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ABSTRACT

In this study, we find an upper bound for the largest signless Laplacian eigenvalue of simple connected weighted
graphs, where edge weights are positive definite square matrices. Also we obtain some results on weighted and

unweighted graphs by using this bound.
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1. INTRODUCTION

In this paper, we consider a simple connected weighted
graph in which the edge weights are positive definite
square matrices. Let be a simple connected weighted
graph on vertices. Denote by the positive definite
weight matrix of order of the edge and assume that
W =W Let W, = D W forall i €V

jiji

The signless Laplacian matrix Q(G) of a weighted

graph G is a block matrix and defined as

Q(G)= (qij )ntxnt » Where

*Corresponding author, e-mail: shuyukkose@gazi.edu.tr

w, o ifi=],
O =w;  HFi~j,
0 ; otherwise.

In the definitions above, the zero denotes the t xt
zero matrix. Thus Q(G) is a square matrix of order

nt. Let (, denote the largest signless Laplacian
eigenvalue of Q(G) and ql(wij) denote the largest

eigenvalue of Wij .
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Upper bounds for the largest signless Laplacian
eigenvalue for unweighted graphs have been
investigated to great extent in the literature. In Section
2, we give an upper bound for the largest signless
Laplacian eigenvalue of weighted graphs. We also
characterize graphs for which equality holds in the
upper bound.

Lemma 1.

Let A be a Hermitian N x N matrix with eigenvalues

g, =20, >...2(,, then for any xeR" ()_( 756)
yeR" 6/ ;t(_))
Ky <o xy'y

Equality holds if and only if X is an eigenvector of A
corresponding to the largest eigenvalue (; and

y = aX forsome a € R [5].
Theorem 1.

If A is a Hermitian N N matrix with eigenvalues
g, 20Q,>...2(,,thenforany X € C"

-T-— =T - -T—
g, X X<x AX<(g X X

—T —_

X AX
qn’ax = q1 = Mmax - m X AX
x#0 X X X %=1
_T J—
. X Ax -7 -
Qmin = 0, = MIN —— =min X AX [5].
x#0 X X xT =1

Corollary 1.

Let Ae M, have eigenvalues {7, }. Even if A is
not Hermitian, one has the bounds

forany X € R" <;(¢6) ;le R" ()_/7&6) and for
1=12,...,n[s].

Corollary 2.

Let A,B e M, are positive definite matrices and

ke N. Then, A¥ and A+ B are also positive
definite matrices [5].

2. MAIN RESULTS

In this section we find an upper bound on the largest
signless Laplacian eigenvalue of simple connected
weighted graphs.

Theorem 2.

Let G be a simple connected weighted graph. Then

a W)+ Y o)+ Yo lmw, +ww,)

kik~i sis~i ()

% <nl13/X + Z qu(wikwkr)

1<i, r<nkek~i
izr k-1

Moreover equality holds in (1) if and only if

(i) G is a bipartite regular graph or a bipartite
semiregular graph,

(i) Wij have a common eigenvector corresponding to
the largest eigenvalue ql(wij) forall I, J.
Proof.

Let us consider the matrix Q*(G). The (i, j)—tn
element of Q*(G) is

w4 w, o ifi=|,
jij-i
WWg - WW, Y Wew i~
k:k~i
k-]
D Wy Wy ;  otherwise.
k:k~i
ke

- T T T\
Let XZ(X1 1 Xy ey X, ) be an eigenvector
2
corresponding to the eigenvalue ;" of QZ(G) and

X; be the vector component of X such that
X, X, = max {ka X, } @
kev

Since X is nonezero, so is X; . We have

Q*(G)x=g,’x. ®
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From the | —th equation of (3), we get

Chzxi = Wizxi + ZWikZXi + Z(Wiwis +WisWs)Xs + Z Zwikwerr

k:k~i sis—~i
i.e.,

20T T 2 T2
a X X S‘Xi W Xi‘+zxi Wi X
Kk~i

+2
sis~i

From Corollary 1 and Lemma 1, we have

< ql(wf)xfxi + Z'ql(wikz)xfxi +>

k:k~i sis~i

XiT (WiWis + WisWs )X

Four cases arise;

1L WW,+WwWWw, and W, W, are
Hermitian matrices for all S,S ~ 1 and for
al K,k ~1,k~r, 1<i,r<n,

