Bitlis Eren Üniversitesi Fen Bilimleri Dergisi

BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE ISSN: 2147-3129/e-ISSN: 2147-3188 VOLUME: 11 NO: 3 PAGE: 893-901 YEAR: 2022 DOI: 10.17798/bitlisfen.1137179

On Saturated Numerical Semigroups with Multiplicity p Prime Numbers

Ahmet ÇELİK^{1*}

¹Adıyaman University, Vocational School of Technical Sciences, Depatrtment of Computer Technologies, Adıyaman, TÜRKİYE (ORCID: <u>0000-0001-5980-0625</u>)

Keywords: Saturated numerical semigroups, Isole gaps, Perfect, Pseudo-Frobenius number.

Abstract

In this paper, we will give some results for saturated numerical semigroups with multiplicity p prime number and conductor η where p < 10.

1. Introduction

Let $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ integers set and $\Omega = \{a \in \mathbb{Z} : a \ge 0\}$ be non-negative integers set. and integers set, respectively. $\Delta \subseteq \Omega$ is called a numerical semigroup if $0 \in \Delta$, $a_1 + a_2 \in \Delta$, for all $a_1, a_2 \in \Delta$ and $\#(\Omega \setminus \Delta)$ is finite (#(Y)) is cardinality the set of Y). Let Δ be a numerical semigroup. The largest element of the set of $\mathbb{Z}\setminus\Delta$ is called the Frobenius number of Δ , and it is denoted by $\nu(\Delta)$. The smallest nonzero element of Δ is called the multiplicity of Δ and is denoted by $\mu(\Delta)$. Also, the number $\pi(\Delta) = \#(\{0, 1, 2, ..., \nu(\Delta)\} \cap \Delta)$ is called determine number of Δ . For the numerical semigroup,

$$\Delta = < u_1, u_2, ..., u_k > = \{\lambda_0 = 0, \lambda_{1,}, \lambda_2, ..., \lambda_{n-1}, \lambda_n = \nu(\Delta) + 1, \rightarrow ...\},\$$

where $\lambda_j < \lambda_{j+1}$ for $j = 1, 2, ..., n = \pi(\Delta)$. Also, the arrow means $\lambda \in \Delta$, for all $\lambda \ge \nu(\Delta) + 1$. In this case, the number $\eta = \nu(\Delta) + 1$ is called conductor of Δ [1], [5].

Let $\Delta = \langle u_1, u_2, ..., u_k \rangle$ be a numerical semigroup. Then the cardinality of elements $u_1, u_2, ..., u_k$, that is, k is called embedding dimension of Δ , and is denoted by $e(\Delta)$. It is known that $e(\Delta) \leq \mu(\Delta)$. So, the numerical semigroup $\Delta = \langle u_1, u_2, ..., u_k \rangle$ is called Maksimal Embedding Dimension (MED) if $\mu(\Delta) = e(\Delta)$. The numerical semigroup Δ is Arf if $\lambda_1 + \lambda_2 - \lambda_3 \in \Delta$ for all $\lambda_1, \lambda_2, \lambda_3 \in \Delta$ such that $\lambda_1 \geq \lambda_2 \geq \lambda_3$. If Δ is an Arf numerical semigroup then Δ is MED. But, its converse is not true. For example, The numerical semigroup $\Delta = <3,7,11 >= \{0,3,6,7,9,10, \rightarrow ...\}$ is MED but not is Arf, since $7+7-6=8 \notin \Delta$ [2], [3], [4], [6]. Δ is called saturated numerical semigroup if $p+r_{\Delta}(x) \in \Delta$, for all $p, x \in \Delta - \{0\}$, where $r_{\Delta}(x) = \gcd\{\lambda \in \Delta : \lambda \leq x\}$. It known that a saturated numerical semigroup is Arf. But, an Arf numerical semigroup can not a saturated. For example, $\Delta = <5,8,11,12,14 >$ is Arf but it is not saturated [7], [10].

Let Δ be a numerical semigroup and $0 \neq \lambda \in \Delta$. The set $Ap(\Delta, \lambda) = \{y \in \Delta : y - \lambda \notin \Delta\}$ is Apery set of Δ according to λ . The element g is a gap of Δ if $g \in \Omega$ but $g \notin \Delta$, we denote the set of gaps of Δ , by $\rho(\Delta)$, i.e. $\rho(\Delta) = \{g \in \Omega : g \notin \Delta\}$. The element $g \in \rho(\Delta)$ is a pseudo-Frobenius number if $g + \lambda \in \Delta$, for all $\lambda \in \Delta$, $\lambda \neq 0$. And the set of all

^{*}Corresponding author: <u>acelik@adiyaman.edu.tr</u>

Received: 28.06.2022, Accepted: 07.09.2022

pseudo-Frobenius number of Δ , we denote by $PF(\Delta)$. Also, the set $SG(\Delta) = \{g \in PF(\Delta) : 2g \in \Delta\}$ is called the set of special gaps of Δ [6].

