Bitlis Eren Üniversitesi Fen Bilimleri Dergisi

On Saturated Numerical Semigroups with Multiplicity p Prime Numbers

Ahmet ÇELİ ${ }^{1 *}$
${ }^{1}$ Adlyaman University, Vocational School of Technical Sciences, Depatrtment of Computer Technologies, Adlyaman, TÜRKİYE
(ORCID: 0000-0001-5980-0625)

Keywords: Saturated numerical semigroups, Isole gaps, Perfect, Pseudo-Frobenius number.

Abstract

In this paper, we will give some results for saturated numerical semigroups with multiplicity p prime number and conductor η where $p<10$.

1. Introduction

Let $\mathbb{Z}=\{\ldots,-1,0,1, \ldots\} \quad$ integers set and $\Omega=\{a \in \mathbb{Z}: a \geq 0\}$ be non-negative integers set. and integers set, respectively. $\Delta \subseteq \Omega$ is called a numerical semigroup if $0 \in \Delta, \quad a_{1}+a_{2} \in \Delta$, for all $a_{1}, a_{2} \in \Delta$ and $\#(\Omega \backslash \Delta)$ is finite $(\#(Y)$ is cardinality the set of Y).

$$
\Delta=<u_{1}, u_{2}, \ldots, u_{k}>=\left\{\lambda_{0}=0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}, \lambda_{n}=\nu(\Delta)+1, \rightarrow \ldots\right\},
$$

where $\lambda_{j}<\lambda_{j+1}$ for $j=1,2, \ldots, n=\pi(\Delta)$. Also, the arrow means $\lambda \in \Delta$, for all $\lambda \geq \nu(\Delta)+1$. In this case, the number $\eta=\nu(\Delta)+1$ is called conductor of Δ [1], [5].

Let $\Delta=<u_{1}, u_{2}, \ldots, u_{k}>$ be a numerical semigroup. Then the cardinality of elements $u_{1}, u_{2}, \ldots, u_{k}$, that is, k is called embedding dimension of Δ, and is denoted by $e(\Delta)$. It is known that $e(\Delta) \leq \mu(\Delta)$. So, the numerical semigroup $\Delta=<u_{1}, u_{2}, \ldots, u_{k}>$ is called Maksimal Embedding Dimension (MED) if $\mu(\Delta)=e(\Delta)$. The numerical semigroup Δ is Arf if $\lambda_{1}+\lambda_{2}-\lambda_{3} \in \Delta$ for all $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \Delta$ such that $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$. If Δ is an Arf numerical semigroup then Δ is MED. But, its converse is not true. For example, The numerical semigroup

Let Δ be a numerical semigroup. The largest element of the set of $\mathbb{Z} \backslash \Delta$ is called the Frobenius number of Δ, and it is denoted by $v(\Delta)$. The smallest nonzero element of Δ is called the multiplicity of Δ and is denoted by $\mu(\Delta)$. Also, the number $\pi(\Delta)=\#(\{0,1,2, \ldots, \nu(\Delta)\} \cap \Delta)$ is called determine number of Δ. For the numerical semigroup,
$\Delta=<3,7,11>=\{0,3,6,7,9,10, \rightarrow \ldots\}$ is MED but not is Arf, since $7+7-6=8 \notin \Delta$ [2], [3], [4], [6]. Δ is called saturated numerical semigroup if $p+r_{\Delta}(x) \in \Delta$, for all $p, x \in \Delta-\{0\}$, where $r_{\Delta}(x)=\operatorname{gcd}\{\lambda \in \Delta: \lambda \leq x\}$. It known that a saturated numerical semigroup is Arf. But, an Arf numerical semigroup can not a saturated. For example, $\Delta=<5,8,11,12,14>$ is Arf but it is not saturated [7], [10].

