LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 2(1): 49-58 (2016)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, *Rutilus rutilus* (L., 1758)

Ali Serhan TARKAN, Lorenzo VILIZZI*

Muğla Sıtkı Koçman University, Faculty of Fisheries, 48000 Kötekli Campus /Muğla, Turkey

ABSTRACT

Comparative assessments of mean growth rates in length across fish populations are useful for gaining insights into the conservation, management and control of species, especially at larger scales of distribution. The purpose of this study was to refine the Growth Index (GI), a useful measure for comparing species-specific growth rates in fish. Using literature-based length-at-age data for 299 populations of roach Rutilus rutilus, a widespread freshwater fish of Eurasian distribution, the GI was calibrated and the previously semi-quantitatively defined 'slow', 'average' and 'fast' growth categories were quantitatively re-defined. A threshold value of 114% GI separated 'slow' from 'average' growth populations and of 155% GI 'average' from 'fast' growth populations. Slow growth rates were identified along the entire latitudinal range of the species' distribution, whereas below $\approx 37^{\circ}$ N all types of growth were encountered, indicating the importance of waterbody-related environmental factors in affecting growth in roach. Given the relatively widespread usage of the GI, species-specific calibrations leading to improved definition of corresponding growth bands are recommended for other widespread fish species of both economic value and ecological concern.

Keywords: Caspian roach, latitude, length-at-age, von Bertalanffy growth

ARTICLE INFO

REVIEW

Received Revised Accepted Published	: 23.06.2015 : 28.03.2016 : 06.04.2016 : 20.04.2016	
Published	: 20.04.2016	

DOI: 10.17216/LimnoFish-5000127509

* CORRESPONDING AUTHOR

lorenzo.vilizzi@gmail.com *Tel* : +90 252 211 1888 Fax: +90 252 211 1887

function

Boyca Büyümeyi Ölçen Büyüme İndeksinin Tekrar Değerlendirilmesi: Kızılgöz, Rutilus rutilus Uygulaması

Öz: Balık populasyonları arasında boyca ortalama büyüme oranlarının karşılaştırmalı değerlendirmeleri özellikle yaygın dağılımları olan balıklarda türlerin kontrolü, yönetimi ve korunmasına yönelik bilgi edinme anlamında yararlıdır. Sunulan çalışmanın amacı balıklarda türe özgü büyüme oranlarını karşılaştırmada kullanışlı bir ölçü olan Büyüme İndeksi (Bİ)'ni düzenlemektir. Geniş bir Avrasya dağılımına sahip yaygın tatlı su balığı kızılgöz, *Rutilus rutilus* türünün 299 populasyonunda literatür tabanlı yaştaki boy verileri kullanılarak, Bİ kalibre edilmiş ve daha önce yarı kantitatif olarak 'yavaş', 'ortalama' ve 'yüksek' olarak tanımlanan büyüme kategorileri kantitatif olarak tekrar tanımlanmıştır. Eşik değeri olarak %114 Bİ 'yavaş' büyüyen popülasyonları 'orta' hızda büyüyen popülasyonlardan ayırırken, %155 Bİ değeri 'orta' hızda büyüyen popülasyonlardan 'hızlı' popülasyonları ayırmıştır. Yavaş büyüme oranları türün bütün enleme bağlı dağılım alanından tespit edilirken, ≈37°N enleminin altında bütün büyüme tiplerine rastlanılmıştır bu durum da kızılgözün büyümesini etkileyen su kütlesine bağlı faktörlerin önemini göstermiştir. Bİ'nin nispeten yaygın kullanımı dikkate alındığında, büyüme kategorilerinin gelişmiş tanımlamalarını yapmaya yönelik türe özgü kalibrasyonların yapılması ekonomik değeri olan ve ekolojik önemi olan diğer geniş dağılımlı balık türleri için önerilir.

Anahtar kelimeler: Kızılgöz, enlem, yaş-boy, von Bertalanffy büyüme fonksiyonu

How to Cite

Tarkan AS, Vilizzi L. 2015. A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, *Rutilus rutilus* (L., 1758). LimnoFish. 2(1):49-58. doi: 10.17216/LimnoFish-5000127509

Introduction

Knowledge of fish growth is fundamental for understanding species' life histories, population dynamics and fisheries sustainability (Beddington and Kirkwood 2005; Frisk et al. 2005), and in this respect comparative studies on freshwater fish growth at the regional (e.g. Britton et al. 2012; Vilizzi et al. 2013, 2015b), continental (e.g. Copp et al. 2009) and trans-continental scale (e.g. Copp et al. 2004) have provided useful insights for conservation, management and control. Typically, comparative assessments of population mean growth rates in length have relied on the use of indices, which represent a convenient way to summarise growth especially in widespread fish species (Britton 2007; but see Zivkov et al. 1999).

The roach Rutilus rutilus (Linneaus, 1758) is a widespread eurythermal cyprinid of native Eurasian distribution (Froese and Pauly 2015) that is abundant in rivers, lakes and reservoirs, but also encountered in brackish waters (Pęczalka 1968; Kozlovskiy 1992; Lappalainen et al. 2005; 2008). This species is valued for recreational fishing throughout Europe (Frimodt 1995) and its generalist feeding habits, combined with the high densities often achieved under favourable habitat conditions, make it a strong competitor with other fishes (Griffiths 1997). This leads sometimes to severe population reductions or even extinction in the species' introduced areas of distribution (Harrod et al. 2001). In this respect, intracontinentally roach has recently expanded its southern and western European range of distribution following introductions in the 19th century into the Italian (Volta and Jepsen 2008) and Iberian peninsulas (García-Berthou 1999) and into Ireland (Harrod et al. 2001). Whereas, translocations have occurred much of Great across Britain (Copp et al. 2005; Graham and Harrod 2009), Anatolia (Turkey; Ergüden et al. 2008) and in the Xinjiang Province of China (Hui Wei, pers. comm.).

One comparative index that has been used for quantifying growth in length of fish is the Growth Index (GI: Hickley & Dexter 1979). The GI categorises the growth of a fish population semi-quantitatively into 'slow', 'average' or 'fast' if less than, greater than or equal to, respectively, a reference value of 100. The GI has so far been applied to a number of species including R. rutilus (Cowx 1989) as well as other cyprinid (Treer et al. 1997; 1998; 2000; Tarkan et al. 2011; Emiroğlu et al. 2012) and non-cyprinid fishes (e.g. Treer et al. 1998). However, an intrinsic limitation with the definition of the GI is that it does not provide for a confidence interval against which to gauge the growth of a population either above or below average (see 'Sorites paradox': Vilizzi 2011), nor does it clearly define the range in values of the three resulting growth bands. The aim of this study was therefore to: (i) calibrate the GI based on a near-comprehensive dataset of growth in length of R. rutilus across its entire range of Eurasian distribution, and (ii) re-define the corresponding 'slow', 'average' and 'fast' growth bands accordingly. Based on the outcomes of the present quantitative evaluation, an overall assessment is made of the growth of R. rutilus across its distributional range, with special emphasis on the

southern limits where the species has also been introduced.

