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Abstract – In this article, we propose a new generalization of the differential transformation 

method (DTM), i.e., 𝛼-𝑃arameterized Differential Transform Method (𝛼-PDTM), for finding 

approximate solutions to the boundary value problems. We then apply the proposed method to 

two boundary value problems for different values of the parameter 𝛼. Afterwards, we compare 

its solutions with DTM and exact solutions. Moreover, we present several visual illustrations. 

 

Subject Classification (2020): 34B15, 65K05 

1. Introduction 

Recently, different semi-analytical or numerical methods, such as the finite difference method, the 

Adomian decomposition method, the shooting method, the homotopy perturbation method, the 

differential transformation method, the predictor correctors method, are of increasing interest due to 

the complexity of searching for analytical solutions to many initial or boundary value problems (BVP’s) 

for various type differential equations (for more details, see [1-5]). 

A semi-analytical method, called differential transformation method (DTM), was firstly proposed and 

applied by Zhou [6] in 1986 for solving initial and boundary value problems for differential equations 

arising in the analysis of an electric circuit. 

Although DTM is based on the Taylor series method (TSM), this method differs from the classical TSM, 

which requires the symbolic computation of the high order derivatives of the data function [7]. 

Moreover, unlike many approximate methods, DTM does not require linearization of the differential 

equations, calculation of auxiliary parameters, determination of auxiliary functions which can require 

massive numerical computation, etc.  
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DTM consists of the following simple steps: 

- The considered differential equations are converted into a system of linear algebraic equations 

- The systems of linear algebraic equations are solved by using various types of numerical or analytical 

methods 

- The inverse differential transformation is applied to find the solution to the original problem. 

Therefore, its capabilities have attracted many authors to use DTM for solving not only regular initial or 

BVP’s but also similar problems with various singularities (for more details, see [8-12]) 

This study develops a new generalization of DTM, referred to as α- parameterized differential transform 

method (α-PDTM), which differs from the classical DTM in calculating the coefficients of a differential 

transformation. To justify and illustrate the reliability and efficiency of the presented method, two 

boundary value problems are solved by α-PDTM for different values of the parameter α. Then, the α-

PDTM solutions are compared with DTM and exact solutions. 

2. The General Framework of the Proposed Method 

This section has developed a new generalization of the well-known DTM for the approximate solution 

of boundary value problems.  

Throughout this paper, let −∞ < 𝑎 < 𝑏 < ∞, 𝑓: [𝑎, 𝑏] → ℝ be an analytic function, 𝑌𝑘(𝑓, 𝑥0) denote the 

differential transform of 𝑓 at the 𝑥0 ∈ [𝑎, 𝑏], i.e., 

𝑌𝑘(𝑓, 𝑥0) =
𝑓(𝑘)(𝑥0)

𝑘!
, 𝑘 = 0,1,2 …, 

and let, for 𝛼 ∈ [0,1], 

𝐷(𝑓, 𝛼; 𝑘) ≔ 𝛼𝑌𝑘(𝑓, 𝑎) + (1 − 𝛼)𝑌𝑘(𝑓, 𝑏), 𝑘 = 0,1,2, … 

Definition 2.1.  The sequence 

𝐷𝛼(𝑓) ≔ (𝐷(𝑓, 𝛼; 0), 𝐷(𝑓, 𝛼; 1), … ) 

is called the 𝛼-parametrized differential transform (𝛼-PDT) of 𝑓. 

Let 𝐶 = (𝑐0, 𝑐1, 𝑐2, … ) be a real sequence. Then, 

ℤ𝛼(𝐶, 𝑥) ≔ ∑ 𝑐𝑘(𝑥 − (𝛼𝑎 + (1 − 𝛼)𝑏))𝑘

∞

𝑘=0

 

if the series is convergent in the whole real axis. 

Definition 2.2.  The series  

ℤ𝛼(𝐷𝛼(𝑓), 𝑥) = ∑ 𝐷(𝑓, 𝛼; 𝑘)

∞

𝑘=0

(𝑥 − (𝛼𝑎 + (1 − 𝛼)𝑏))𝑘 

is called the 𝛼-parametrized differential inverse transform (𝛼-PDIT) of 𝑓, if the series is convergent in 

the whole real axis. 