Let Δ be a numerical semigroup and $0 \neq \lambda \in \Delta$. The set $A p(\Delta, \lambda)=\{y \in \Delta: y-\lambda \notin \Delta\}$ is Apery set of Δ according to λ. The element g is a gap of Δ if $g \in \Omega$ but $g \notin \Delta$, we denote the set of gaps of Δ, by $\rho(\Delta)$, i.e. $\rho(\Delta)=\{g \in \Omega: g \notin \Delta\}$. The element $g \in \rho(\Delta)$ is a pseudo-Frobenius number if $g+\lambda \in \Delta$, for all $\lambda \in \Delta, \lambda \neq 0$. And the set of all
pseudo-Frobenius number of Δ, we denote by $P F(\Delta)$ Also, the set $S G(\Delta)=\{g \in P F(\Delta): 2 g \in \Delta\}$ is called the set of special gaps of Δ [6].

For a numerical semigroup $\Delta, t \in \rho(\Delta)$ is called isole gap if $t-1, t+1 \in \Delta$. The set of isole gaps of Δ is denoted by $I(\Delta)$, that is, $I(\Delta)=\{t \in \rho(\Delta): t-1, t+1 \in \Delta\}$. Also, the numerical semigroup Δ is called perfect if $I(\Delta)=\phi($ for details see [8], [9]) .

In this study, we will give some results about the set of Pseudo-Frobenius and the set of isole gaps of Δ. Also, we will examine whether Δ will be perfect such that Δ is saturated numerical semigroup with multiplicity p prime number and conductor η where $p<10$ and $\eta \not \equiv 1(p)$.

2. Main Results

Theorem 2.1. ([6]) If $\Delta=<a_{1}, a_{2}, \ldots, a_{n}>$ is a MED numerical semigroup then $\operatorname{Ap}\left(\Delta, a_{1}\right)=\left\{0, a_{2}, a_{3}, \ldots, a_{n}\right\}$.

Proposition 2.2. ([5]). Let $\Delta=<a_{1}, a_{2}, \ldots, a_{n}>$ be a numerical semigroup. Then we have $P F(\Delta)=\{x-\lambda: x \in A p(\Delta, \lambda), x>\nu(\Delta)\}$.

Theorem 2.3. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta)=2$ and conductor η. Then, the Δ saturated numerical semigroup is $\Delta=<2,2 \eta+1>$, for $\eta \equiv 0(\bmod 2)$.

Theorem 2.4. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta)=3$ and conductor η. Then, Δ is saturated if Δ is one of following numerical semigroups:
(1) $\Delta=<3, \eta+1, \eta+2>$ for $\eta \equiv 0(3)$.
(2) $\Delta=<3, \eta, \eta+2>$ for $\eta \equiv 2(3)$.

Theorem 2.5. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta)=5$ and conductor η. Then, Δ is saturated if Δ is one of following numerical semigroups:

1) $\Delta=<5, \eta+1, \eta+2, \eta+3, \eta+4>$ for $\eta \equiv 0(5)$
2) $\Delta=<5, \eta, \eta+1, \eta+2, \eta+4>$ for $\eta \equiv 2(5)$
3) $\Delta=<5, \eta, \eta+1, \eta+3, \eta+4>$ for $\eta \equiv 3(5)$
4) $\Delta=<5, \eta, \eta+2, \eta+3, \eta+4>$ for $\eta \equiv 4(5)$.

Theorem 2.6. ([7]) Let Δ be a numerical semigroup with $\mu(\Delta)=7$ and conductor η. Then, Δ is saturated if Δ is one of following numerical semigroups:

1) $\Delta=\langle 7, \eta+1, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 0(7)$
2) $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6\rangle \quad$ for $\eta \equiv 2(7)$
3) $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+5, \eta+6\rangle$ for $\eta \equiv 3(7)$
4) $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 4(7)$
5) $\Delta=\langle 7, \eta, \eta+1, \eta+3, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 5(7)$
6) $\Delta=\langle 7, \eta, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 6(7)$.

Theorem 2.7. Let $\Delta=<2,2 \eta+1>$ be a saturated numerical semigroup for $\eta \equiv 0(2)$. Then, we have, $P F(\Delta)=\{2 \eta-1\}$.