Materials and Methods

Data collation and analysis

Growth data for R. rutilus were obtained from tables, text or figures as available in publications from the peer-reviewed and gray literature, including sources primary and secondary (i.e. data opportunistically retrieved through the former). A necessary condition for inclusion of a study into the review was that it should provide mean length-atage (LAA) values for the population(s) under investigation. An exception was the study by Wilson (1971) on R. rutilus from Chew Valley Lake (England, UK), which was excluded from the review due to reported errors in age estimates (see White and Williams 1978).

Growth data for populations of the Caspian roach R. r. caspicus (Yakovlev, 1870) were also included for both historical and taxonomical reasons. In the former case, a number of studies has incorporated into large-scale life-history trait this taxon comparisons (e.g. Kas'yanov et al. 1995; Zivkov and Raikova-Petrova 2001; Lappalainen et al. 2008), and for consistency this approach was followed in the present review. In the latter case, phylogenetic studies have so far provided inconclusive evidence to categorise the Caspian roach as a different species (i.e. R. caspicus), hence contrary to Froese and Pauly (2015). Thus, despite low genetic divergence between R. caspicus and R. frisii (Nordmann, 1840) (the latter from the Black and Azov Sea basins, but also from part of the Caspian Basin and Lake İznik in Anatolia) (Ketmaier et al. 2008; Larmuseau et al. 2009), haplotypes of R. r. caspicus have been found to be highly similar to those of *R. rutilus* from Lake Volvi in Northern Greece, which is considered to be the home of the west-European and Ponto-Caspian *R*. rutilus clades (Tsoumani et al. 2014). This finding therefore supports historical evidence for the existence of а subspecies (www.briancoad.com/ at most Species%20Accounts/FFI%20Complete.htm accessed 15/06/2015]).

For comparative purposes and consistency with other studies (e.g. Hickley and Dexter 1979; Britton 2007), fork length (*FL*) was the reference length measurement employed across the reviewed studies. Consequently, whenever required mean LAA values were expressed as *FL* (mm; converted from cm or inches, if originally reported as such) using the following species-specific conversion factors from *SL* (standard length) or *TL* (total length) (Froese and Pauly 2015):

Notably, for those studies (mainly from former USSR countries) providing no indication of the length measurement employed, this was taken to be SL (see Vilizzi et al. 2015b). On the contrary, for those studies (8% in total) where no indication of the length used was reported, this was taken to be FL, which represented the nearest-accurate and 'judicious' choice given possible conversion from SL or TL.

Growth Index

The GI (%) is computed as the mean value of the growth in length of fish in each age class of a certain population and with reference to an age class-specific global growth value for the species under study:

 $GI = \Sigma FL_{oi}/FL_{ri} \cdot 100$

where FL_{oi} and FL_{ri} are the observed (*o*) and reference (*r*) mean *FL*, respectively, and *i* is the (estimated) age of the fish. Notably, the age class-specific global growth value for the species is estimated from a global von Bertalanffy growth function (VBGF) fitted to the LAA values from a sample of populations (n = 14 in Hickley and Dexter 1979). For the present purposes, the GI was used to assess the extent of growth in roach over the entire life span of each of the reviewed populations.

Statistical analyses

The mean LAA reference values for roach originally provided by Hickley and Dexter (1979) were updated after fitting a global VBGF to the entire collection of available mean LAA data points in the present review. The VBGF was fitted as (Ricker 1975):

$$FL = FL_{\infty} (1 - e^{(-K (age - t0))})$$

where FL_{∞} is the asymptotic FL, K the Brody growth coefficient (years⁻¹), and t_0 the age of the fish at 0 mm *FL*. Fitting the VBGF was in R x64 v3.0.3 (R Core Team 2014) using package 'FSA' (Ogle 2014) with 1000 bootstrap confidence interval estimates of the parameters.

Statistical comparison between Hickley and Dexter's (1979) reference values (up to age class 15+) and those obtained upon fitting the global VBGF was by permutational univariate analysis of variance (PERANOVA). This employed a Euclidean dissimilarity measure on the normalised data and 9999 permutations (raw data), with tests of significance at $\alpha = 0.05$ (PERMANOVA+ v1.0.1 for PRIMER v6: Anderson et al. 2008). Briefly, the advantage of PERANOVA over traditional parametric ANOVA is that the stringent assumptions of normality and homoscedasticity, which prove very often unrealistic when dealing with real-world ecological datasets (and especially so in case of small sample sizes), are consistently relaxed (Anderson 2001; Anderson and Robinson 2001).

Because GI values were also computed for the 75 R. rutilus populations reviewed in Zivkov and Raikova-Petrova (2001) and therein categorised as 'low', 'average' and 'high' growth, a comparison was made to assess the consistency of the findings between that study and the present one. Comparison was by PERANOVA (as above) followed by computation of quartiles under Excel® 2013 (min, 25th, 50th, 75th and max). Also, because of overlap between the upper and lower quartiles for the 'low' and 'average' growth categories, receiver operating characteristic (ROC) curve analysis was performed to identify the best GI value threshold to distinguish between Zivkov and Raikova-Petrova's (2001) low/average/high categories and, ultimately, re-define Hickley and Dexter's (1979)slow/average/fast categories. This was achieved using a combination of Youden's J statistic and the point closest to the top-left part of the plot with perfect sensitivity or specificity, and using the mean area under the ROC curve (AUC) as a measure of the accuracy of the calibration analysis (Bewick et al. 2004). The threshold value between 'average' and 'high' growth categories was similarly identified. Analyses were carried out in R with package 'pROC' (Robin et al. 2011) using 2000 bootstrap replicates for the confidence intervals. Notably, no additional comparison with the quantitative growth categories identified in Kas'yanov et al. (1995) was conducted because of the comparatively larges sample of populations reviewed in Zivkov and Raikova-Petrova (2001) also coming from a wider range of distribution.