Remark 2.1. In the special cases 𝛼 = 0 and 𝛼 = 1, the equalities ℤ0(𝐷0(𝑓), 𝑥) = 𝑓(𝑥) and ℤ1(𝐷1(𝑓), 𝑥) =

𝑓(𝑥) are hold, respectively, for any analytic function 𝑓. That is, ℤ𝛼 = 𝐷𝛼
−1. 



51 

 

Mukhtarov et al. / JNRS / 10(2) (2021) 49-58 

Remark 2.2. If 𝛼 = 0 and 𝛼 = 1, then 𝛼-PDT is reduced to DT at the endpoints 𝑥 = 𝑏 and 𝑥 = 𝑎, 

respectively. Similarly, in these cases,  𝛼-PDIT is reduced to DIT. Therefore,  𝛼-PDTM is a generalization 

of DTM. 

Definition 2.3. Let 𝑛 ∈ ℕ. Then, the series  

𝐷𝛼,𝑛(𝑓) ≔ (𝐷(𝑓, 𝛼; 0), 𝐷(𝑓, 𝛼; 1), … , 𝐷(𝑓, 𝛼; 𝑛), 0, 0, … ) 

is called n-term 𝛼-PDT of 𝑓. 

Remark 2.3.  It is convenient to use n-term 𝛼-PDT instead of 𝛼-PDT in practical applications. 

Definition 2.4. Let 𝑛 ∈ ℕ. Then,   

𝑓𝛼,𝑛(𝑥) ≔ ℤ𝛼(𝐷𝛼,𝑛(𝑓), 𝑥) = ∑ 𝐷(𝑓, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘

𝑛

𝑘=0

 

is called n-term 𝛼-parametrized approximation of 𝑓 where 𝑥𝛼 ≔ 𝛼𝑎 + (1 − 𝛼)𝑏.  

Theorem 2.1. If 𝑓(𝑥) = const, then ℤ𝛼(𝐷𝛼(𝑓), 𝑥) = 𝑓(𝑥) .     

Theorem 2.2. If 𝑓(𝑥) = const, then ℤ𝛼(𝐷𝛼,𝑛(𝑓), 𝑥) = 𝑓(𝑥),   𝑛 = 0,1,2, …  

Theorem 2.3. Let 𝛽 ∈ ℝ. Then, 

a) 𝐷𝛼(𝛽𝑓) = 𝛽𝐷𝛼(𝑓) 

b) ℤ𝛼(𝐷𝛼(𝛽𝑓), 𝑥) = 𝛽ℤ𝛼(𝐷𝛼(𝑓), 𝑥) 

c) ℤ𝛼(𝐷𝛼,𝑛(𝛽𝑓), 𝑥) = 𝛽ℤ𝛼(𝐷𝛼,𝑛(𝑓), 𝑥), 𝑛 = 0,1,2, … 

Theorem 2.4. The following equalities are true. 

a) 𝐷𝛼(𝑓 ± 𝑔) = 𝐷𝛼(𝑓) ± 𝐷𝛼(𝑔) 

b) ℤ𝛼(𝐷𝛼(𝑓 ± 𝑔), 𝑥) = ℤ𝛼(𝐷𝛼(𝑓), 𝑥) ± ℤ𝛼(𝐷𝛼(𝑔), 𝑥) 

c) ℤ𝛼(𝐷𝛼,𝑛(𝑓 ± 𝑔), 𝑥) = ℤ𝛼(𝐷𝛼,𝑛(𝑓), 𝑥) ± ℤ𝛼(𝐷𝛼,𝑛(𝑔), 𝑥), 𝑛 = 0,1,2, … 

Theorem 2.5. Let 𝑔(𝑥) =
𝑑𝑚𝑓(𝑥)

𝑑𝑥𝑚 , 𝑛 ∈ ℕ.  Then,  

a) 𝐷(𝑔, 𝛼; 𝑘) =
(𝑘+𝑚)!

𝑘!
𝐷(𝑓, 𝛼; 𝑘 + 𝑚) 

b) 
𝑑𝑚

𝑑𝑥𝑚 𝑓𝛼,𝑛(𝑥) = ∑
(𝑘+𝑚)!

𝑘!
𝐷(𝑓, 𝛼; 𝑘 + 𝑚)(𝑥 − 𝑥𝛼)𝑘,𝑛

𝑘=0  where 𝑥𝛼 = 𝛼𝑎 + (1 − 𝛼)𝑏. 

