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Comparison Criteria for Three-interval Sturm-Liouville Equations
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Abstract. This study devoted to the investigation of comparison properties for periodic Sturm-Liouville prob-
lems, defined on three disjoint intervals together with additional transfer conditions across the common endpoint
of these intervals, so-called transmission conditions. The results obtained generalize the corresponding classical
results of Sturm’s comparison and oscillation theory.
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1. Introduction

The existence and location of the zeros of the solutions of Sturm-liouville type equations are very important in
physical applications. Accordingly a large literature on this subject has arisen during the past century. After Sturm’s
significant work [20] in 1836, Sturmian comparison and oscillation theorems have been derived for differential equa-
tions of various types. In order to obtain comparison theorems for Sturm-liouville equation Picone [18] established an
important identity, known as the Picone identity. In [9] have been derived Picone-type inequalities for elliptic equa-
tions. Jaros and Kusano developed Sturmian theory for both forced and unforced half-linear equations based on Picone
identity [10, 11]. The Sturm-Picone theorem and much of the related theory should allow generalization to certain
partial differential equations. There are many papers and books dealing with Sturm comparison and oscillation results
for a pair of elliptic type differential operators. We refer to Kreith [13,14], Swanson [19] for Sturmian comparison the-
orems for linear elliptic equations and to Allegretto [7], Dunninger [8], Yoshida [24,25] for Picone identities, Sturmian
comparison and oscillation theorems for various type partial differential equations.

Taking into account that numerous vibrating physical systems admit mathematical descriptions as boundary-value
problems with periodic boundary conditions, Karlin and Lee [12] investigated the total positivity properties of a class
of periodic boundary-value problems for Polya type differential equations.

The main goal of study is to consider some spectral properties of the Sturm-Liouville equation,

Θ f := − f ′′(x) + q(x) f (x) = λ f (x) (1.1)
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defined on the three-interval ∪3
i=1Ωi := [−1, ξ1) ∪ (ξ1, ξ2) ∪ (ξ2, 1], subject to periodic boundary conditions at the end

points x = ±1 given by
f (−1) − f (1) = 0, (1.2)

f ′(−1) − f ′(1) = 0, (1.3)
and subject to the four transmission conditions at the points of discontinuity x = ξ1 and x = ξ2 given by

f (ξ1−) − f (ξ1+) = 0, (1.4)

f ′(ξ1−) − f ′(ξ1+) = 0, (1.5)
and

f (ξ2−) − f (ξ2+) = 0, (1.6)

f ′(ξ2−) − f ′(ξ2+) = 0, (1.7)
respectively, where q(x) is a given real-valued functions, which is continuous in Ω1 := [−1, ξ1), Ω2 := (ξ1, ξ2) and
Ω3 := (ξ2, 1] and has a finite limits q(ξ1∓) = lim

x→ξ1∓
q(x), q(ξ2∓) = lim

x→ξ2∓
q(x); λ is a complex eigenvalue parameter.

We know that transmission problems appear frequently in various fields of physics and technics. For example, in
electrostatics and magnetostatics the model problem which describes the heat transfer through an infinitely conductive
layer is a transmission problem (see, [17] and the references listed therein).

In recent years, Sturm-Liouville problems with transmission conditions have been an important research topic in
theorretical and applied mathematics physics [1–6, 15, 16, 21–23]. This study investigates some properties of eigen-
values and corresponding eigenfunctions as well as comparison properties of the periodic Sturm-Liouville boundary
value problems on three disjoint intervals with additional transmission conditions at the common endpoints of these
intervals.

2. Eigenvalues and Eigenfunctions of the Problem

Let us define a new the Hilbert space L
∪3

i=1Ωi

2 := L2(Ω1) ⊕ L2(Ω2) ⊕ L2(Ω3) consisting of all function f defined on
∪3

i=1Ωi and beloning to L2(Ωi) on Ωi for i = 1, 2, 3 with the inner product

< f , g >LΩ2
=

ξ1−∫
−1

f (x)g(x)dx +

ξ2−∫
ξ1+

f (x)g(x)dx +

1∫
ξ2+

f (x)g(x)dx.