Results

Data were obtained for 299 roach populations from 209 Eurasian water bodies (Figure 1; Appendix Table S1). In total, there were 2211 mean LAA data points (i.e. *FL* values) in 18 age classes (Appendix Table S1). The mean LAA reference values (ages 1 to 15) for roach estimated from the global VBGF fitted to the entire collection of mean LAA data points did not differ significantly from those originally provided by Hickley and Dexter (1979) ($F^{\#} = 1,28 = 0.076$, $P^{\#} = 0.787$: $^{\#} =$ permutational; Table 1). Regardless, because of the much larger sample size the estimated mean LAA reference values from the present study were used for all subsequent GI-based computations.

Mean GI values differed significantly amongst the three semi-quantitative growth categories identified by Zivkov and Raikova-Petrova (2001) $(F^{\#}_{2,72} = 130.77, P^{\#} < 0.001)$. Also, quartile analysis indicated an overlap between 'low' and 'average' growth populations at 100–125% GI, but complete separation for 'high' growth populations (Table 2). Based on ROC curve analysis, a threshold value of 114% GI was identified to distinguish between 'slow' from 'average' growth populations (mean AUC = 0.9525, 0.9081–0.9969 95% CI), and a threshold value of 155% GI between 'average' and 'fast' growth populations (mean AUC = 1).

By plotting GI values vs. latitude, 'fast' growth populations were found up to \approx 55°N and 'average' growth up to \approx 59°N (Figure 2). Conversely, 'slow' growth populations spanned the entire latitudinal range of the species distribution and were the only ones present above \approx 59°N. Conversely, below \approx 37°N all types of growth were encountered. Also, at similar low latitudes *R. rutilus* in Seyhan Reservoir (Turkey) and from the South Caspian Sea showed 'fast' growth, similar to *R. r. caspicus* from Gomishan and Anzali wetlands (Iran).

Discussion

The validity of the GI as a robust descriptor of growth rate in R. rutilus was evidenced by the overall concordance with the growth categorisation (i.e. 'low', 'average' and 'high') proposed by Zivkov and Raikova-Petrova (2001). This indicates that the GI can be used reliably as a comparative measure of growth for the species, even though conditional upon calibration. In the present study, this was achieved by ROC analysis using the above three a priori categories. These were originally based on a growth measure named 'average absolute (real)' growth rate (at age 4, in that study), which has been recommended as one of the most reliable indices for growth comparisons in fish (Živkov et al. 1999). However, it is noteworthy that, following calibration, the threshold values of 114% GI and 155% GI to distinguish between 'slow', 'average' and 'fast' growing populations proved to be consistently higher compared to Hickley and Dexter's (1979) reference values above and below 100%.

	Present data		Original
Mean	LCI	UCI	Original
62.5	60.5	63.8	50.0
97.6	89.7	105.9	91.9
127.5	115.1	141.0	127.0
153.0	137.2	170.3	156.4
174.7	156.4	194.8	181.1
193.3	173.0	215.3	201.7
209.0	187.5	232.3	219.0
222.5	200.2	246.6	233.5
233.9	211.1	258.5	245.6
243.7	220.7	268.5	255.7
252.0	228.9	276.8	264.3
259.1	236.1	283.8	271.4
265.1	242.4	289.6	277.4
270.3	247.9	294.4	282.4
274.7	252.6	298.5	286.6
278.4	256.7	301.9	_
281.6	260.3	304.7	_
284.3	263.4	307.0	_
	Mean 62.5 97.6 127.5 153.0 174.7 193.3 209.0 222.5 233.9 243.7 252.0 259.1 265.1 270.3 274.7 278.4 281.6 284.3	Present dataMeanLCI62.560.597.689.7127.5115.1153.0137.2174.7156.4193.3173.0209.0187.5222.5200.2233.9211.1243.7220.7252.0228.9259.1236.1265.1242.4270.3247.9274.7252.6278.4256.7281.6260.3284.3263.4	Present dataMeanLCIUCI62.560.563.897.689.7105.9127.5115.1141.0153.0137.2170.3174.7156.4194.8193.3173.0215.3209.0187.5232.3222.5200.2246.6233.9211.1258.5243.7220.7268.5252.0228.9276.8259.1236.1283.8265.1242.4289.6270.3247.9294.4274.7252.6298.5278.4256.7301.9281.6260.3304.7284.3263.4307.0

Table 1. Mean length-at-age (LAA) reference values for Rutilus rutilus used for computation of the Growth Index (GI).

LCI and UCI: lower and upper confidence intervals, respectively. LAA reference values estimated from a global VBGF fitted to the LAA data for 299 Eurasian roach populations (Appendix Table S1). The values originally provided in Hickley and Dexter (1979) are also given.

Table 2. Summary statistics for the GI in R.	rutilus based on the semi-quantita	ative growth categories	for roach identified
by Zivkov and Raikova-Petrova (2001).			

Catagory		Maan	SE			Quartile		
Category	п	Wieall	SE	0	25	50	75	100
Low	39	96.73	1.97	73.7	88.4	95.0	103.3	125.1
Average	27	127.72	2.57	100.2	121.2	129.1	136.4	151.1
High	9	180.96	8.32	158.5	162.8	177.7	183.3	229.1

SE = standard errors. In bold, overlapping quartiles for 'low' and 'average' categories.

Figure 1. Water bodies for which length-at-age (LAA) data for roach *Rutilus rutilus* were reviewed. See also Appendix Table S1.

Figure 2. Growth Index (GI) values for 283 *R. rutilus* populations plotted against latitude and categorised according to 'slow' (white dots), 'average' (gray dots) and 'fast' (black dots). Key populations at the southern limits of the species' latitudinal range of distribution are highlighted. See also Appendix Table S1.

The lack of significant differences between Hickley and Dexter's (1979) original (UK-based) mean LAA reference values and those estimated globally in the present study indicates that the former did already provide for a representative sample size. However, it is recommended that the updated reference values provided here be used in future studies. This is because of the much larger number of populations reviewed and the inclusion of three additional age classes (i.e. 16+ to 18+) that have allowed for higher accuracy, objectivity and ease of applicability of the estimated values. Also, by defining a percentage-based interval to quantify the 'average' growth rate of a species (i.e. 114-155% GI for R. rutilus, based on the current findings) the problem of arbitrarily determining by how many percentage points a fish population/stock should be categorised as either 'slow' or 'fast' growing is overcome.