For a numerical semigroup Δ , $t \in \rho(\Delta)$ is called isole gap if $t-1,t+1 \in \Delta$. The set of isole gaps of Δ is denoted by $I(\Delta)$, that is, $I(\Delta) = \{t \in \rho(\Delta): t-1, t+1 \in \Delta\}$. Also, the numerical semigroup Δ is called perfect if $I(\Delta) = \phi$ (for details see [8], [9]).

In this study, we will give some results about the set of Pseudo-Frobenius and the set of isole gaps of Δ . Also, we will examine whether Δ will be perfect such that Δ is saturated numerical semigroup with multiplicity p prime number and conductor η where p < 10 and $\eta \not\equiv 1(p)$.

2. Main Results

Theorem 2.1. ([6]) If $\Delta = \langle a_1, a_2, ..., a_n \rangle$ is a MED numerical semigroup then $Ap(\Delta, a_1) = \{0, a_2, a_3, ..., a_n\}.$

Proposition 2.2. ([5]). Let $\Delta = \langle a_1, a_2, ..., a_n \rangle$ be a numerical semigroup. Then we have $PF(\Delta) = \{x - \lambda : x \in Ap(\Delta, \lambda), x > \nu(\Delta)\}.$

Theorem 2.3. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta) = 2$ and conductor η . Then, the Δ saturated numerical semigroup is $\Delta = <2, 2\eta+1>$, for $\eta \equiv 0 \pmod{2}$.

Theorem 2.4. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta) = 3$ and conductor η . Then, Δ is saturated if Δ is one of following numerical semigroups:

(1) $\Delta = <3, \eta + 1, \eta + 2 > \text{for } \eta \equiv 0(3).$ (2) $\Delta = <3, \eta, \eta + 2 > \text{for } \eta \equiv 2(3).$

Theorem 2.5. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta) = 5$ and conductor η . Then, Δ is saturated if Δ is one of following numerical semigroups:

1) $\Delta = <5, \eta + 1, \eta + 2, \eta + 3, \eta + 4 > \text{ for } \eta \equiv 0(5)$ 2) $\Delta = <5, \eta, \eta + 1, \eta + 2, \eta + 4 > \text{ for } \eta \equiv 2(5)$ 3) $\Delta = <5, \eta, \eta + 1, \eta + 3, \eta + 4 > \text{ for } \eta \equiv 3(5)$ 4) $\Delta = <5, \eta, \eta + 2, \eta + 3, \eta + 4 > \text{ for } \eta \equiv 4(5)$.

Theorem 2.6. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta) = 7$ and conductor η . Then, Δ is saturated if Δ is one of following numerical semigroups:

1) $\Delta = \langle 7, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 0(7)$ 2) $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 6 \rangle$ for $\eta \equiv 2(7)$ 3) $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 3(7)$ 4) $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 4(7)$ 5) $\Delta = \langle 7, \eta, \eta + 1, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 5(7)$ 6) $\Delta = \langle 7, \eta, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 6(7)$. **Theorem 2.7.** Let $\Delta = <2, 2\eta + 1>$ be a saturated numerical semigroup for $\eta \equiv 0(2)$. Then, we have, $PF(\Delta) = \{2\eta - 1\}$.

Proof. Let $\Delta = <2, 2\eta + 1>$ be a saturated numerical semigroup with $\mu(\Delta) = 2$ and conductor

$$PF(\Delta) = \{x - 2: x \in Ap(\Delta, 2), x > \nu(\Delta) = 2\eta - 1\} = \{2\eta - 1\}$$

since

$$Ap(\Delta, 2) = \{x \in \Delta : x - 2 \notin \Delta\} = \{0, 2\eta + 1\}.$$

Theorem 2.8. Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta) = p$ and conductor η , where $2 and <math>\eta \equiv j(p)$.

i) If
$$j = 0$$
 then $PF(\Delta) = \{\eta - 1, \eta - 2, \eta - 3, ..., \eta - (p-1)\}$.