In the space L
∪3

i=1Ωi

2 , we define a linear operator Π : L
∪3

i=1Ωi

2 → L
∪3

i=1Ωi

2 by the domain of definition

dom(Π) :=
{

f (x) ∈ L
∪3

i=1Ωi

2 : f (x), f ′(x) are absolutely continuous in ∪3
i=1 Ωi,

and has a finite limits f (ξi ∓ 0) and f ′(ξi ∓ 0), i = 1, 2, 3, Θ f ∈ L
∪3

i=1Ωi

2 ,

f (−1) − f (1) = 0, f ′(−1) − f ′(1) = 0, f (ξi−) − f (ξi+) = 0,

f ′(ξi−) − f ′(ξi+) = 0, i = 1, 2
}

in the Hilbert space L
∪3

i=1Ωi

2 . The considered problem (1.1) − (1.7) can be rewritten in operator form as

Π f = λ f , f ∈ dom(Π).

That is, the problem (1.1) − (1.7) can be considered as the eigenvalue problem for the differential operator Π.

Theorem 2.1. The operator Π is symmetric in the Hilbert space L
∪3

i=1Ωi

2 .

Proof. Let f , g ∈ dom(Π). Integration by parts twice yields the equality

< Π f , g >
L
∪3

i=1Ωi
2

− < f ,Πg >
L
∪3

i=1Ωi
2

= [W( f , g; ξ1−) −W( f , g;−1)]

+[W( f , g; ξ2−) −W( f , g; ξ1+)]
+[W( f , g; 1) −W( f , g; ξ2+)], (2.1)
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where, as usual
W( f , g; x) = f (x)g′(x) − f ′(x)g(x)

is the Wronskians of the functions f and g. Since f and g satisfies the boundary conditions (1.2) − (1.3) we have

W( f , g;−1) = +W( f , g; 1). (2.2)

Similarly, by using the transmission conditions (1.4) − (1.7) we can show that

W( f , g; ξ1−) = W( f , g; ξ1+) (2.3)

and

W( f , g; ξ2−) = W( f , g; ξ2+). (2.4)

Now, substituting (2.2), (2.3) and (2.4) in (2.1) yields the required equality

< Π f , g >
L
∪3

i=1Ωi
2

=< f ,Πg >
L
∪3

i=1Ωi
2

.

□

Corollary 2.2. All eigenvalues of the boundary-value-transmission problem (1.1) − (1.7) are real.

Taking into account the Corollary 2.2, from now on we can assume that all eigenfunctions of the problem (1.1)−(1.7)
are real-valued.

Corollary 2.3. If λ1 and λ2 are two different eigenvalues of the problem (1.1) − (1.7), with the corresponding eigen-
functions f and g, then

ξ1−∫
−1

f (x)g(x)dx +

ξ2−∫
ξ1+

f (x)g(x)dx +

1∫
ξ2+

f (x)g(x)dx = 0.

In fact, this formula means the orthogonality of the eigenfunctions f and g in the Hilbert space L
∪3

i=1Ωi

2 .

3. Comparison Theorems

Here, we establish a generalization of the classical Sturm comparison theorems in the following form.

Theorem 3.1. If f (x) and g(x) are linearly independent solutions of

y′′ + q(x)y = 0, x ∈ ∪3
i=1Ωi (3.1)

satisfying the transmission conditions

y(ξi−) − y(ξi+) = 0, y′(ξi−) − y′(ξi+) = 0, i = 1, 2

for i = 1, 2, then all zeros of the solutions f (x) and g(x) are simple, and between any to zeros of the solution f (x) there
is precisely one zero of the solution g(x).