By combining the GI-based growth categorisation with information on latitude, a distinct picture of global growth patterns in R. rutilus emerged (Figure 2). Accordingly, slow growth rates were identified across the entire latitudinal range of distribution, pointing to the influence not only of latitude (hence, temperature) but also of water body-specific a/biotic factors upon the species' 'genetically programmed' growth capacity template. This was evidenced by the slow growth rates observed for several populations at the lower latitudes of the species' distributional range. These populations appeared as 'outliers' where a plateau in the cline occurred and reflected a decrease in growth capacity as suggested by Lappalainen et al. (2008). This was the case for Caspian roach in Anzali and Gomishan wetlands (Iran), the former water body being characterised by a temperate climate type but high levels of pollution, and the latter by an arid climate leading to more extreme summer temperatures in conjunction with local high salinity conditions (Naddafi et al. 2005). In Anatolia, the translocated population from Porsuk Reservoir had similar growth rate to that from Lake Sapanca, which characterised by low productivity levels is (Tarkan 2006); but the similarly translocated population from Seyhan Reservoir was characterised by considerably faster growth, suggesting again the influence of water body-related factors. Finally, the population of Caspian roach from the South Caspian Sea (Sedaghat and Hoseini 2012) and the Anatolian populations from Seyhan Reservoir (Ergüden et al. 2008) and Porsuk Reservoir deserve attention. In the former case, the observed fast growth rates as opposed to the populations from Anzali and Gomishan wetlands would rule out taxon-specific

differences (i.e. *R. rutilus* vs. *R. r. caspicus*) in growth rate. In the latter case, translocated roach in Seyhan Reservoir may have benefited from locally available resources leading to successful establishment and growth, contrary to Porsuk Reservoir.

In conclusion, given the relatively widespread usage of the GI in the literature, species-specific calibrations leading to improved definition of corresponding growth bands (similar to what achieved in the present study) are recommended. This would apply not only to the other three species originally evaluated by Hickley and Dexter (1979), i.e. common bream Abramis brama, European chub Leuciscus cephalus and common dace Leuciscus leuciscus, but also to other cosmopolitan species such as the common carp Cyprinus carpio, which has been receiving increasing attention by scientists, environmental managers and stakeholders alike due to its economic value but also ecological threats (e.g. Vilizzi 2012; Vilizzi and Tarkan 2015; Vilizzi et al. 2015a).

Acknowledgements

We are grateful to Bořek Drozd (University of South Bohemia, Czech Republic), Gordon H. Copp Phil Davison (Cefas, UK), Hui Wei and (Chinese Academy of Fishery Sciences, China), Riikka Puntila (University of Helsinki, Finland) and Tamsin Vicary (Freshwater Biological Association, UK) for providing some key references. Contribution to this study by LV was through a 2221 Fellowship Programme granted by The Scientific & Technological Research Council of Turkey (TÜBİTAK) and The Department of Science Fellowships & Grant Programs (BİDEB).

References

- Anderson MJ. 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci. 58(3):626–639. doi: 10.1139/f01-004
- Anderson MJ, Robinson J. 2001. Permutation tests for linear models. Aust NZ J Stat. 43(1):75–88. doi: 10.1111/1467-842X.00156
- Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E Ltd., Plymouth, UK.
- Angélibert S, Brosse S, Dauba F, Lek S. 1999. Change in roach (*Rutilus rutilus* L.) population structure induced on draining a large reservoir. CR Acad Sci III-Vie. 322(4):331–338.
 doi: 10.1016/S0764-4469(99)80069-9
- Arzbach H-H. 1997. Untersuchungen zur allgemeinen Ökologie, Radioökologie, und Trophodynamik am Fischbestand des Plußsees in Schleswig-Holstein. PhD Thesis, University of Hamburg, Germany.

- Auvinen H. 1987. Growth, mortality and management of whitefish (Coregonus lavaretus L. s.l.), vendace (*Coregonus albula* L.), roach (*Rutilus rutilus* L.) and perch (*Perca fluviatilis* L.) in Lake Pyhäjärvi (Karelia). Finn Fish Res. 8(1):38-47.
- Banks JW. 1970. Observations on the fish population of Rostherne Mere, Cheshire. Fld Stud 3(2):357–379.
- Baranova VV. 1984. Growth of roach, *Rutilus rutilus* (Cyprinidae), in the Reservoirs of the Upper Volga Basin. Vopr Ikhtiol. 24:253–257.
- Başkurt S, Emiroğlu Ö, Tarkan AS, Vilizzi L. 2015. The life-history traits of widespread freshwater fish species: the of roach case Rutilus rutilus (Linnaeus, 1758) (Pisces: Teleostei) in water bodies at the southern limits of distribution. Zool Middle East. 61(4): 339-348. doi: 10.1080/09397140.2015.1095516
- Beardsley H, Britton JR. 2012. Contribution of temperature and nutrient loading to growth rate variation of three cyprinid fishes in a lowland river. Aquat Ecol. 46(1):146–152. doi: 10.1007/s10452-011-9387-3
- Beddington JR, Kirkwood GP. 2005. The estimation of potential yield and stock status using life-history parameters. Phil Trans Roy Soc B. 360(1453):163–170. doi: 10.1098/rstb.2004.1582
- Bewick V, Cheek L, Ball J. 2004. Statistics review 13: Receiver operating characteristic curves. Crit Care
- Receiver operating characteristic curves. Crit Care. 8(6):508–512. doi: 10.1186/cc3000
- Britton JR, Davies GD, Pegg J. 2012. Spatial variation in the somatic growth rates of European barbel *Barbus barbus*: a UK perspective. Ecol Freshwat Fish. 22(1):21–29.

doi: 10.1111/j.1600-0633.2012.00588.x

Britton JR. 2007. Reference data for evaluating the growth of common riverine fishes in the UK. J Appl Ichthyol. 23(5):555–560.

doi: 10.1111/j.1439-0426.2007.00845.x

- Burrough RJ, Kennedy CR. 1979. The occurrence and natural alleviation of stunting in a population of roach, *Rutilus rutilus* (L.). J Fish Biol. 15(1):93–109. doi: 10.1111/j.1095-8649.1979.tb03574.x
- Büsser P, Tschumi PA. 1987. Nahrungsökologie der Rotaugen (*Rutilus rutilus* L.) im Litoral und Pelagial des Bielersees. Swiss J Hydrol. 49(1):62–74. doi: 10.1007/BF02540380
- Chitravadivelu K. 1974. Growth, age composition, population density, mortality, production and yield of *Alburnus alburnus* (Linnaeus, 1758) and *Rutilus rutilus* (Linnaeus, 1758) in the inundation region of Danube – Žofin. Acta U Carol Biol. 1972:1–76.
- Copp GH, Bianco PG, Bogutskaya NG, Erős T, Falka I, Ferreira MT, Fox MG, Freyhof J, Gozlan RE, Grabowska J, Kováč V, Moreno-Amich R, Naseka AM, Peňáz M, Povž M, Przybylski M, Robillard M, Russell IC, Stakėnas S, Šumer S, Vila-Gispert A, Wiesner C. 2005. To be, or not to be, a non-native freshwater fish? J Appl Ichthyol. 21(4):242–262. doi: 10.1111/j.1439-0426.2005.00690.x