ii) If $j \neq 0$ then $PF(\Delta) = \{\eta - k : k = 1, 2, ..., j - 1, j + 1, ..., p\}.$

Proof. Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta) = p$ and conductor η , where p < 10 and $\eta \equiv j(p)$.

i) If j = 0 then we write the saturated numerical semigroup Δ as following:

for
$$p = 3,5,7$$
 respectively:
(a) $\Delta = <3,\eta+1,\eta+2>,$
(b) $\Delta = <5,\eta+1,\eta+2,\eta+3,\eta+4>,$
(c) $\Delta = \langle 7,\eta+1,\eta+2,\eta+3,\eta+4,\eta+5,\eta+6 \rangle$.

Now, we can explain the above cases as follows:

(a) Let Δ be a saturated numerical semigroup is $\Delta = <3, \eta+1, \eta+2>$. Then we have $\Delta = <3, \eta+1, \eta+2> = \{0, 3, 6, ..., \eta-6, \eta-3, \eta, \rightarrow ...\}$.

In this case, we have that,

$$\rho(\Delta) = \{1, 2, 4, 5, 7, 8, \dots, \eta - 7, \eta - 5, \eta - 4, \eta - 2, \eta - 1\}$$

and $Ap(\Delta, 3) = \{0, \eta + 1, \eta + 2\}$. So, we find that

$$PF(\Delta) = \{x - 3: x \in Ap(\Delta, 3), x > \nu(\Delta) = \eta - 1\} = \{\eta - 1, \eta - 2\}.$$

(b) Let Δ be a saturated numerical semigroup is $\Delta = <5, \eta+1, \eta+2, \eta+3, \eta+4>$. Then we write $\Delta = <5, \eta+1, \eta+2, \eta+3, \eta+4>=\{0, 5, 10, ..., \eta-5, \eta \rightarrow ...\}$

and

$$\rho(\Delta) = \{1, 2, 3, 4, 6, 7, 8, 9, 11, \dots, \eta - 4, \eta - 3, \eta - 2, \eta - 1\}.$$

Thus, we obtain

$$PF(\Delta) = \{x - 5: x \in Ap(\Delta, 5), x > \nu(\Delta) = \eta - 1\} = \{\eta - 1, \eta - 2, \eta - 3, \eta - 4\}$$

\$\sigma 5) - {x \in \lambda : x - 5 \vert \lambda \rangle - {0 n + 1 n + 2 n + 3 n + 4}}

since $Ap(\Delta, 5) = \{x \in \Delta : x - 5 \notin \Delta\} = \{0, \eta + 1, \eta + 2, \eta + 3, \eta + 4\}.$

(c) Let Δ be a saturated numerical semigroup $\Delta = \langle 7, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle$. We have $\Delta = \langle 7, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle = \{0, 7, 14, ..., \eta - 14, \eta - 7, \eta, \rightarrow ...\}$

and

$$\rho(\Delta) = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, \dots, \eta - 8, \eta - 6, \eta - 2, \eta - 1\}.$$

We find that

 $\eta \equiv 0(2)$. Then we wite that, $\Delta = <2, 2\eta + 1 > = \{0, 2, 4, 6, ..., 2\eta - 2, 2\eta, \rightarrow ...\}$, and the set of gaps of Δ is $\rho(\Delta) = \{1, 3, 5, ..., 2\eta - 1\}$. Thus, we find that the set of Pseudo-Frobenius elements of Δ is

$$PF(\Delta) = \{x - 7: x \in Ap(\Delta, 7), x > \nu(\Delta) = \eta - 1\} = \{\eta - 1, \eta - 2, \eta - 3, \eta - 4, \eta - 5, \eta - 6\}$$

since $Ap(\Delta, 7) = x \in \Delta: x - 7 \notin \Delta = \{0, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6\}.$

Considering the above explanations, we obtain

$$PF(\Delta) = \{\eta - 1, \eta - 2, \eta - 3, ..., \eta - (p - 1)\}$$

for $2 and <math>\eta \equiv 0(p)$.

ii) If $j \neq 0$ then we write the saturated numerical semigroup Δ as following: (a) For p = 3;