Proof. Let $\Delta=<2,2 \eta+1>$ be a saturated numerical semigroup with $\mu(\Delta)=2$ and conductor

$$
\operatorname{PF}(\Delta)=\{x-2: x \in A p(\Delta, 2), x>v(\Delta)=2 \eta-1\}=\{2 \eta-1\}
$$

since

$$
A p(\Delta, 2)=\{x \in \Delta: x-2 \notin \Delta\}=\{0,2 \eta+1\} .
$$

Theorem 2.8. Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta)=p$ and conductor η , where $2<p<10$ and $\eta \equiv j(p)$.
i) If $j=0$ then $\operatorname{PF}(\Delta)=\{\eta-1, \eta-2, \eta-3, \ldots, \eta-(p-1)\}$.
ii) If $j \neq 0$ then $P F(\Delta)=\{\eta-k: k=1,2, \ldots, j-1, j+1, \ldots, p\}$.

Proof. Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta)=p$ and conductor η, where $p<10$ and $\eta \equiv j(p)$.
i) If $j=0$ then we write the saturated numerical semigroup Δ as following: for $p=3,5,7$ respectively:
(a) $\Delta=<3, \eta+1, \eta+2>$,
(b) $\Delta=<5, \eta+1, \eta+2, \eta+3, \eta+4>$,
(c) $\Delta=\langle 7, \eta+1, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle$.

Now, we can explain the above cases as follows:
(a) Let Δ be a saturated numerical semigroup is $\Delta=<3, \eta+1, \eta+2>$. Then we have

$$
\Delta=<3, \eta+1, \eta+2>=\{0,3,6, \ldots, \eta-6, \eta-3, \eta, \rightarrow \ldots\} .
$$

In this case, we have that,

$$
\rho(\Delta)=\{1,2,4,5,7,8, \ldots, \eta-7, \eta-5, \eta-4, \eta-2, \eta-1\}
$$

and $A p(\Delta, 3)=\{0, \eta+1, \eta+2\}$. So, we find that

$$
\operatorname{PF}(\Delta)=\{x-3: x \in A p(\Delta, 3), x>v(\Delta)=\eta-1\}=\{\eta-1, \eta-2\} .
$$

(b) Let Δ be a saturated numerical semigroup is $\Delta=<5, \eta+1, \eta+2, \eta+3, \eta+4>$. Then we write

$$
\Delta=<5, \eta+1, \eta+2, \eta+3, \eta+4>=\{0,5,10, \ldots, \eta-5, \eta \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,3,4,6,7,8,9,11, \ldots, \eta-4, \eta-3, \eta-2, \eta-1\} .
$$

Thus, we obtain

$$
P F(\Delta)=\{x-5: x \in A p(\Delta, 5), x>v(\Delta)=\eta-1\}=\{\eta-1, \eta-2, \eta-3, \eta-4\}
$$

since $A p(\Delta, 5)=\{x \in \Delta: x-5 \notin \Delta\}=\{0, \eta+1, \eta+2, \eta+3, \eta+4\}$.
(c) Let Δ be a saturated numerical semigroup $\Delta=\langle 7, \eta+1, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle$. We have

$$
\Delta=<7, \eta+1, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6>=\{0,7,14, \ldots, \eta-14, \eta-7, \eta, \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,3,4,5,6,8,9,10,11,12,13,15, \ldots, \eta-8, \eta-6, \eta-2, \eta-1\} .
$$

We find that

$$
\operatorname{PF}(\Delta)=\{x-7: x \in A p(\Delta, 7), x>v(\Delta)=\eta-1\}=\{\eta-1, \eta-2, \eta-3, \eta-4, \eta-5, \eta-6\}
$$

since $A p(\Delta, 7)=x \in \Delta: x-7 \notin \Delta=\{0, \eta+1, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\}$.

Considering the above explanations, we obtain

$$
P F(\Delta)=\{\eta-1, \eta-2, \eta-3, \ldots, \eta-(p-1)\}
$$

for $2<p<10$ and $\eta \equiv 0(p)$.
ii) If $j \neq 0$ then we write the saturated numerical semigroup Δ as following:
(a) For $p=3$;