Copp GH, Britton JR, Cucherousset J, García-Berthou E, Kirk R, Peeler EJ, Stakėnas S. 2009. Voracious invader or benign feline? A review of the environmental biology of European catfish *Silurus glanis* in its native and introduced range. Fish Fish. 10(3):252–282.

doi: 10.1111/j.1467-2979.2008.00321.x

- Copp GH, Fox MG, Przybylski M, Godinho FN, Vila-Gispert A. 2004. Life-time growth patterns of pumpkinseed *Lepomis gibbosus* introduced to Europe, relative to native North American populations. Folia Zool. 53(3):237–254.
- Cowx IG. 1988. Distribution and variation in the growth of roach, *Rutilus rutilus* (L.), and dace, *Leuciscus leuciscus* (L.), in a river catchment in south-west England. J Fish Biol. 33(1):59–72. doi: 10.1111/j.1095-8649.1988.tb05448.x
- Cowx IG. 1989. Interaction between the roach, *Rutilus rutilus*, and dace, *Leuciscus leuciscus*, populations in a river catchment in south-west England. J Fish Biol. 35(sA):279–284. doi: 10.1111/j.1095-8649.1989.tb03071.x
- Cragg-Hine D, Jones JW. 1969. The growth of dace Leuciscus leuciscus (L.), roach *Rutilus rutilus* (L.) and chub *Squalius cephalus* (L.) in Willow Brook, Northamptonshire. J Fish Biol. 1(1):59–82. doi: 10.1111/j.1095-8649.1969.tb03845.x
- Cryer M, Peirson G, Townsend CR. 1986. Reciprocal interactions between roach, *Rutilus rutilus*, and zooplankton in a small lake: prey dynamics and fish growth and recruitment. Limnology and Oceanography. 31(5):1022–1038. doi: 10.4319/lo.1986.31.5.1022
- Emiroğlu Ö, Tarkan AS, Top N, Başkurt S, Sülün Ş. 2012. Growth and life history traits of a highly exploited population of non-native gibel carp, *Carassius gibelio* from a large eutrophic lake (Lake Uluabat, NW Turkey): is reproduction the key factor for establishment success? Turk J Fish Aquat Sci. 12(4):925–936.

doi: 10.4194/1303-2712-v12_4_20

- Epler P, Popek W, Luszczek-Trojnar E, Drag-Kozak E, Szczerbik P, Socha M. 2005. Age and growth rate of the roach (*Rutilus rutilus* L.) from the Solina and the Tresna (Zywieckie Lake) dam reservoires [sic]. Acta Sci Polon Pisc. 4(1–2):59–70.
- Ergüden S(A), Ergüden D, Göksu MZL. 2008. Göl'ündeki Seyhan Barai (Adana) kızılgöz (Rutilus 1758)'ün büyüme rutilus L., özellikleri. J FisheriesSciences.com. 2(1):77-87. [In Turkish with an abstract in English] doi: 10.3153/jfscom.2008008
- Estlander S, Nurminen L, Olin M, Vinni M, Immonen S, Rask M, Ruuhijärvi J, Horppila J, Lehtonen H. 2010. Diet shifts and food selection of perch *Perca fluviatilis* and roach *Rutilus rutilus* in humic lakes of varying water colour. J Fish Biol. 77(1):241–256. doi: 10.1111/j.1095-8649.2010.02682.x

- Frank S. 1962. A contribution to the growth of roach, rudd sand white bream in some waters of Czechoslovakia and Poland. Věst Česk Spol Zool. 26(1):65–74.
- Frimodt C. 1995. Multilingual illustrated guide to the world's commercial coldwater fish. Oxford: Blackwell Science 264 p.
- Frisk MG, Miller TJ, Dulvy NK. 2005. Life histories and vulnerability to exploitation of elasmobranchs: inferences from elasticity, perturbation and phylogenetic analyses. J NW Atl Fish Sci. 37:27–45. doi: 10.2960/J.v35.m514
- Froese R, Pauly D. (Eds). 2015. FishBase. World Wide Web electronic publication (version 04/2015); [accessed 2015 Jun 23]. Available at www.fishbase.org
- García-Berthou E. 1999. Spatial heterogeneity in roach (*Rutilus rutilus*) diet among contrasting basins whitin a lake. Arch Hydrobiol. 146(2):239–256.
- Gee AS. 1978. The distribution and growth of coarse fish in gravel-pit lakes in south-east England. Freshwat Biol. 8(4):385–394. doi: 10.1111/j.1365-2427.1978.tb01459.x
- Goldspink CR. 1978. Comparative observations on the growth rate and year class strength of roach *Rutilus rutilus* L. in two Cheshire lakes, England. J Fish Biol. 12(5):421–433.

doi: 10.1111/j.1095-8649.1978.tb04185.x

Goldspink CR. 1979. The population density, growth rate and production of roach *Rutilus rutilus* (L.) in Tjeukemeer, The Netherlands. J Fish Biol. 15(4):473–498.

doi: 10.1111/j.1095-8649.1979.tb03632.x

Graham CT, Harrod C. 2009. Implications of climate change for the fishes of the British Isles. J Fish Biol. 74(6):1143–1205.

- Griffiths D. 1997. The status of the Irish freshwater fish fauna: a review. J Appl Ichthyol. 13(1):9–13. doi: 10.1111/j.1439-0426.1997.tb00091.x
- Guthruf J. 2002. Die biologie des Rotauges im Luganersee (Kanton TI). BUWAL Mitteilungen zur Fischerei 74.
- Hanel L. 1991. Růst čtyř druhů kaprovitých ryb v řece Berounce [Growth of four cyprinid fishes in the River Berounka, Central Bohemia]. Živočišná Výroba. 36(1):929–937. [In Czech with an abstract in English]
- Harrod C, Griffiths D, McCarthy TK, Rosell R. 2001. The Irish pollan, *Coregonus autumnalis*: options for its conservation. J Fish Biol. 59(sA):339–355. doi: 10.1111/j.1095-8649.2001.tb01395.x
- Hart P. 1971. The roach (*Rutilus rutilus* L.) in the River Nene, Northants and its relationship to four other fish species. In 5th British Conference Proceedings, University of Liverpool, UK, pp 138–145.
- Hartley PHT. 1947. The coarse fishes of Britain. Freshwater Biological Association, Scientific Publication No. 12, Wray Castle, Ambleside, Westmorland.
- Hellawell JM. 1972. The growth, reproduction and food of the roach *Rutilus rutilus* (L.) of River Lugg,