The saturated numerical semigroup is $\Delta = <3, \eta, \eta + 2 >$ for $\eta \equiv 2(3)$. Then, we write

$$\Delta = <3, \eta, \eta + 2 > = \{0, 3, 6, 9, \dots, \eta - 5, \eta - 2, \eta, \rightarrow \dots\}$$

$$\rho(\Delta) = \{1, 2, 4, 5, 7, 8, \dots, \eta - 6, \eta - 4, \eta - 3, \eta - 1\}$$

and

$$Ap(\Delta,3) = \{0,\eta,\eta+2\}.$$

Thus, we find that $PF(\Delta) = \{x-3: x \in Ap(\Delta,3), x > \nu(\Delta) = \eta - 1\} = \{\eta - 1, \eta - 3\}.$

(b) For p = 5;

(1) If the saturated numerical semigroup is $\Delta = <5, \eta, \eta+1, \eta+2, \eta+4 >$ for $\eta \equiv 2(5)$, then we have $\Delta = <5, \eta, \eta+1, \eta+2, \eta+4 > = \{0, 5, 10, ..., \eta-7, \eta-2, \eta, \rightarrow ...\}$,

 $\rho(\Delta) = \{1, 2, 3, ..., \eta - 6, \eta - 5, ..., \eta - 3, \eta - 1\} \text{ and } Ap(\Delta, 5) = \{0, \eta, \eta + 1, \eta + 2, \eta + 4\} \text{ . So, we find that}, PF(\Delta) = \{x - 5: x \in Ap(\Delta, 5), x > \nu(\Delta) = \eta - 1\} = \{\eta - 1, \eta - 3, \eta - 4, \eta - 5\}.$

(2) If the saturated numerical semigroup is $\Delta = <5, \eta, \eta + 1, \eta + 3, \eta + 4 >$ for $\eta \equiv 3(5)$, then we write $\Delta = <5, \eta, \eta + 1, \eta + 3, \eta + 4 > = \{0, 5, 10, ..., \eta - 8, \eta - 3, \eta, \rightarrow ...\}$ $\rho(\Delta) = \{1, 2, 3, ..., \eta - 7, \eta - 6, \eta - 5, \eta - 4, \eta - 2, \eta - 1\}$

and

$$Ap(\Delta, 5) = \{0, \eta, \eta + 1, \eta + 3, \eta + 4\}$$

Thus, we obtain that

$$PF(\Delta) = \{x - 5: x \in Ap(\Delta, 5), x > \nu(\Delta) = \eta - 1\} = \{\eta - 1, \eta - 2, \eta - 4, \eta - 5\}.$$

(3) If the saturated numerical semigroup is $\Delta = <5, \eta, \eta+2, \eta+3, \eta+4 > \text{for } \eta \equiv 4(5)$, then we find that

$$\Delta = <5, \eta, \eta + 2, \eta + 3, \eta + 4 > = \{0, 5, 10, \dots, \eta - 9, \eta - 4, \eta, \rightarrow \dots\}$$

$$\rho(\Delta) = \{1, 2, 3, \dots, \eta - 8, \eta - 7, \eta - 6, \eta - 5, \eta - 3, \eta - 2, \eta - 1\}$$

and

 $Ap(\Delta, 5) = \{0, \eta, \eta + 2, \eta + 3, \eta + 4\}.$

Thus, we write that

$$PF(\Delta) = \{x - 5: x \in Ap(\Delta, 5), x > v(\Delta) = \eta - 1\} = \{\eta - 1, \eta - 2, \eta - 3, \eta - 5\}$$

- (c) For p = 7;
- (1) If the saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 6 \rangle$ for $\eta \equiv 2(7)$, then we have

$$\Delta = <7, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6> = \{0, 7, 14, 21, \dots, \eta-9, \eta-2, \eta, \rightarrow \dots\}$$

and

$$\rho(\Delta) = \{1, 2, 3, \dots, 6, 8, \dots, 13, 15, \dots, \eta - 8, \eta - 7, \dots, \eta - 3, \eta - 1\}.$$

Thus, we find that

$$PF(\Delta) = \{x - 7 : x \in Ap(\Delta, 7), x > F(\Delta) = \eta - 1\} = \{\eta - 7, \eta - 6, \eta - 5, \eta - 4, \eta - 3, \eta - 1\}$$
 since $Ap(\Delta, 7) = \{0, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 6\}.$

Making same operations, we find followings:

- (2) If the saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 3(7)$, then we have $PF(\Delta) = \{\eta 7, \eta 6, \eta 5, \eta 4, \eta 2, \eta 1\}$.
- (3) If the saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 4(7)$, then we have $PF(\Delta) = \{\eta 7, \eta 6, \eta 5, \eta 3, \eta 2, \eta 1\}$.
- (4) If the saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 1, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 5(7)$, then we have $PF(\Delta) = \{\eta 7, \eta 6, \eta 4, \eta 3, \eta 2, \eta 1\}$.
- (5) If the saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 6(7)$, then we have $PF(\Delta) = \{\eta 7, \eta 5, \eta 4, \eta 3, \eta 2, \eta 1\}$.

