres, are lower than the mechanical 
properties of E-glass fibre, but thanks to their low 
densities, they can compete with E-glass fibre in 
terms of specific mechanical properties (Yan et 
al., 2014). However, due to climatic conditions, 
production processes and environmental factors 
in which flax fibres are produced, great 
differences are observed in the mechanical 
properties of these fibres (Andersons et al., 
2005). Baley et al. (2020) and Blanchard et al. 
(2016) stated that these differences are high at the 
elementary flax fibre level, but these decrease in 
the fibre bundle formed by the elementary fibres. 
Not only the variations that make working with 
natural fibres hard but also their hydrophilic 
characteristics, tendency to absorb water. 
Moudood et al. (2019) studied the effect of 
moisture in flax fibres and its effect on the 
mechanical properties of their composites. It is 
reported that humid fabrics lead to poor 
microstructural quality and  deformations on the 
finished products, such as warpage. 
Cheour et al. (2016)  investigated the effects of 
moisture absorption on the behaviour of 
flax/epoxy composites with different fibre 
orientations. It was stated that the fibre 
orientation has a significant effect on moisture 
ingress and the moisture in flax fibres leads to an 
increase in damping properties. 
Lu et al. (2022) studied the effect of moisture 
absorption of both technical and elementary 
fibres on their flexural properties. It was reported 
that fibre-matrix debonding occurs when flax 
fibres swell due to moisture. 
Assaedi et al. (2015) studied the thermal 
behaviour of flax reinforced composite materials 
by TGA. The degradation of flax fibres was 
observed in three stages: evaporating of the water 
absorbed by the fibre, between the temperature 
of 25 0C and 250 0C, decomposition of cellulose 
between 240 0C to 365 0C, and flax fibres 
decomposition above the temperature of 365 0C. 
However, the moisture content of the samples 
has not been the scope of the study.  
The effect of moisture content on mechanical and 
damping properties of flax fibre composites has 
been studied by several researchers but the 
moisture content of flax fibre composites and 
their hybrids with E-glass fibres have not been 

studied. This study aims to investigate the 
moisture content of flax fibre composites and 
their hybrids with E-glass fibres by employing 
TGA. To compare the moisture contents, the 
moisture content of E-glass fibre composites was 
also studied. 
 
2. MATERIALS AND METHOD 

 
E-glass and flax fibres with different areal 
weights were used to ensure that the samples 
were of approximately the same thickness. The 
physical properties of the fibres used are given in 
Table 1 (Cihan et al., 2019). Gurit Prime 20V 
epoxy resin  and  Gurit FAST hardener were used 
for the composite manufacturing. 
 
Table 1. Physical properties of the fabrics 
utilized. 
 

Woven 
fabrics 

Fibre type 
and weave 

Areal 
weight 
(g/m2) 

Fibre 
diameter 

(μm) 
Thickness 

(mm) 

 

Flax, 2x2 283 23 0.32 

 

E-glass, 
2x2 590 19 0.56 

 
2.1. Sample production 
Six-layer symmetrical composite laminates with 
three different configurations namely, [G2F]s, 
[FGF]s and [F3]s were produced by 
vacuum-assisted resin infusion technique 
(E denotes E-glass fibres and F denotes flax 
fibres). This method minimizes the amount of air 
that can enter the composite material, allowing 
materials with higher mechanical properties to be 
obtained than materials produced by the hand 
lay-up method (Yuhazri and Sihombing, 2010). 
The produced laminates were left to cure at 
laboratory temperature (20 0C) for 24 hours. 
After this process, the laminates were post-cured 
for 7 hours in an oven at 65 0C to increase the 
mechanical properties and environmental 
resistance of the laminates. Then, samples were 
prepared by grating the laminates into small 
particles in a ceramic vessel. Each vessel 
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contains about 10 mg of grated laminate 
particles. 
 