Hertfordshire. J Fish Biol. 4(4):469–486. doi: 10.1111/j.1095-8649.1972.tb05696.x

Hickley P, Dexter FK. 1979. A comparative index of quantifying growth in length of fish. Fish Manage. 10(4):147–151.

doi: 10.1111/j.1365-2109.1979.tb00270.x

- Hofstede AE. 1974. Studies on growth, ageing and backcalculation of roach *Rutilus rutilus* (L.), and dace *Leuciscus leuciscus* (L.). In: Bagenal TB, The Ageing of Fish. Farnham, Unwin Brothers, pp. 137–147.
- Holčík J. 1967a. Life history of the roach-*Rutilus rutilus* (Linnaeus, 1758) in the Klíčava valley reservoir. Věst Česk Spol Zool. 31(2):213–229.
- Holčík J. 1967b. Age, growth and life history of the roach-*Rutilus rutilus* carpathorossicus Vladikov, 1930, in the Orava valley reservoir. Zool Listy. 16(1):87–97.
- Hornatkiewicz-Żbik ZA. 2003. Fecundity of roach *Rutilus rutilus* (L.) from the coastal lakes Gardno and Łebsko. Acta Sci Pol Pisc. 2(1):71–86.
- Horppila J. 1994. The diet and growth of roach (Rutilus rutilus) in Lake Vesijärvi and possible changes course of in the biomanipulation. Hydrobiologia. 294(1):35-41. doi: 10.1007/BF00017623
- Horppila J. 2000. The effect of length frequency ranges on the back-calculated lengths of roach, *Rutilus rutilus* (L.). Fish Res. 45(1):21–29. doi: 10.1016/S0165-7836(99)00099-5
- Jamet JL, Desmolles F. 1994. Growth, reproduction and condition of roach (*Rutilus rutilus* (L.)), perch (*Perca fluviatilis*, L.) and ruffe (*Gymnocephalus cernuus* (L.)) in eutrophic Lake Aydat (France). Int Rev ges Hydrobiol Hydrogr. 79(2):305–322.
- Kännö S. 1969. Growth and age distribution of some fish species in the river Panimionjoki, southwestern Finland. Ann. Zool. Fenn 6:87–93.
- Kas'yanov AN, Izyumov YG, Kas'yanova NV. 1995. Growth of roach, *Rutilus rutilus*, in Russia and adjacent countries. J Ichthyol. 35(9):256–273.
- Kas'yanov AN, Izyumov YG. 1995. Growth and morphology of roach, *Rutilus rutilus*, from Lake Pleshcheveyo after introduction of Dreissena polymorpha. J Ichthyol. 35:13–15.
- Kempe O. 1962. The growth of the roach (*Leuciscus rutilus* L.) in some Swedish lakes. Rep Inst Freshwat. Res Drott. 44:42–104.
- Ketmaier V, Bianco PG, Durand JD. 2008. Molecular systematics, phylogeny and biogeography of roaches (*Rutilus*, Teleostei, Cyprinidae). Mol Phylogen Evol. 49(1):362–367.

doi: 10.1016/j.ympev.2008.07.012

- Kozlovskiy SV. 1992. Observations of the spawning behavior of roach and bream in Saratovskoye reservoir. J Ichthyol. 32(3):134–136.
- Lappalainen A, Rask M, Koponen H, Vesala S. 2001. Relative abundance, diet and growth of perch (*Perca fluviatilis*) and roach (*Rutilus rutilus*) at Tvaerminne, northern Baltic Sea, in 1975 and 1997: responses to eutrophication? Boreal Env Res. 6(2):107–118.
- Lappalainen A, Westerbom M, Heikinheimo O. 2005. Roach (*Rutilus rutilus*) as an important predator on

doi: 10.1111/j.1095-8649.2009.02180.x

blue mussel (*Mytilus edulis*) populations in a brackish water environment, the northern Baltic Sea. Mar Biol. 147(2):323–330.

doi: 10.1007/s00227-005-1598-5

Lappalainen J, Tarkan AS, Harrod C. 2008. A metaanalysis of latitudinal variations in life history traits of roach *Rutilus rutilus* over its geographical range: linear or non-linear relationships? Freshwat Biol. 53(8):1491–1501.

doi: 10.1111/j.1365-2427.2008.01977.x

Larmuseau MHD, Freyhof J, Volckaert FAM, Van Houdt JKJ. 2009. Matrilinear phylogeography and demographical patterns of *Rutilus rutilus*: implications for taxonomy and conservation. J Fish Biol. 75(2):332–353.

doi: 10.1111/j.1095-8649.2009.02322.x

- Li H, Shen J, Ma X, Liu Y, Zhao Y, Liu Q, Hao Z. 2009. Growth characteristics of coach *Rutilus rutilus* (L .) in Ulungur Lake in Xinjiang Uigur Autonomous Region. J Huazhong Agric Univ. 28(2):202–206. [In Chinese with an abstract in English.]
- Linfield RSJ. 1979. Changes in the rate of growth in a stunted roach *Rutilus rutilus* population. J Fish Biol. 15(3):275–298.

doi: 10.1111/j.1095-8649.1979.tb03608.x

Mann RHK. 1973. Observations on the age, growth, reproduction and food of the roach, *Rutilus rutilus* (L.) in two rivers in southern England. J Fish Biol. 5(6):707–736.

doi: 10.1111/j.1095-8649.1973.tb04506.x

- Mitrofanova LN. 1976. Plodovitost' plotvy Pskovsko-Cudskogo ozera. Trudy Pskovskogo otdelenija GosNIORH. 2:94–100. [in Russian]
- Müller R, Meng HJ. 1986. Factors governing the growth rate of roach *Rutilus rutilus* (L.) in prealpine Lake Sarnen. Schweiz. Z. Hydrol. 48(2):135–144.
- Naddafi R, Abdoli A, Hassanzadeh Kiabi B, Mojazi Amiri B, Karami M. 2005. Age, growth and reproduction of the Caspian roach (*Rutilus rutilus caspicus*) in the Anzali and Gomishan wetlands, North Iran. J Appl Ichthyol. 21(6):492–497.

doi: 10.1111/j.1439-0426.2005.00669.x

- Ogle DH. 2014. FSA: Fisheries Stock Analysis. R package version 0.4.6; [accessed 2015 June 23]. Available at https://fishr.wordpress.com/packages/
- Okgerman H, Oral M, Yigit S. 2009. Biological Aspects of *Rutilus rutilus* (roach) in Sapanca Lake (Turkey). J Anim Vet Adv. 8(3):441–446. doi: javaa.2009.441.446
- Papageorgiou NK. 1979. The length weight relationship, age, growth and reproduction of the roach *Rutilus rutilus* (L.) in Lake Volvi. J Fish Biol. 14(6):529–538. doi: 10.1111/j.1095-8649.1979.tb03552.x
- Pęczalska A. 1968. Development and reproduction of roach (*Rutilus rutilus* L.) in the Szczecin Firth. Pol Arch Hydrobiol. 15(2):103–120.
- Ponton D, Gerdaux D. 1987. La population de gardons (Rutilus rutilus (L.)) du lac Léman en 1983-85.