Finally, we obtain following results for a saturated numerical semigroup Δ , with $\mu(\Delta) = p$ is prime number and conductor η , where $2 and <math>\eta \equiv j(p)$:

- i) If j = 0 then $PF(\Delta) = \{\eta 1, \eta 2, \eta 3, ..., \eta (p-1)\}$.
- ii) If $j \neq 0$ then $PF(\Delta) = \{\eta k : k = 1, 2, ..., j 1, j + 1, ..., p\}$.

Theorem 2.9. The saturated numerical semigroup Δ given by Theorem 2.3. is not perfect,

Proof. Let Δ be a saturated numerical semigroup which given by Theorem 2.3. Then, $\Delta = \langle 2, 2\eta + 1 \rangle$, with $\mu(\Delta) = 2$ and conductor $\eta \equiv 0 \pmod{2}$. In this case, we write $\Delta = \langle 2, 2\eta + 1 \rangle = \{0, 2, 4, 6, ..., 2\eta, \rightarrow ...\}$ and $\rho(\Delta) = \{1, 3, 5, ..., 2\eta - 1\}$. In this case, we obtain the set of isole gaps of Δ is $I(\Delta) = \{y \in \rho(\Delta): y - 1, y + 1 \in \Delta\} = \{\rho(\Delta)\} \neq \phi$, that is, Δ is not perfect.

Theorem 2.10. Let Δ be a saturated numerical semigroup with $\mu(\Delta) = p$ is prime number and conductor η , where $2 and <math>\eta \equiv j(p)$.

(i) If j = 2 then $I(\Delta) = \{v(\Delta)\}$

(ii) If $j \neq 2$ then $I(\Delta) = \phi$. **Proof.** Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta) = p$ and conductor η , where $2 and <math>\eta \equiv j(p)$.

(i) If j = 2 then we have the following saturated numerical semigroups:

(1) For p = 3;

The saturated numerical semigroup is $\Delta = <3, \eta, \eta + 2 >$ for $\eta \equiv 2(3)$ and we write $\Delta = <3, \eta, \eta + 2 > = \{0, 3, 6, 9, ..., \eta - 5, \eta - 2, \eta, \rightarrow ...\}$. Therefore, we obtain the set of isole gaps of Δ is $I(\Delta) = \{y \in \rho(\Delta): y - 1, y + 1 \in \Delta\} = \{\eta - 1\} = \{\nu(\Delta)\}$ since

$$\rho(\Delta) = \{1, 2, 4, 5, 7, 8, \dots, \eta - 6, \eta - 4, \eta - 3, \eta - 1\}.$$

(2) For p = 5;

The saturated numerical semigroup is $\Delta = <5, \eta, \eta+1, \eta+2, \eta+4 > \text{ for } \eta \equiv 2(5)$, then we have }

$$\Delta = <5, \eta, \eta + 1, \eta + 2, \eta + 4 > = \{0, 5, 10, \dots, \eta - 7, \eta - 2, \eta, \rightarrow \dots \}$$

and

$$\rho(\Delta) = \{1, 2, 3, 4, 6, ..., \eta - 6, ..., \eta - 3, \eta - 1\}.$$

Thus, we obtain that

$$I(\Delta) = \{ y \in \rho(\Delta): y-1, y+1 \in \Delta \} = \{\eta-1\} = \{\nu(\Delta)\}$$

(3) For p = 7;

The saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 6 \rangle$ for $\eta \equiv 2(7)$, then we have

$$\Delta = <7, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6 > = \{0, 7, 14, 16, \dots, \eta-9, \eta-2, \eta, \rightarrow \dots\}$$

and

$$\rho(\Delta) = \{1, 2, 3, 4, 5, 6, 8, \dots, \eta - 8, \eta - 7, \dots, \eta - 3, \eta - 1\}$$

So, we find that

$$I(\Delta) = \{ y \in \rho(\Delta) \colon y - 1, y + 1 \in \Delta \} = \{ \eta - 1 \} = \{ \nu(\Delta) \}$$

(ii) If $j \neq 2$ then we have the following saturated numerical semigroups:

(1) If j = 0 then we write the saturated numerical semigroup Δ as following:

for p = 3, 5, 7 respectively:

(a)
$$\Delta = < 3, \eta + 1, \eta + 2 >,$$

(b)
$$\Delta = <5, \eta+1, \eta+2, \eta+3, \eta+4>,$$

(c) $\Delta = \langle 7, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle$.