The saturated numerical semigroup is $\Delta=<3, \eta, \eta+2>$ for $\eta \equiv 2(3)$. Then, we write

$$
\begin{gathered}
\Delta=<3, \eta, \eta+2>=\{0,3,6,9, \ldots, \eta-5, \eta-2, \eta, \rightarrow \ldots\}, \\
\rho(\Delta)=\{1,2,4,5,7,8, \ldots, \eta-6, \eta-4, \eta-3, \eta-1\}
\end{gathered}
$$

and

$$
A p(\Delta, 3)=\{0, \eta, \eta+2\} .
$$

Thus, we find that $P F(\Delta)=\{x-3: x \in A p(\Delta, 3), x>v(\Delta)=\eta-1\}=\{\eta-1, \eta-3\}$.
(b) For $p=5$;
(1) If the saturated numerical semigroup is $\Delta=<5, \eta, \eta+1, \eta+2, \eta+4>$ for $\eta \equiv 2(5)$, then we have $\Delta=<5, \eta, \eta+1, \eta+2, \eta+4>=\{0,5,10, \ldots, \eta-7, \eta-2, \eta, \rightarrow \ldots\}$,
$\rho(\Delta)=\{1,2,3, \ldots, \eta-6, \eta-5, \ldots, \eta-3, \eta-1\}$ and $A p(\Delta, 5)=\{0, \eta, \eta+1, \eta+2, \eta+4\}$. So, we find that , $\operatorname{PF}(\Delta)=\{x-5: x \in A p(\Delta, 5), x>v(\Delta)=\eta-1\}=\{\eta-1, \eta-3, \eta-4, \eta-5\}$.
(2) If the saturated numerical semigroup is $\Delta=<5, \eta, \eta+1, \eta+3, \eta+4>$ for $\eta \equiv 3(5)$, then we write

$$
\begin{aligned}
& \Delta=<5, \eta, \eta+1, \eta+3, \eta+4>=\{0,5,10, \ldots, \eta-8, \eta-3, \eta, \rightarrow \ldots\} \\
& \rho(\Delta)=\{1,2,3, \ldots, \eta-7, \eta-6, \eta-5, \eta-4, \eta-2, \eta-1\}
\end{aligned}
$$

and

$$
A p(\Delta, 5)=\{0, \eta, \eta+1, \eta+3, \eta+4\} .
$$

Thus, we obtain that

$$
\operatorname{PF}(\Delta)=\{x-5: x \in A p(\Delta, 5), x>v(\Delta)=\eta-1\}=\{\eta-1, \eta-2, \eta-4, \eta-5\} .
$$

(3) If the saturated numerical semigroup is $\Delta=<5, \eta, \eta+2, \eta+3, \eta+4>$ for $\eta \equiv 4(5)$, then we find that

$$
\begin{aligned}
& \Delta=<5, \eta, \eta+2, \eta+3, \eta+4>=\{0,5,10, \ldots, \eta-9, \eta-4, \eta, \rightarrow \ldots\} \\
& \rho(\Delta)=\{1,2,3, \ldots, \eta-8, \eta-7, \eta-6, \eta-5, \eta-3, \eta-2, \eta-1\}
\end{aligned}
$$

and

$$
A p(\Delta, 5)=\{0, \eta, \eta+2, \eta+3, \eta+4\} .
$$

Thus, we write that

$$
\operatorname{PF}(\Delta)=\{x-5: x \in A p(\Delta, 5), x>v(\Delta)=\eta-1\}=\{\eta-1, \eta-2, \eta-3, \eta-5\} .
$$

(c) For $p=7$;
(1) If the saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6\rangle$ for $\eta \equiv 2(7)$, then we have

$$
\Delta=<7, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6>=\{0,7,14,21, \ldots, \eta-9, \eta-2, \eta, \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,3, \ldots, 6,8, \ldots, 13,15, \ldots, \eta-8, \eta-7, \ldots, \eta-3, \eta-1\}
$$

Thus, we find that

$$
\begin{aligned}
& P F(\Delta)=\{x-7: x \in A p(\Delta, 7), x>F(\Delta)=\eta-1\}=\{\eta-7, \eta-6, \eta-5, \eta-4, \eta-3, \eta-1\} \text { since } \\
& A p(\Delta, 7)=\{0, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6\}
\end{aligned}
$$