Theorem 2.6. If  𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), then  

 𝐷(𝑓, 𝛼; 𝑘) = ∑ [𝛼𝑌𝑚(𝑔; 𝑎)𝑌𝑘−𝑚(ℎ; 𝑎) + (1 − 𝛼)𝑌𝑚(𝑔; 𝑏)𝑌𝑘−𝑚(ℎ; 𝑏)]

𝑘

𝑚=0

 

3. Using 𝜶-PDT Method to Solve Boundary Value Problems 

Example 3.1: Let us consider the following homogeneous differential equation 

𝑦′′(𝑥) + 2𝑦(𝑥) = 0, 𝑥 ∈ [−1,0] (3.1) 

with the nonhomogeneous boundary conditions 

𝑦(−1) = 0 and 𝑦′(0) = 1 (3.2) 
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Then, the exact solution for this problem and its graph (Fig. 1) are as follows:                          

𝑦(𝑥) =
1

2
(√2 sin(√2 𝑥) + √2 cos(√2 𝑥) tan(√2)) (3.3) 

                                                                                                          

Figure 1. Graph of the exact solution of the problem (3.1)-(3.3) 

If it is applied α-PDT to both sides of (3.1), then 

𝐷(𝑦′′ + 2𝑦, 𝛼; 𝑘) = (𝑘 + 1)(𝑘 + 2)𝐷(𝑦, 𝛼; 𝑘 + 2) + 2𝐷(𝑦, 𝛼; 𝑘) = 0 (3.4) 

Therefore, from the definition of α-PDT, 

𝑦𝛼(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘

∞

𝑘=0

 

and 

𝑦′𝛼(𝑥) = ∑ 𝑘𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘−1

∞

𝑘=0

 

Moreover, for the boundary conditions y(−1) = 0 and 𝑦′(0) = 1, 

𝑦𝛼(−1) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝛼 − 1)𝑘

𝑁

𝑘=0

= 0 (3.5) 

and 

𝑦′𝛼(0) = ∑ 𝑘𝐷(𝑦, 𝛼; 𝑘)(𝛼 − 1)𝑘−1

𝑁

𝑘=0

= 1 (3.6) 

respectively. Here, denoting 𝐷(𝑦, 𝛼; 0) = 𝐴 and 𝐷(𝑦, 𝛼; 1) = 𝐵 and then substituting in the recursive 

relation (3.4), 𝐷(𝑦, 𝛼; 2) = −𝐴 is obtained. Now proceeding the iteration using (3.4), the other terms of 

the 𝛼-parametrized sequence 𝐷(𝑦, 𝛼; 𝑛) can be calculated as  

𝐷(𝑦, 𝛼; 3) =
− 𝐵

3
,   𝐷(𝑦, 𝛼; 4) =

 𝐴

6
,    𝐷(𝑦, 𝛼; 5) =

 𝐵

30
,      𝐷(𝑦, 𝛼; 6) =

−𝐴

90
, …. 

Hence, the  𝛼-parametrized series solution 𝑦(𝑥, 𝛼) is evaluated up to 𝑁 = 6: 



53 

 

Mukhtarov et al. / JNRS / 10(2) (2021) 49-58 

𝑦(𝑥, 𝛼) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘

6

𝑘=0

 

(3.7) 

 = 𝐴 + (𝑥 + 𝛼)𝐵 − (𝑥 + 𝛼)2𝐴 − (𝑥 + 𝛼)3
𝐵

3
+ (𝑥 + 𝛼)4

𝐴

6
+ (𝑥 + 𝛼)5

𝐵

30
− (𝑥 + 𝛼)6

𝐴

90
 

where 𝑥𝛼 = −𝛼 and 𝐷(𝑦, 𝛼; 0) = 𝐴, 𝐷(𝑦, 𝛼; 1) = 𝐵. Thus, from (3.7),  

𝑦(−1, 𝛼) = 𝐴 + (𝛼 − 1)𝐵 − (𝛼 − 1)2𝐴 − (𝛼 − 1)3
𝐵

3
+ (𝛼 − 1)4

𝐴

6
+ (𝛼 − 1)5

𝐵

30
− (𝛼 − 1)6

𝐴

90
= 0 

and 

𝑦′(0, 𝛼) = 𝐵 − 2𝐴𝛼 − 𝐵𝛼2 −
2𝐴

3
𝛼3 +

𝐵

6
𝛼4 −

𝐴

15
𝛼5 = 1 

Furthermore, the numbers 𝐴 and 𝐵 are evaluated from the boundary conditions (3.2) as follows: 