Now, we can explain the above cases as follows:

(a) Let Δ be a saturated numerical semigroup is $\Delta = <3, \eta + 1, \eta + 2 >$. Then we have we obtain the set of isole gaps of Δ is $I(\Delta) = \{y \in \rho(\Delta) : y = 1, y + 1 \in \Delta\} = \phi$ since $\Delta = <3, \eta+1, \eta+2> = \{0, 3, 6, ..., \eta-6, \eta-3, \eta, \rightarrow ...\}$

and

$$\rho(\Delta) = \{1, 2, 4, 5, 7, 8, \dots, \eta - 7, \eta - 5, \eta - 4, \eta - 2, \eta - 1\}.$$

(b) The saturated numerical semigroup is $\Delta = <5, \eta+1, \eta+2, \eta+3, \eta+4>$. Then we write $\Delta = <5, \eta + 1, \eta + 2, \eta + 3, \eta + 4 > = \{0, 5, 10, \dots, \eta - 5, \eta, \rightarrow \dots\}$

and

$$\rho(\Delta) = \{1, 2, 3, 4, 6, 7, 8, 9, \dots, \eta - 4, \eta - 3, \eta - 2, \eta - 1\}.$$

So, we find that $I(\Delta) = \{y \in \rho(\Delta): y - 1, y + 1 \in \Delta\} = \phi$.

(c) Let Δ be a saturated numerical semigroup is

 $\Delta = \langle 7, \eta + 1, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle.$

In this case, we obtain that $I(\Delta) = \phi$ since $\Delta = \{0, 7, 14, ..., \eta - 14, \eta - 7, \eta, \rightarrow ...\}$ and $\rho(\Delta) = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, \dots, \eta - 8, \eta - 6, \eta - 2, \eta - 1\}.$

(2) If j=3 then we write the saturated numerical semigroup Δ as following: for p = 5,7 respectively:

(a)
$$\Delta = <5, \eta, \eta + 1, \eta + 3, \eta + 4 >,$$

(b) $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 5, \eta + 6 \rangle$.

Now, we can explain the above cases as follows:

(a) If the saturated numerical semigroup is $\Delta = <5, \eta, \eta + 1, \eta + 3, \eta + 4 >$ for $\eta \equiv 3(5)$ then we write $\Delta = <5, \eta, \eta + 1, \eta + 3, \eta + 4 > = \{0, 5, 10, ..., \eta - 8, \eta - 3, \eta, \rightarrow ...\}$ $\rho(\Delta) = \{1, 2, 3, ..., \eta - 7, \eta - 6, \eta - 5, \eta - 4, \eta - 2, \eta - 1\}$. Thus, we obtain $I(\Delta) = \{y \in \rho(\Delta): y - 1, y + 1 \in \Delta\} = \phi$.

(b) If the saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 3(7)$, then we have $I(\Delta) = \{ y \in \rho(\Delta) : y - 1, y + 1 \in \Delta \} = \phi$ since $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 3, \eta + 5, \eta + 6 \rangle = \{ 0, 7, 14, 21, ..., \eta - 10, \eta - 3, \eta, \rightarrow ... \}$ and $\rho(\Delta) = \{ 1, 2, 3, 4, 5, 6, 8, ..., \eta - 5, \eta - 4, \eta - 2, \eta - 1 \}.$

(3) If j = 4 then we write the saturated numerical semigroup Δ as following:

for p = 5,7 respectively:

(a) $\Delta = <5, \eta, \eta + 2, \eta + 3, \eta + 4 >,$ (b) $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 4, \eta + 5, \eta + 6 \rangle$.