Proof. Let x0 ∈ ∪
3
i=1Ωi be any zero of the solution f (x) (or g(x)). Suppose, it possible, that x0 is not simple zero

of f (x), that is f (x0) = f ′(x0) = 0. Then, by well-known existence and uniqueness theorem of linear differential
equations theory this functions would be a trivial solution and hence we obtain a contraction. Let α and β (α < β) be
two consecutive zeros of f (x) and suppose, if possible, that g(x) , 0 on the interval (α, β). Without loss of generality
take f (x) > 0 and g(x) > 0 on (α, β). Then, we have

W( f , g;α) = f (α)g′(α) − f ′(α)g(α) = − f ′(α)g(α) (3.2)

and

W( f , g; β) = f (β)g′(β) − f ′(β)g(β) = − f ′(β)g(β). (3.3)

Since f (α) = f (β) = 0 and f (x) > 0 for all x ∈ (α, β) we have

f ′(x) = lim
x→ α+

f (x)
x − α

≥ 0. (3.4)



Comparison Criteria for Three-interval Sturm-Liouville Equations 232

Since f (x) is the nontrivial solution of the differential equation (3.1) f ′(α) can not be equal to zero. Then, from (3.4)
it follows that f ′(α) > 0. Similarly we can show that f ′(β) < 0. Therefore from (3.2) and (3.3) we conclude that
W( f , g;α) < 0 and W( f , g; β) > 0. It is well-known that the Wronskian of linearly independent solutions f , g cannot
change sign. Thus, we get a contradiction which completes the proof. □

Remark 3.2. If we change the roles of the solutions f (x) and g(x), we see that between two consecutive zeros of the
solutions g(x) there must be a zero of the solution f (x). Hence the zeros of f (x) and g(x) must interface.

Theorem 3.3. Let f (x) be the solution of the equation

f ′′(x) + q1(x) f (x) = 0, x ∈ ∪3
i=1Ωi

satisfying the transmission conditions (1.4) − (1.7) and let g(x) be the solution of the equation

g′′(x) + q2(x)g(x) = 0, x ∈ ∪3
i=1Ωi

satisfying the same transmission conditions. If q1(x) > q2(x) on ∪3
i=1Ωi, then between any to consecutive zeros of f (x)

there is at least one zero of g(x).

Proof. Multiplying the first equation by g(x) and the second equation by f (x) and then substracting we find

( f ′(x)g(x) − f (x)g′(x))′ = (q2(x) − q1(x)) f g.

Let α and β with α < β be consecutive zeros of f . Integrating the last equality by parts over (α, β), we obtain

( f ′(x)g(x) − g′(x) f (x))|βα =

β∫
α

(q2(x) − q1(x)) f (x)g(x)dx.

Since f (α) = f (β) = 0,

f ′(β)g(β) − f ′(β)g(β) =

β∫
α

(q2(x) − q1(x)) f (x)g(x)dx. (3.5)

Suppose, it possible that, g does not have a zero between α and β. Consider the case −1 ≤ α < β < ξ1. Without
loss of generality we can suppose that f (x) > 0 and g(x) > 0 over (α, β). These conditions ensure that the integral
on the right of (3.5) is negative. Since f (α) = f (β) = 0 and f (x) > 0 for all x ∈ (α, β), we have f ′(α) > 0 and
f ′(β) < 0. Thus g(x) is vanish at least once between the zeros of f (x). The proofs for the cases −1 ≤ α < ξ1 < β < ξ2,
−1 ≤ α < ξ1 < ξ2 < β ≤ 1, ξ1 < α < β < ξ2, ξ1 < α < ξ2 < β ≤ 1, ξ2 < α < β ≤ 1 are totally similar.