𝐴 = −
90(−21 + 5𝛼 + 20𝛼2 − 5𝛼4 + 𝛼5)

420 + 30𝛼2 − 120𝛼3 + 220𝛼4 − 216𝛼5 + 105𝛼6 + 40𝛼7 − 30𝛼8 + 𝛼10
 

and 

𝐵 = −
30(−14 − 126𝛼 + 15𝛼2 + 40𝛼3 − 6𝛼5 + 𝛼6)

420 + 30𝛼2 − 120𝛼3 + 220𝛼4 − 216𝛼5 + 105𝛼6 + 40𝛼7 − 30𝛼8 + 𝛼10
 

For 𝛼 =
1

2
, 𝛼 =

1

3
 , and 𝛼 =

1

4
, the numerical α-PDT solutions are presented in Fig. 2-4 as follows: 

 

Figure 2. Graph of the numerical α-PDT solution for 𝛼 =
1

2
   

 

Figure 3. Graph of the numerical α-PDT solution for 𝛼 =
1

3
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Figure 4. Graph of the numerical α-PDT solution for 𝛼 =
1

4
 

Therefore, for 𝛼 =
1

4
, the exact, DTM, and α-PDT solutions are presented in Fig. 5 as follows: 

 
Figure 5. Comparison of the exact solution (red dashing) with DTM (green dotted) and α-PDT solutions 

for 𝛼 =
1

4
 (blue line). 

Example 3.2:  Let us consider the following nonhomogeneous differential equation 

𝑦′′(𝑥) + 2𝑦′(𝑥) + 𝑦(𝑥) = 𝑒−𝑥, 𝑥 ∈ [−1,0] (3.8) 

with the nonhomogeneous boundary condition  

𝑦(−1) = 1 and 𝑦(0) = 0 (3.9) 

The exact solution for this problem and its graph (Fig. 6) are as follows: 

𝑦(𝑥) =
1

2
𝑒−1−𝑥𝑥(−2 + 𝑒 + 𝑒𝑥) (3.10) 

 
Figure 6. Graph of the exact solution of the problem (3.8)-(3.10) 
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If it is applied α-PDT to both sides of (3.8), then 

(𝑘 + 1)(𝑘 + 2)𝐷(𝑦, 𝛼; 𝑘 + 2) = −2(𝑘 + 1)𝐷(𝑦, 𝛼; 𝑘 + 1) − 𝐷(𝑦, 𝛼; 𝑘) +
(−1)𝑘

𝑘!
 (3.11) 

Therefore, from the definition of α-PDT, 

𝑦𝛼(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘

∞

𝑘=0

 

Moreover, for the boundary conditions y(−1) = 1 and 𝑦(0) = 0, 

𝑦𝛼(−1) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝛼 − 1)𝑘

𝑁

𝑘=0

= 1 (3.12) 

and 

𝑦𝛼(0) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝛼)𝑘

𝑁

𝑘=0

= 0 (3.13) 

respectively. Here, denoting 𝐷(𝑦, 𝛼; 0) = 𝐴 and 𝐷(𝑦, 𝛼; 1) = 𝐵 and then substituting in the recursive 

relation (3.11), 𝐷(𝑦, 𝛼; 2) =
 1

2
[−2𝐵 − 𝐴 + 1] is obtained. Now proceeding the iteration using (3.11), we 

can calculate the other terms of the 𝛼-parametrized sequence 𝐷(𝑦, 𝛼; 𝑛) as  

D(y, α; 3) =
1

3!
[3B + 2A − 3], 

D(y, α; 4) =
 1

12
[−2B −

3

2
A + 3], 

D(y, α; 5) =
 1

20
[

5

6
B +

2

3
A −

10

6
], 

D(y, α; 6) =
1

30
[−

3

12
B −

5

24
A +

15

24
], 

⋮ 

Hence, the  𝛼-PDT series solution 𝑦(𝑥, 𝛼) is evaluated up to 𝑁 = 6: 

𝑦(𝑥, 𝛼) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘

6

𝑘=0

 

(3.14) 