Now, we can explain the above cases as follows:

- (a) If the saturated numerical semigroup is $\Delta = <5, \eta, \eta+2, \eta+3, \eta+4 >$ for $\eta \equiv 4(5)$ then we write $\Delta = <5, \eta, \eta+2, \eta+3, \eta+4 > = \{0, 5, 10, ..., \eta-9, \eta-4, \eta, \rightarrow ...\},$ $\rho(\Delta) = \{1, 2, 3, 4, 6, ..., \eta-8, \eta-7, \eta-6, \eta-5, \eta-3, \eta-2, \eta-1\}$. Thus, we obtain $I(\Delta) = \{y \in \rho(\Delta): y-1, y+1 \in \Delta\} = \phi$.
- (b) If the saturated numerical semigroup is $\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 4, \eta + 5, \eta + 6 \rangle$ for $\eta \equiv 4(7)$, then we have $I(\Delta) = \{ y \in \rho(\Delta) : y = 1, y + 1 \in \Delta \} = \phi$ since

$$\Delta = \langle 7, \eta, \eta + 1, \eta + 2, \eta + 4, \eta + 5, \eta + 6 \rangle = \{0, 7, 14, 21, \dots, \eta - 11, \eta - 4, \eta, \rightarrow \dots \}$$

and

$$\rho(\Delta) = \{1, 2, 3, 4, 5, 6, 8, \dots, \eta - 10, \dots, \eta - 5, \eta - 3, \eta - 2, \eta - 1\}.$$

(4) If j = 5 then we write the saturated numerical semigroup $\Delta = \langle 7, \eta, \eta + 1, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle = \{0, 7, 14, 21, ..., \eta - 12, \eta - 5, \eta, \rightarrow ...\}$. In this case, we obtain that $I(\Delta) = \{y \in \rho(\Delta): y - 1, y + 1 \in \Delta\} = \phi$ since $\rho(\Delta) = \{1, 2, 3, 4, 5, 6, 8, ..., \eta - 11, ..., \eta - 6, \eta - 4, \eta - 3, \eta - 2, \eta - 1\}.$

(5) If j = 6 then we write the saturated numerical semigroup $\Delta = \langle 7, \eta, \eta + 2, \eta + 3, \eta + 4, \eta + 5, \eta + 6 \rangle = \{0, 7, 14, 21, ..., \eta - 13, \eta - 6, \eta, \rightarrow ...\}$. Thus, we find that $I(\Delta) = \{y \in \rho(\Delta): y - 1, y + 1 \in \Delta\} = \phi$ since $\rho(\Delta) = \{1, 2, 3, 4, 5, 6, 8, ..., \eta - 14, ..., \eta - 5, \eta - 4, \eta - 3, \eta - 2, \eta - 1\}$.

Corollary 2.11. Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta) = p$ and conductor η , where $2 and <math>\eta \equiv j(p)$.

- (i) If j = 2 then Δ not perfect
- (ii) If $j \neq 2$ then Δ is perfect.

Proof. It is clear.

Corollary 2.12 Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta) = p$ and conductor η , where p < 10 and $\eta \equiv j(p)$. Then, we have $PF(\Delta) = SG(\Delta)$.

Proof Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta) = p$ and conductor η , where p < 10 and $\eta \equiv j(p)$. Then, it is clear that $SG(\Delta) \subseteq PF(\Delta)$.

- (1) For p = 2; If $\eta \equiv 0(2)$ then $\Delta = \langle 2, 2\eta + 1 \rangle = \{0, 2, 4, 6, ..., 2\eta - 2, 2\eta, \rightarrow ...\}$ and we write $PF(\Delta) = 2\eta - 1$ from Theorem 2.7. If $x \in PF(\Delta) \Rightarrow x = 2\eta - 1 \Rightarrow 2x = 4\eta - 2 = (3\eta) + (\eta - 2) \in \Delta \Rightarrow x \in SG(\Delta)$.
- (2) For p = 3; (a) If $\eta \equiv 0(3)$ then $\Delta = <3, \eta + 1, \eta + 2 > = \{0, 3, 6, 9, ..., \eta - 6, \eta - 3, \eta, \rightarrow ...\}$ and we write $PF(\Delta) = \{\eta - 1, \eta - 2\}$ from Theorem 2.8/(i). Let $x \in PF(\Delta)$. If $x = \eta - 1 \Rightarrow 2x = 2\eta - 2 = (\eta - 3) + (\eta + 1) \in \Delta \Rightarrow x \in SG(\Delta)$

or

if
$$x = \eta - 2 \Rightarrow 2x = 2\eta - 4 = (\eta - 6) + (\eta + 2) \in \Delta \Rightarrow x \in SG(\Delta)$$
.