Making same operations, we find followings:
(2) If the saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+5, \eta+6\rangle$ for $\eta \equiv 3(7)$, then we have $P F(\Delta)=\{\eta-7, \eta-6, \eta-5, \eta-4, \eta-2, \eta-1\}$.
(3) If the saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 4(7)$, then we have $P F(\Delta)=\{\eta-7, \eta-6, \eta-5, \eta-3, \eta-2, \eta-1\}$.
(4) If the saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+1, \eta+3, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 5(7)$, then we have $P F(\Delta)=\{\eta-7, \eta-6, \eta-4, \eta-3, \eta-2, \eta-1\}$.
(5) If the saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 6(7)$, then we have $P F(\Delta)=\{\eta-7, \eta-5, \eta-4, \eta-3, \eta-2, \eta-1\}$.
Finally, we obtain following results for a saturated numerical semigroup Δ, with $\mu(\Delta)=p$ is prime number and conductor η, where $2<p<10$ and $\eta \equiv j(p)$:
i) If $j=0$ then $\operatorname{PF}(\Delta)=\{\eta-1, \eta-2, \eta-3, \ldots, \eta-(p-1)\}$.
ii) If $j \neq 0$ then $P F(\Delta)=\{\eta-k: k=1,2, \ldots, j-1, j+1, \ldots, p\}$.

Theorem 2.9. The saturated numerical semigroup Δ given by Theorem 2.3. is not perfect,
Proof. Let Δ be a saturated numerical semigroup which given by Theorem 2.3. Then, $\Delta=<2,2 \eta+1>$, with $\mu(\Delta)=2$ and conductor $\eta \equiv 0(\bmod 2)$. In this case, we write $\Delta=<2,2 \eta+1>=\{0,2,4,6, \ldots, 2 \eta, \rightarrow \ldots\}$ and $\rho(\Delta)=\{1,3,5, \ldots, 2 \eta-1\}$. In this case, we obtain the set of isole gaps of Δ is $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\{\rho(\Delta)\} \neq \phi$, that is, Δ is not perfect.

Theorem 2.10. Let Δ be a saturated numerical semigroup with $\mu(\Delta)=p$ is prime number and conductor η, where $2<p<10$ and $\eta \equiv j(p)$.
(i) If $j=2$ then $I(\Delta)=\{v(\Delta)\}$
(ii) If $j \neq 2$ then $I(\Delta)=\phi$.

Proof. Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta)=p$ and conductor η, where $2<p<10$ and $\eta \equiv j(p)$.
(i) If $j=2$ then we have the following saturated numerical semigroups:
(1) For $p=3$;

The saturated numerical semigroup is $\Delta=<3, \eta, \eta+2>$ for $\eta \equiv 2(3)$ and we write $\Delta=<3, \eta, \eta+2>=\{0,3,6,9, \ldots, \eta-5, \eta-2, \eta, \rightarrow \ldots\}$. Therefore, we obtain the set of isole gaps of Δ is $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\{\eta-1\}=\{\nu(\Delta)\}$ since

$$
\rho(\Delta)=\{1,2,4,5,7,8, \ldots, \eta-6, \eta-4, \eta-3, \eta-1\} .
$$

(2) For $p=5$;

The saturated numerical semigroup is $\Delta=<5, \eta, \eta+1, \eta+2, \eta+4>$ for $\eta \equiv 2(5)$, then we have

$$
\Delta=<5, \eta, \eta+1, \eta+2, \eta+4>=\{0,5,10, \ldots, \eta-7, \eta-2, \eta, \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,3,4,6 \ldots, \eta-6, \ldots, \eta-3, \eta-1\}
$$

Thus, we obtain that

$$
I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\{\eta-1\}=\{\nu(\Delta)\}
$$

(3) For $p=7$;

The saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6\rangle$ for $\eta \equiv 2(7)$, then we have

$$
\Delta=<7, \eta, \eta+1, \eta+2, \eta+3, \eta+4, \eta+6>=\{0,7,14,16, \ldots, \eta-9, \eta-2, \eta, \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,3,4,5,6,8, \ldots, \eta-8, \eta-7, \ldots, \eta-3, \eta-1\} .
$$

So, we find that

$$
I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\{\eta-1\}=\{\nu(\Delta)\}
$$

(ii) If $j \neq 2$ then we have the following saturated numerical semigroups:
(1) If $j=0$ then we write the saturated numerical semigroup Δ as following: for $p=3,5,7$ respectively:
(a) $\Delta=<3, \eta+1, \eta+2>$,
(b) $\Delta=<5, \eta+1, \eta+2, \eta+3, \eta+4>$,
(c) $\Delta=\langle 7, \eta+1, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle$.