2. W,W, + W, W, is a Hermitian matrix for

all S,S~ 1 and W, W,, is nota Hermitian

matrix ~ for  all k, k ~ i, k ~ r,
1<i,r<n,

3. W, W, is a Hermitian matrix for all
K,k ~i,k~r, 1<i,r<n and
W; W, + W, W, is not a Hermitian matrix
forall S,S ~1,

4. W,W, +W, W, and W; W, are not

Hermitian matrices for all S,S ~ 1 and for
all K,k ~i,k~r, 1<i,r<n,

Case 1. W,W,; + W, W, and W; W,  are Hermitian

1
matrices. From (5), (2) and using Lemma 1 we get

Q1(W|2)+ k:;i Q1(Wi2k)+ qu(wiwis + W W, )

sis~i

% = nl]glx + Z qu(wlkwkr)

1<i,r=<nk:k-~i
i=r k~r

Case 2: W;W;, + W, W, is a Hermitian matrix and
W, W, is not a Hermitian matrix. Let us take the ratio
of
-
XZ WékarXr
T
X, X,

XiT (Wi Wis + WisWs )Xs

711
1<i,r=n k:k—i
i=r k~r
T . 4
+ Z in WikarXr ()
1<i,r<n k:k~i
i#r k~r
T . 5
s + z Z‘Xi WikarXr ( )
1<i,r<n k:k~i
i#r k~r

for 1</,r<n.if [N, AN,|=0, this ratio is
zero, where |N/ M Nr| is the number of common

and . So let
|N(, M Nr| # 0. From (2) and using the Cauchy-

Schwarz inequality, we have

neighbors of / us consider

T T
‘X(/thkwerr Xﬂ ngWerr S X/ W/,karXr (6)
T = T T = T =
X, X, ‘ \/Xé X, \/Xr X, \/Xi X \/Xr X,
Since (6) implies for each X, and X,
T X W W, X
H X( WékarXr i ik kr r
rronn . T = - —. @
X, #0, X, #
X, X iner& X,

From (2), (7) and using Corollary 1, we get

z Z‘XiTWikarXr < Z qu(wikwkr)XiTXi' ®)

1<i,r<n kk~i 1<ir<n kek~i
i#r k~r i#r k~r

Since W;W;, + W, W, is a Hermitian matrix, from
(2), (5), (8) and using Lemma 1, we get

[} (W|2)+ k;i ql(Wi2k)+ Z»%(Wuwis + WisWs) .

sis~i

< max
G =ma + z zq1(W|kar)
1<i,r<nk:k~i
i#r k~r
Case 3: W; W, is a Hermitian matrix and

VVi Wis + WisWs
similar argument to Case 2 we have

Z < qu(wiwis + Wi Wy )XiTXi -

sis~i sis~i

is not a Hermitian matrix. By a

X" (W, + W w, )X,

i'is is''s

Since W; W, is a Hermitian matrix, from (2), (5), (9) and using Lemma 1, we get
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sis~i 1<i,r<n k:k—i
i=r k~r

o= mpe) [B6F) Za R Za ) 5 S e

Case 4: W, W, + W, W, and W; W, are not Hermitian matrices. By applying the same methods as Case 2 and Case 3,
we can show that

%% < 0y (W T+ D (w2

.
X" (W, + W, W, X, Wi W, X,

S

kik~i sis~i 1<i,r=n k:k~i
i=r k~r
= o T+ 3w T+ 3w ww, T T o
+LZ kkqu(wlkwkr)\/ﬁ\/ﬁ
i=r k~

From (2), we get

sis—~i 1<i,r=n k:k—i
i=r k~r

g, < max \/ql(w )+ 2 awi)+ S atwiwi - wiews )+ S0 > (Wiews )

Now suppose that equality holds in (1). Then all ( ( ) ( ) )
inequalities in the above argument must be equalities. z Biski \W; Wig + WigW JX; ‘X Wi Wi + Wi W X‘
From equality in (10), we have s
(b T )_ 0 (15)
ka X, = xiTxi, (11) + Z Z i Xi W Wi X; =X Wy Wi X =
1<i, r<n kk~i
. . iz k~r
for all k,k~|andforal| k,k~p,p~I.From . -
equality in (10) and using Lemma 1, we get OUT Cases arse,
=a,X; and X, = b, X;, (12) o (W ww x>0, % ww, x>0,
for any S, S~1 and for any r,K~r,K~1, i X (WW +W|5Ws)x >0, X, W|karX <0,
1<i,r<n, where a,,b, €R. From (11) and
(12), we get i X, (W,W, + W, W, )X, <0, X W,W,X >0
(,S l)XX—Oand( —1>XX—0 . T
iv. X (ww, +ww,)x <0, X' w,w,X <0
i.e.,
a,b, =+lLasx'x >0. (13) Case i:

, , X, (Ww. +w.w, )x >0 and X' W, WX >0.
On the other hand from Corollary 2 W, and W, are

positive definite matrices for al < 1,K < N. Thus, we

) From (15), we get @&, =1and b, =1, for all
ge

. s,s~iandforall1<i,r<n.
X WX >0 and X' W, X >0 (14)
et U=1{k:x, =x,k~i} and W={k

X, =%, k=}. Since UNW =@ and
U UW =V, G is bipartite. Now we have
Q(G)Xi =0y,

i.e.,

From (4), (13) and (14), we have
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0.X; =W, X + ZWika :

Kk

Fori, jeU,

Q.% = Ch(Wi )Xi + qu(wik)xi ' (16)
Kkei

QX = ql(Wj )Xi + Z%(ij)xi : 17
Kk=j

From (16), (17) and

ql(wi)=q1(wj). Therefore ql(wi) is constant
for all i €U . Similarly we can also show that
0, (W, ) is constant for all i €W . Hence G s a
bipartite regular graph.

X, 20, we get

Case ii:
T T
X, (W,W, + W, W, )x, >0 and X,' W, W, X, <0.

From (15), we get &, =1 and b, = -1, for all
s,s~iandforall1<i,r<n. Let
U={k:x =x}andW ={k:x, =-x}.
Sinke UNW =0 and UUW =V,G s
bipartite. By a similar argument Case i, we can show
that ql(wi) is constant for all 1 €U and ql(wj)
is constant for all j €W . Hence G is a bipartite
semiregular graph.
Case iii:

T T
X (Wwi, +w w, )x, <Oand X, w, w, X, >0,
Case iv:

T T
X, (Ww, +w w, )x <0and x,' w, w, X, <0.
By applying the same methods as Case i and Case ii, we

can show that G is a bipartite regular graph or a
bipartite semiregular graph.

Coversely, suppose that conditions (i)-(ii) of theorem
hold for the graph G .

G s a bipartite regular graph. Let U and W be the

vertex classes of G. Also, let
ql(wi)z ql(wj)z oo for 1eU and for
j €W . The following equation can be easily
verified:

2 2
W + Zwm oW Wy, W, W+ Zwlkwkn

kk-1 kik=1 X
k~n

2 2
[AERS X
k:k~n k:k~n

k-1

W+ W W+ D W W

n"nl

Thus 4a is an eigenvalue of Q%(G). so,

200< 0.

On the other hand, we have

0, (Wiz )"‘ Z 0, (lek )+ z ql(WiWis +WisWq )

kik~i sis~i

qlsmglx + Z qu(wikwkr) =2

1<i,r<n kek~i
iz ker

Thus

ql(Wi2)+ ql(Wizk)+ qu(wiwis + WisWs)

kik~i S:s~i
% :ni]ea\llx + Z ZQ1(Wikar)
1<i, r<n kek~i

iz k~r

Hence the theorem is proved.
Corollary 3.

Let G be a simple connected weighted graph where

each edge weight Wij is a positive number. Then

kik~i sis~i 1<i, renkek-i
iz k~r

G, < max \/wf+ Y+ Y (g rw )+ Y Yww, (18)

Moreover equality holds in (18) if and only if G isa
bipartite regular graph or a bipartite semiregular graph.

Proof.

For weighted graph where the edge weights Wij are

positive number, we have
Ch(Wij): W; and ql(Wi ) =W,

for all i, J. Using Theorem 2 we get the required
result.

Corollary 4.

Let G be asimple connected unweighted graph. Then
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Ny AN (29)
i I<i, j<n
i#]

0y < max \/diz +d, + Z(di +dj)+ D

where d, is the degree of vertex | and ‘Ni N Nj‘ is

the number of common neighbors of 1 and J.

Moreover, equality holds in (19) if and only if G isa
bipartite regular graph or a bipartite semiregular graph.

Proof.
For an unweighted graph, W, =1and W, =d; for

all 1, jandi~ J. Using Corollary 3 we get the
required result.
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