2.2. Thermogravimetric analysis 
The TGA is performed over a temperature range 
of 25-800 0C with a heating rate of 10 0C /min 
under a nitrogen atmosphere. The relationship 
between the residual weight and temperature is 
plotted for the [G3]s and [F3]s samples, and the 
[G2F]s layup is tested to find out whether there is 
a distinct behaviour for the three components. 
Upon increasing the temperature, moisture in the 
samples is first evaporated producing 
information on how much moisture is present in 
the sample. 
 
3. FINDINGS AND DISCUSSION 

 
Thermo Gravimetric Analysis (TGA) approach 
provides information on the changes in physical 
and chemical properties of materials that are 
measured as a function of constantly elevating 
temperature. As well as information on the 
decomposition temperature of components of the 
composites, which in turn, indicates the fibre 
volume content of the composite materials, given 
each constituent has a distinct decomposition 
temperature and there is enough equipment 
resolution. Along with information on 
decomposition temperatures, the TGA also 
provides information on the moisture content of 
the composite materials. It can also show the 
evaporation of other solvents when involved. 
The [G3]s samples have a moisture content of 
0.5% as shown in Figure 1. The epoxy in the 
samples starts to decompose near 300 ºC and it 
continues until all the epoxy resin burns out, 
leaving the unburned fibres and epoxy ash to be 
weighted. These values are used to determine the 
component content of the constituents. This 
approach applies to the [G3]s layup laminates as 
epoxy resin and E-glass fibres have different 
decomposition temperatures.  
Moisture is the first constituent that is subtracted 
from the composite samples with the increasing 
temperature as the moisture in the composite is 
in a weak bond or free state (Assaedi et al., 
2015).  
The decomposition of epoxy resin occurred 
between the range of 300 - 400 0C whereas no 

decomposition of E-glass fibres is observed 
between the range of 0 - 800 0C, as shown in 
Figure 1.  E-glass fibre volume fraction for [G3]s 
layup can then be calculated after removing the 
remaining ash residue of the epoxy. 
 

 
 
Figure 1. Residual weight vs. Temperature plot 
of [G3]s samples generated by the TGA. 

 
The moisture content of [G2F]s was 2.5%, as 
shown in Figure 2. It was impossible to 
determine the decomposition temperature of 
epoxy resin and flax fibres with the parameters 
used. There is no distinct decomposition 
behaviour observed in the curve that renders the 
determination of the flax fibre content.  
 

 
Figure 2. Residual weight vs. Temperature plot 
of [G2F]s samples generated by the TGA.  
 
In Figure 3, the first significant reduction in the 
weight is observed between 80-120 0C, where 
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water in the sample evaporates. This stage is 
followed by the degradation of the epoxy resin 
and flax fibres between the temperature of 300-
400 0C.  After about 500 0C, the curve flattens 
out, no constituent left to be burnt out. The 
remaining is the ash of the epoxy resin and the 
flax fibres. 
 

 
 
Figure 3. Residual weight vs. Temperature plot  
of [F3]s samples generated by the TGA. 
 
The moisture content grows as the flax fibre 
content increases as shown in Table 2. 
 
Table 2. Mean moisture content of the samples. 
 

 [G3]s [G2F]s [F3]s 
Moisture 

Content (%) 
0.5 2.5 4.9 

 
This behaviour can be attributed to hydrophilic 
characteristics of flax fibres that cause 
degradation in the mechanical properties, 
causing stress at the fibre/matrix interface region 
resulting in weak matrix/fibre interfaces (Azwa 
et al., 2013).   
 
4. CONCLUSION 
 
TGA results show that the moisture content 
increases as the flax fibre volume fraction of the 
laminates increases. Since the moisture content 
has a significant effect not only on the 
mechanical properties but also on the damping 
properties, the moisture content of the samples 
needs to be determined and taken into account for 

a reliable reading. By this means, the 
interpretation of the experimental results will be 
more reliable. For further work, slower heating 
ramps may be employed to increase the graph 
resolution and to indicate distinct decomposition 
temperatures. 
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