Now, we can explain the above cases as follows:
(a) Let Δ be a saturated numerical semigroup is $\Delta=<3, \eta+1, \eta+2>$. Then we have we obtain the set of isole gaps of Δ is $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi$ since

$$
\Delta=<3, \eta+1, \eta+2>=\{0,3,6, \ldots, \eta-6, \eta-3, \eta, \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,4,5,7,8, \ldots, \eta-7, \eta-5, \eta-4, \eta-2, \eta-1\} .
$$

(b) The saturated numerical semigroup is $\Delta=<5, \eta+1, \eta+2, \eta+3, \eta+4>$. Then we write

$$
\Delta=<5, \eta+1, \eta+2, \eta+3, \eta+4>=\{0,5,10, \ldots, \eta-5, \eta, \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,3,4,6,7,8,9, \ldots, \eta-4, \eta-3, \eta-2, \eta-1\} .
$$

So, we find that $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi$.
(c) Let Δ be a saturated numerical semigroup is
$\Delta=\langle 7, \eta+1, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle$.
In this case, we obtain that $I(\Delta)=\phi$ since $\Delta=\{0,7,14, \ldots, \eta-14, \eta-7, \eta, \rightarrow \ldots\}$ and $\rho(\Delta)=\{1,2,3,4,5,6,8,9,10,11,12,13, \ldots, \eta-8, \eta-6, \eta-2, \eta-1\}$.
(2) If $j=3$ then we write the saturated numerical semigroup Δ as following: for $p=5,7$ respectively:
(a) $\Delta=<5, \eta, \eta+1, \eta+3, \eta+4>$,
(b) $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+5, \eta+6\rangle$.

Now, we can explain the above cases as follows:
(a) If the saturated numerical semigroup is $\Delta=<5, \eta, \eta+1, \eta+3, \eta+4>$ for $\eta \equiv 3(5)$ then we write $\Delta=<5, \eta, \eta+1, \eta+3, \eta+4>=\{0,5,10, \ldots, \eta-8, \eta-3, \eta, \rightarrow \ldots\}$ $\rho(\Delta)=\{1,2,3, \ldots, \eta-7, \eta-6, \eta-5, \eta-4, \eta-2, \eta-1\}$. Thus, we obtain

$$
I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi .
$$

(b) If the saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+5, \eta+6\rangle$ for $\eta \equiv 3(7)$, then we have $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi$ since

$$
\begin{gathered}
\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+3, \eta+5, \eta+6\rangle=\{0,7,14,21, \ldots, \eta-10, \eta-3, \eta, \rightarrow \ldots\} \text { and } \\
\rho(\Delta)=\{1,2,3,4,5,6,8, \ldots, \eta-5, \eta-4, \eta-2, \eta-1\}
\end{gathered}
$$

(3) If $j=4$ then we write the saturated numerical semigroup Δ as following: for $p=5,7$ respectively:
(a) $\Delta=<5, \eta, \eta+2, \eta+3, \eta+4>$,
(b) $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+4, \eta+5, \eta+6\rangle$.

Now, we can explain the above cases as follows:
(a) If the saturated numerical semigroup is $\Delta=<5, \eta, \eta+2, \eta+3, \eta+4>$ for $\eta \equiv 4(5)$ then we write $\Delta=<5, \eta, \eta+2, \eta+3, \eta+4>=\{0,5,10, \ldots, \eta-9, \eta-4, \eta, \rightarrow \ldots\}$,
$\rho(\Delta)=\{1,2,3,4,6, \ldots, \eta-8, \eta-7, \eta-6, \eta-5, \eta-3, \eta-2, \eta-1\}$. Thus, we obtain

$$
I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi .
$$

(b) If the saturated numerical semigroup is $\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+4, \eta+5, \eta+6\rangle$ for $\eta \equiv 4(7)$, then we have $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi$ since

$$
\Delta=\langle 7, \eta, \eta+1, \eta+2, \eta+4, \eta+5, \eta+6\rangle=\{0,7,14,21, \ldots, \eta-11, \eta-4, \eta, \rightarrow \ldots\}
$$

and

$$
\rho(\Delta)=\{1,2,3,4,5,6,8, \ldots, \eta-10, \ldots, \eta-5, \eta-3, \eta-2, \eta-1\} .
$$