 = 𝐴 + (𝑥 + 𝛼)𝐵 + (𝑥 + 𝛼)2
1

2
[−2𝐵 − 𝐴 + 1] + (𝑥 + 𝛼)3

1

3!
[3𝐵 + 2𝐴 − 3] 

 +(𝑥 + 𝛼)4
 1

12
[−2B −

3

2
A + 3] + (𝑥 + 𝛼)5

 1

20
[
5

6
B +

2

3
A −

10

6
] 

 +(𝑥 + 𝛼)6
1

30
[−

3

12
B −

5

24
A +

15

24
] 

where 𝑥𝛼 = −𝛼 and  𝐷(𝑦, 𝛼; 0) = 𝐴, 𝐷(𝑦, 𝛼; 1) = 𝐵. Thus, from (3.14), 

𝑦(−1, 𝛼) = 𝐴 + 𝐵(−1 + 𝛼) +
1

2
(1 − 𝐴 − 2𝐵)(−1 + 𝛼)2 +

1

6
(−3 + 2𝐴 + 3𝐵)(−1 + 𝛼)3 +

1

12
(3 −

3𝐴

2

− 2𝐵)(−1 + 𝛼)4 +
1

20
(−

5

3
+

2𝐴

3
+

5𝐵

6
)(−1 + 𝛼)5 +

1

30
(
5

8
+

5𝐴

24
−

𝐵

4
)(−1 + 𝛼)6 = 1 
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and 

𝑦(0, 𝛼) = 𝐴 + 𝐵𝛼 +
1

2
(1 − 𝐴 − 2𝐵)𝛼2 +

1

6
(−3 + 2𝐴 + 3𝐵)𝛼3 +

1

12
(3 −

3𝐴

2
− 2𝐵)𝛼4 +

1

20
(−

5

3
+

2𝐴

3

+
5𝐵

6
)𝛼5 +

1

30
(
5

8
+

5𝐴

24
−

𝐵

4
)𝛼6 = 0 

Furthermore, the numbers 𝐴 and 𝐵 are evaluated from the boundary conditions (3.9) as follows: 

𝐴 = −(15(−2040𝛼 + 17496𝛼2 − 27612𝛼3 + 23404𝛼4 − 13029𝛼5 + 4977𝛼6 − 1274𝛼7 + 210𝛼8

− 21𝛼9 + 𝛼10))/(−234720 + 467400𝛼 − 457320𝛼2 + 278940𝛼3 − 99200𝛼4 − 649𝛼5

+ 23905𝛼6 − 13250𝛼7 + 3790𝛼8 − 625𝛼9 + 49𝛼10 

and 

𝐵 = (5(−6120 + 69840𝛼 − 77088𝛼2 + 33108𝛼3 + 3231𝛼4 − 14236𝛼5 + 11276𝛼6 − 5068𝛼7

+ 1471𝛼8 − 260𝛼9 + 22𝛼10))/(−234720 + 467400𝛼 − 457320𝛼2 + 278940𝛼3

− 99200𝛼4 − 649𝛼5 + 23905𝛼6 − 13250𝛼7 + 3790𝛼8 − 625𝛼9 + 49𝛼10) 

For 𝛼 =
1

4
 and 𝛼 =

1

20
, the numerical 𝛼-PDT solutions are presented in Fig. 7 and 8 as follows: 

 

Figure 7. Graph of the numerical α-PDT solution for 𝛼 =
1

4
  

 

Figure 8. Graph of the numerical α-PDT solution for 𝛼 =
1

20
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Therefore, for 𝛼 =
1

20
, the exact and α-PDT solutions are presented in Fig. 9 as follows: 

 

Figure 9. Comparison of the exact solution (red dashing) with the α-PDT solution for 𝛼 =
1

20
 (blue line). 

Finally, the exact and DTM solutions are presented in Fig. 10 as follows: 

 

Figure 10. Comparison of the exact solution (red dashing) with the DTM solution (blue dotted). 

4. Conclusion  

In this study, we have proposed a new generalization of the classical differential transform method, 

the so-called 𝛼-Parameterized Differential Transform Method (𝛼-PDTM), to find approximate 

solutions to boundary value problems for differential equations. We then compared the obtained 

approximate 𝛼-PDT solutions with the DTM solutions and exact solutions. The results show that 𝛼-

PDTM is an efficient and reliable method. 
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