Structure en age, detérminisme du recrutement, analyse de la croissance. Bull Fr Pêche Piscic. 305:45–53.

Przybylski M. 1996. Variation in fish growth characteristics along a river course. Hydrobiologia. 325(1):39–46.

doi: 10.1007/BF00023666

- Putkis O, Batsianiou I. 2005. Age and growth of roach, *Rutilus rutilus* in Lake Erken: influence of density. Uppsala University, Department of Limnology, unpublished manuscript.
- R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; [accessed 2015 June 23]. Available at http://www.R-project.org/
- Ricker WE. 1975. Computation and interpretation of biological statistics of fish population. Bulletin of the Fisheries Research Board of Canada 191.
- Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. doi: 10.1186/1471-2105-12-77
- Sedaghat S, Hoseini SA. 2012. Age and growth of Caspian roach, *Rutilus rutilus caspicus* (Jakowlew, 1870) in Southern Caspian Sea, Iran. World J Fish Mar Sci. 4(5):533–535.

doi: 10.5829/idosi.wjfms.2012.04.05.64149

- Skóra S. 1972. The roach (*Rutilus rutilus* L.) from the dam reservoir in Przeczyce. Acta Hydrobiol. 14(4):399–418.
- Specziár A, Tölg L, Bíró P. 1997. Feeding strategy and growth of cyprinids in the littoral zone of Lake Balaton. J Fish Biol. 51(6):1109–1124. doi: 10.1111/j.1095-8649.1997.tb01130.x
- Spivak EG, Pinus GN, Sentishcheva SV. 1979. The age composition of the spawning population and the characteristics of the spawners size-age structure and fecundity of the roach, *Rutilus rutilus* spawning in Kakhovka reservoir. J Ichthyol. 19:75–80.
- Tarkan AS, Gaygusuz Ö, Godard MJ, Copp GH. 2011. Long-term growth patterns in a pond-dwelling population of crucian carp, *Carassius carassius*: environmental and densityrelated factors. Fish Manage Ecol. 18(5):375–383. doi: 10.1111/j.1365-2400.2011.00791.x
- Tarkan AS. 2006. Reproductive ecology of two cyprinid fish in an oligotrophic lake near the southern limits of their distribution range. Ecol Freshwat Fish. 15(2):131–138.

doi: 10.1111/j.1600-0633.2006.00133.x

- Treer T, Habeković D, Aničić I, Safner R, Piria M. 2000. Growth of five spirlin (*Alburnoides bipunctatus*) populations from the Croatian rivers. Agric Consp Scient. 65(3):175–180.
- Treer T, Habekovič D, Aničič, Safner R, Kolak A. 1997. Standard growth curve for chub (*Leuciscus cephalus* L. 1758) in Croatia. Ribarsvo. 55(2):47–52.

- Treer T, Habekovič D, Aničič, Safner R, Kolak A. 1998. Growth of pike (*Esox lucius* L.) in Croatian Reservoir Kruščica. Ribarsvo. 55(3):47–52.
- Tsoumani M, Georgiadis A, Giantsis IA, Leonardos I, Apostolidis AP. 2014. Phylogenetic relationships among Southern Balkan Rutilus species inferred from cytochrome b sequence analysis: Micro-geographic resolution and taxonomic implications. Biochem Syst Ecol. 54:172–178. doi: 10.1016/j.bse.2014.02.006
- Vilizzi L, Copp GH, Britton JR. 2013. Age and growth of European barbel *Barbus barbus* (Cyprinidae) in the small, mesotrophic River Lee and relative to other populations in England. Knowl Manage Aquat Ecosys. 409:09. doi: 10.1051/kmae/2013054
- Vilizzi L, Tarkan AS, Copp GH. 2015a. Experimental evidence from causal criteria analysis for the effects of common carp *Cyprinus carpio* on freshwater ecosystems: a global perspective. Rev Fish Sci Aquacult. 23(3):253–290. doi: 10.1080/23308249.2015.1051214
- Vilizzi L, Ekmekçi FG, Tarkan AS, Jackson ZJ. 2015b. Growth of common carp *Cyprinus carpio* in Anatolia (Turkey), and relative to native and invasive areas worldwide. Ecol Freshwat Fish. 24(2):165–180. doi: 10.1111/eff.12141
- Vilizzi L, Tarkan AS. 2015. Experimental evidence for the effects of common carp (*Cyprinus carpio* L., 1758) on freshwater ecosystems: a narrative review with management directions for Turkish inland waters. LimnoFish. 1(3):123–149. doi: 10.17216/LimnoFish-5000130907
- Vilizzi L. 2011. Brief, protracted or flexible? Quantitative versus qualitative classification of spawning for fish in the Murray-Darling Basin. Trans Roy Soc SA. 135(1):1–11.

doi: 10.1080/03721426.2011.10887146

Vilizzi L. 2012. Abundance trends in floodplain fish spawning: the role of annual flow characteristics in the absence of overbank flooding. Fund Appl Limn. 181(3):215–227.

doi: 10.1127/1863-9135/2012/0394

Vinni M, Horppila J, Olin M, Ruuhijärvi J, Nyberg K. 2000. The food, growth and abundance of five coexisting cyprinids in lake basins of different morphometry and water quality. Aquat Ecol. 34(4):421–431. doi: 10.1023/A:1011404721775

- Vøllestad LA, L'Abée-Lund JH. 1987. Reproductive biology of stream spawning roach, *Rutilus rutilus*. Env Biol Fish. 18(3):219–227. doi: 10.1007/BF00000361
- Vøllestad LA, L'Abée-Lund JH. 1990. Geographic variation in life-history strategy of female roach, *Rutilus rutilus* (L.). J Fish Biol. 37(6):853–864.

doi: 10.1111/j.1095-8649.1990.tb03589.x

Volta P, Jepsen N. 2008. The recent invasion of *Rutilus rutilus* (L.) (Pisces: Cyprinidae) in a large South-Alpine lake: Lago Maggiore. J Limnol. 67(2):163–170.