(b) If $\eta \equiv 2(3)$ then $\Delta = <3, \eta, \eta + 2 > = \{0, 3, 6, 9, ..., \eta - 8, \eta - 5, \eta - 2, \eta, \rightarrow ...\}$ and we write $PF(\Delta) = \{\eta - 1, \eta - 3\}$ from Theorem 2.8/(ii). Let $x \in PF(\Delta)$ if $x = \eta - 1 \Rightarrow 2x = 2\eta - 2 = (\eta - 2) + (\eta) \in \Delta \Rightarrow x \in SG(\Delta)$

or

if
$$x = \eta - 3 \Rightarrow 2x = 2\eta - 6 = (\eta - 8) + (\eta + 2) \in \Delta \Rightarrow x \in SG(\Delta)$$
.

If we make same operations for p = 5 and p = 7, we obtain $PF(\Delta) \subseteq SG(\Delta)$. Thus, the proof is completed.

Example 2.13. We put p=3 and $\eta=9$, in Theorem 2.4/(1) Then, we write $\Delta = <3,10,11 >= \{0,3,6,9,\rightarrow...\}$ MED and saturated numerical semigroup since $\mu(\Delta) = e(\Delta) = 3$. Here, $f(\Delta) = 8, n(\Delta) = 3, \rho(\Delta) = \{1,2,4,5,7,8\}$ and $Ap(\Delta,3) = \{0,10,11\}$. In this case, we find that

$$PF(\Delta) = \{x - 3 : x \in Ap(\Delta, 3), x > F(\Delta) = 8\} = \{10 - 3, 11 - 3\} = \{9, 8\}$$

and

$$I(\Delta) = \{ y \in H(\Delta): y - 1, y + 1 \in \Delta \} = \phi.$$

That is, $\Delta = <3,10,11>=\{0,3,6,9,\rightarrow...\}$ numerical semigroup is perfect. Also,

$$SG(\Delta) = \{x \in PF(\Delta) : 2x \in \Delta\} = \{8,9\} = PF(\Delta).$$

Example 2.14. We put p=5 and $\eta=12$, in Theorem 2.5/(2) Then, we write $\Delta = <5,12,13,14,16 >= \{0,5,10,12, \rightarrow ...\}$ saturated numerical semigroup. Here, $\mu(\Delta) = 5$, $f(\Delta) = 11$, n(S) = 3, $\rho(\Delta) = \{1,2,3,4,6,7,8,9,11, \rightarrow ...\}$ and $Ap(\Delta,5) = \{0,12,13,14,16\}$.

Thus, we obtain

$$PF(\Delta) = \{x - 5 : x \in Ap(\Delta, 5), x > F(\Delta) = 11\} = \{7, 8, 9, 11\}$$

and

$$I(\Delta) = \{ y \in H(\Delta) : y - 1, y + 1 \in \Delta \} = \{11\}.$$

Therefore, the numerical semigroup Δ is not perfect and, we find that

$$SG(\Delta) = \{x \in PF(\Delta) : 2x \in \Delta\} = \{7, 8, 9, 11\} = PF(\Delta)$$

Statement of Research and Publication Ethics

The study is complied with research and publication ethics

References

- [1] R. Froberg, C. Gotlieb and R. Haggkvist, "On numerical semigroups," *Semigroup Forum*, vol. 35, pp.63-68, 1987.
- [2] S. İlhan and H.İ. Karakaş, "Arf numerical semigroups," *Turkish J. Math.*, vol.41, pp.1448-1457, 2017.
- [3] J.C.Rosales, P.A.García-Sánchez, J.I.García-García and M.B.Branco, "Numerical semigroups with maximal embedding dimension," *Int. J. Commut. Rings*, vol. 2, pp.47–53, 2003.
- [4] J. C. Rosales, P.A.García-Sánchez, J.I.García-García, M.B.Branco, "Arf numerical semigroups," J. *Algebra*, vol. 276, pp. 3–12, 2004.
- [5] J.C.Rosales and P.A.Garcia-Sanchez, Numerical semigroups, New York: Springer 181, 2009.
- [6] A. Assi and P.A.Garcia-Sanchez, Numerical semigroups and applications, https://hal.archivesouvertes.fr/hal-01085760, pp 47, 2014.
- [7] A.Çelik, Some results on saturated numerical semigroups, Doctoral thesis, Dicle University, 2018.
- [8] M. A. Moreno Frias and J.C.Rosales, "Perfect numerical semigroups," *Turkish J. Math.*, vol. 43, pp. 1742 1754, 2019.
- [9] J. S. Harold, "On isolated gaps in numerical semigroups," *Turkish J. Math.*, vol.46, pp.123-129, 2022.
- [10] S. İlhan, "On a family of telescopic numerical semigroups," Acta Univ. Apulensis Math. Inform, vol. 67, pp.13-18, 2021