(4) If $j=5$ then we write the saturated numerical semigroup
$\Delta=\langle 7, \eta, \eta+1, \eta+3, \eta+4, \eta+5, \eta+6\rangle=\{0,7,14,21, \ldots, \eta-12, \eta-5, \eta, \rightarrow \ldots\}$.In this case, we obtain that $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi$ since

$$
\rho(\Delta)=\{1,2,3,4,5,6,8, \ldots, \eta-11, \ldots, \eta-6, \eta-4, \eta-3, \eta-2, \eta-1\} .
$$

(5) If $j=6$ then we write the saturated numerical semigroup
$\Delta=\langle 7, \eta, \eta+2, \eta+3, \eta+4, \eta+5, \eta+6\rangle=\{0,7,14,21, \ldots, \eta-13, \eta-6, \eta, \rightarrow \ldots\}$. Thus, we find that $I(\Delta)=\{y \in \rho(\Delta): y-1, y+1 \in \Delta\}=\phi$ since

$$
\rho(\Delta)=\{1,2,3,4,5,6,8, \ldots, \eta-14, \ldots, \eta-5, \eta-4, \eta-3, \eta-2, \eta-1\}
$$

Corollary 2.11. Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta)=p$ and conductor η, where $2<p<10$ and $\eta \equiv j(p)$.
(i) If $j=2$ then Δ not perfect
(ii) If $j \neq 2$ then Δ is perfect.

Proof. It is clear.
Corollary 2.12 Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta)=p$ and conductor η, where $p<10$ and $\eta \equiv j(p)$. Then, we have $P F(\Delta)=S G(\Delta)$.

Proof Let Δ be a saturated numerical semigroup with prime multiplicity $\mu(\Delta)=p$ and conductor η, where $p<10$ and $\eta \equiv j(p)$. Then, it is clear that $S G(\Delta) \subseteq P F(\Delta)$.
(1) For $p=2$;

If $\quad \eta \equiv 0(2) \quad$ then $\quad \Delta=<2,2 \eta+1>=\{0,2,4,6, \ldots, 2 \eta-2,2 \eta, \rightarrow \ldots\} \quad$ and \quad we write $P F(\Delta)=2 \eta-1$ from Theorem 2.7.
If $x \in P F(\Delta) \Rightarrow x=2 \eta-1 \Rightarrow 2 x=4 \eta-2=(3 \eta)+(\eta-2) \in \Delta \Rightarrow x \in S G(\Delta)$.
(2) For $p=3$;
(a) If $\eta \equiv 0(3)$ then $\Delta=<3, \eta+1, \eta+2>=\{0,3,6,9, \ldots, \eta-6, \eta-3, \eta, \rightarrow \ldots\}$ and we write $P F(\Delta)=\{\eta-1, \eta-2\}$ from Theorem 2.8/(i). Let $x \in P F(\Delta)$.
If $x=\eta-1 \Rightarrow 2 x=2 \eta-2=(\eta-3)+(\eta+1) \in \Delta \Rightarrow x \in S G(\Delta)$
or
if $x=\eta-2 \Rightarrow 2 x=2 \eta-4=(\eta-6)+(\eta+2) \in \Delta \Rightarrow x \in S G(\Delta)$.
(b) If $\eta \equiv 2(3)$ then $\Delta=<3, \eta, \eta+2>=\{0,3,6,9, \ldots, \eta-8, \eta-5, \eta-2, \eta, \rightarrow \ldots\}$ and we write $\operatorname{PF}(\Delta)=\{\eta-1, \eta-3\}$ from Theorem 2.8/(ii). Let $x \in P F(\Delta)$ if $x=\eta-1 \Rightarrow 2 x=2 \eta-2=(\eta-2)+(\eta) \in \Delta \Rightarrow x \in S G(\Delta)$
or

$$
\text { if } x=\eta-3 \Rightarrow 2 x=2 \eta-6=(\eta-8)+(\eta+2) \in \Delta \Rightarrow x \in S G(\Delta) \text {. }
$$