□

Theorem 3.4. Suppose that p(x) and q(x) are continuous in ∪3
i=1Ωi and have finite limits p(ξi±) and q(ξi±). Let g(x)

be any nontrivial solution of the equation
g′′(x) + q(x)g(x) = 0 (3.6)

on three disjoint intervals Ω1, Ω2 and Ω3 satisfying the periodic boundary conditions g(1) = g(−1) = 0, where
discontinuity in g and g′ at interior singular points x = ξi(i = 1, 2) are prescribed by transmission conditions

g(ξi−) − g(ξi+) = 0, g′(ξi−) − g′(ξi+) = 0, i = 1, 2.

If
ξ1∫
−1

(p − q)g2dx +

ξ2−∫
ξ1+

(p − q)g2dx +

1∫
ξ2+

(p − q)g2dx ≥ 0,

then a nontrivial solution of the boundary value transmission problem

f ′′(x) + p(x) f (x) = 0 x ∈ Ω, (3.7)

f (1) = 0, f (ξi−) − f (ξi+) = 0, f ′(ξi−) − f ′(ξi+) = 0, i = 1, 2 (3.8)

has a zero belonging to ∪3
i=1Ωi.
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Proof. Let f (x) be any nontrivial solution of the problem (3.7)-(3.8). Suppose, if possible, f (x) , 0 for x ∈ ∪3
i=1Ωi.

Then, using the equations (3.6),(3.7) we obtain

g(x)
f (x)

( f (x)g′(x) − g(x) f ′(x))′ = g2(x)(p(x) − q(x)). (3.9)

Integrating the equality (3.9) on each of the intervals [−1, ξ1), (ξ1, ξ2) and (ξ2, 1] we have

lim
ϵ → 0+

g(x)
f (x)

( f (x)g′(x) − g(x) f ′(x))|ξ1−
−1+ϵ − lim

ϵ → 0+

ξ1−∫
−1+ϵ

(
g(x)
f (x)

)′( f (x)g′(x) − g(x) f ′(x))dx

+ lim
ϵ → 0+

g(x)
f (x)

( f (x)g′(x) − g(x) f ′(x))|ξ2−ξ1+ϵ − lim
ϵ → 0+

ξ2−∫
ξ1+ϵ

(
g(x)
f (x)

)′( f (x)g′(x) − g(x) f ′(x))dx

+ lim
ϵ → 0+

g(x)
f (x)

( f (x)g′(x) − g(x) f ′(x))|1ξ2+ϵ − lim
ϵ → 0+

1∫
ξ2+ϵ

(
g(x)
f (x)

)′( f (x)g′(x) − g(x) f ′(x))dx

=

ξ1−∫
−1

(p(x) − q(x))g2(x)dx +

ξ2−∫
ξ1+

(p(x) − q(x))g2(x)dx +

1∫
ξ2+

(p(x) − q(x))g2(x)dx ≥ 0.

Using the transmission conditions (3.8) and f (−1) = g(−1) = 0 we get

−

ξ1−∫
−1

( f (x)g′(x) − g(x) f ′(x))2

f 2(x)
dx −

ξ2−∫
ξ1+

( f (x)g′(x) − g(x) f ′(x))2

f 2(x)
dx

−

1∫
ξ2+

( f (x)g′(x) − g(x) f ′(x))2

f 2(x)
dx =

ξ1−∫
−1

(p(x) − q(x))g2(x)dx

+

ξ2−∫
ξ1+

(p(x) − q(x))g2(x)dx +

1∫
ξ2+

(p(x) − q(x))g2(x)dx ≥ 0.

Consequently

ξ1−∫
−1

W2( f , g; x)
f 2(x)

dx +

ξ2−∫
ξ1+

W2( f , g; x)
f 2(x)

dx +

1∫
ξ2+

W2( f , g; x)
f 2(x)

dx ≤ 0.

The right hand side is identically zero if f (x) and g(x) are linearly dependent in which case the result is trivially true.
So if f (x) and g(x) are linearly independent, the left hand side is positive and we get a contradiction. Hence f (x) must
vanish in ∪3

i=1Ωi. □
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