If we make same operations for $p=5$ and $p=7$, we obtain $P F(\Delta) \subseteq S G(\Delta)$. Thus, the proof is completed.
Example 2.13. We put $p=3$ and $\eta=9$, in Theorem 2.4/(1) Then, we write $\Delta=<3,10,11>=\{0,3,6,9, \rightarrow \ldots\}$ MED and saturated numerical semigroup since $\mu(\Delta)=e(\Delta)=3$. Here, $f(\Delta)=8, n(\Delta)=3, \rho(\Delta)=\{1,2,4,5,7,8\}$ and $\operatorname{Ap}(\Delta, 3)=\{0,10,11\}$. In this case, we find that

$$
P F(\Delta)=\{x-3: x \in A p(\Delta, 3), x>F(\Delta)=8\}=\{10-3,11-3\}=\{9,8\}
$$

and

$$
I(\Delta)=\{y \in H(\Delta): y-1, y+1 \in \Delta\}=\phi .
$$

That is, $\Delta=<3,10,11>=\{0,3,6,9, \rightarrow \ldots\}$ numerical semigroup is perfect. Also,

$$
S G(\Delta)=\{x \in P F(\Delta): 2 x \in \Delta\}=\{8,9\}=P F(\Delta) .
$$

Example 2.14. We put $p=5$ and $\eta=12$, in Theorem $2.5 /(2)$ Then, we write $\Delta=<5,12,13,14,16>=\{0,5,10,12, \rightarrow \ldots\}$ saturated numerical semigroup. Here, $\mu(\Delta)=5, f(\Delta)=11$, $n(S)=3, \rho(\Delta)=\{1,2,3,4,6,7,8,9,11, \rightarrow \ldots\}$ and $A p(\Delta, 5)=\{0,12,13,14,16\}$.

Thus, we obtain

$$
\operatorname{PF}(\Delta)=\{x-5: x \in A p(\Delta, 5), x>F(\Delta)=11\}=\{7,8,9,11\}
$$

and

$$
I(\Delta)=\{y \in H(\Delta): y-1, y+1 \in \Delta\}=\{11\} .
$$

Therefore, the numerical semigroup Δ is not perfect and, we find that

$$
S G(\Delta)=\{x \in P F(\Delta): 2 x \in \Delta\}=\{7,8,9,11\}=P F(\Delta)
$$

Statement of Research and Publication Ethics

The study is complied with research and publication ethics

References

[1] R. Froberg, C. Gotlieb and R. Haggkvist, "On numerical semigroups," Semigroup Forum, vol. 35, pp.6368, 1987.
[2] S. İlhan and H.İ. Karakaş, "Arf numerical semigroups," Turkish J. Math., vol.41, pp.1448-1457, 2017.
[3] J.C.Rosales, P.A.García-Sánchez, J.I.García-García and M.B.Branco, "Numerical semigroups with maximal embedding dimension," Int. J. Commut. Rings, vol. 2, pp.47-53, 2003.
[4] J. C. Rosales, P.A.García-Sánchez, J.I.García-García, M.B.Branco, "Arf numerical semigroups," J. Algebra, vol. 276, pp. 3-12, 2004.
[5] J.C.Rosales and P.A.Garcia-Sanchez, Numerical semigroups, New York: Springer 181, 2009.
[6] A. Assi and P.A.Garcia-Sanchez, Numerical semigroups and applications, https://hal.archives-ouvertes.fr/hal-01085760, pp 47, 2014.
[7] A.Çelik, Some results on saturated numerical semigroups, Doctoral thesis, Dicle University, 2018.
[8] M. A. Moreno Frias and J.C.Rosales, "Perfect numerical semigroups," Turkish J. Math., vol. 43,pp. 1742 - 1754, 2019.
[9] J. S. Harold, "On isolated gaps in numerical semigroups," Turkish J. Math., vol.46, pp.123-129, 2022.
[10] S. İlhan, "On a family of telescopic numerical semigroups," Acta Univ. Apulensis Math. Inform, vol. 67, pp.13-18, 2021