doi: 10.4081/jlimnol.2008.163

- Wenlin L, Wenkang C, Xishun F, Yuying P, Xiaochun M, Meisen H, Jing S. 1992. Age and growth of *Rutilus rutilus lacustris* (Pallas) in Sai Li Mu Lake. J Shihezi Univ (Nat Sci). 4(13):57–66.
- White RWG, Williams WP. 1978. Studies of the ecology of fish populations in the Rye Meads sewage effluent lagoons. J Fish Biol. 13(4):379–400. doi: 10.1111/j.1095-8649.1978.tb03446.x
- Więsky K., Załachowski W. 2000. Growth of roach *Rutilus rutilus* (L.) in the River Odra estuary. Acta Ichthyol Pisc. 30(1):3–17.
- Williams WP. 1967. The growth and mortality of four species of fish in the River Thames at Reading. J Anim Ecol. 36(3):695–720.
- Wilson RS. 1971. The decline of a roach *Rutilus rutilus* (L.) population in Chew Valley Lake. J Fish Biol. 3(2):129–137. doi: 10.1111/j.1095-8649.1971.tb03655.x
- Załachowsky W, Krzykawska I. 1995. Growth rate of roach in Lake Dabie. Acta Ichthyol Pisc. 25(1):1–17.
- Zaugg B. 1987. Quelques aspects de dynamique des populations, de biologie générale et de biométrie du gardon (*Rutilus rutilus* L.) dans 4 lacs du plateau suisse. PhD Thesis, Université de Neuchâtel, Switzerland.
- Zivkov M, Raikova-Petrova G. 2001. Comparative analysis of age compositon, growth rate and conditiond of roach, *Rutilus rutilus* (L.), in three Bulgarian Reservoirs. Acta Zool Bulg. 53(1):47–60.
- Živkov MT, Trichkova TA, Raikova-Petrova GN. 1999. Biological reasons for the unsuitability of growth parameters and indices for comparing fish growth. Env Biol Fish. 54(1):67–76. doi: 10.1023/A:1007425005491

Appendix Table S1. Road	ch Rutilus rutilus populations for whic	h mean LAA data (fork length:	FL, mm) were reviewed for	Growth Index (GI) computations.
11	1 1		, ,	

	T (T	CI	7 DD	OT										Age	e									
Population	Lat	Long	GI	Z-RP	GI	1	2	3	2	4 5	6	5 7	8	3 9	9 1	10	11	12	13	14	15	16 1	7 1	<u> </u>	Source
Alderfen Broad Lake ¹	52°72'N	01°48'E	111.5	_	S	87	113	13	8 15	57 16	8 20	00												C	Cryer et al. (1986)
Anzali wetland ^{1,2}	37°28'N	49°27'E	96.4	_	S	64	105	12	3 14	40 15	6 17	5 19	1 2	19										N	Vaddafi et al. (2005)
Batak Reservoir (1966–1976)	41°58'N	24°11'E	92.5	L	S	73	115	12	8 13	30 14	3 16	52 16	6 17	77 20	03 2	215 2	234	236	250					Z	Zivkov and Raikova-Petrova (2001)
Batak Reservoir (1977–1992)	41°58'N	24°11'E	144.0	А	А	84	147	18	0 21	19 25:	5 27	'9												Z	Zivkov and Raikova-Petrova (2001)
Bay of Greifswald	54°13'N	13°32'E	115.0	_	А		96	13	6 17	70 20	3 22	27 25	0 27	70 29	94									fi	<i>ide</i> Więsky and Załachowsky (2000)
Bay of Greifswald (Dänische Wiek)	54°06'N	13°28'E	111.6	_	S		98	13	8 17	70 19	7 21	9 24	2 25	56 26	63									fi	<i>ide</i> Więsky and Załachowsky (2000)
Bay of Pomerania (a)	54°06'N	14°08'E	113.7	_	S	67	103	13	6 17	72 19	9 22	26 25	0 26	53 27	78									fi	<i>ide</i> Więsky and Załachowsky (2000)
Bay of Pomerania (b)	54°06'N	14°08'E	102.3	_	S	65	91	11	9 14	49 17	0 19	6 22	2 24	47 26	64									v	Więsky and Załachowsky (2000)
Belaya River (middle course)	45°03'N	39°25'E	85.3	_	S				12	27 142	2 16	52 19	2											K	Kas'yanov et al. (1995)
Belaya River (mouth)	45°03'N	39°25'E	105.8	_	S				17	72 18	3		22	20										K	Kas'yanov et al. (1995)
Berounka River	49°59'N	14°24'E	104.5	_	S	48	89	13	0 16	65 194	4 21	9 24	0 25	57										F	Hanel (1991)
Bolshoy Irgiz River	51°59'N	47°31'E	102.2	_	S			10	6 14	43 18	7 21	0	26	50										K	Kas'yanov et al. (1995)
Bridgewater Canal	51°06'N	02°99'W	95.7	_	S			11	7 13	37 15	7 18	88 19	6 24	14										F	Hartley (1947)
Canal de la Thielle	47°02'N	07°02'E	74.3	_	S	38	62	76	5 10	03 14	3 16	51 17	3 18	80 20	01									Z	Zaugg (1987)
Caspian Sea ²	50°00'N	46°00'E	53.6	_	S			74	1 7	9 88	3													fi	<i>ide</i> Kas'yanov et al. (1995)
Cheboksary Reservoir	56°18'N	46°42'E	86.1	_	S			10	9 12	28 14	6 17	4												K	Kas'yanov et al. (1995)
Chernobyl Nuclear Power Station cooling pond	51°16'N	30°13'E	153.8	_	А				23	30 26	6 29	5 31	8 34	43 36	69									K	Kas'yanov et al. (1995)
Crapina-Jijila pools (Danube Delta)	45°08'N	29°50'E	129.1	А	А	71	135	17	0															fi	ide Zivkov and Raikova-Petrova (2001)
Danube River (Lom)	43°49'N	23°14'E	137.3	А	А	92	134	16	7 20	00														fi	ide Zivkov and Raikova-Petrova (2001)
Danube River (Rusovce)	48°03'N	17°08'E	88.8	_	S	56	85	11	2 13	34 15	3 16	58 18	7 20	02										fi	<i>ide</i> Chitravadivelu (1974)
Danube River (Tutrakan)	44°30'N	26°37'E	151.1	А	А	100) 142	18	5															fi	ide Zivkov and Raikova-Petrova (2001)
Danube River (Vlčie hrdlo)	48°08'N	17°06'E	80.6	_	S	53	82	10	3 12	21 14	1 15	2 15	4											fi	<i>ide</i> Chitravadivelu (1974)
Danube River (Vojka arm complex)	47°58'N	17°22'E	81.0	L	S	48	74	97	7 12	20 13	9 15	8 17	5 20	07										C	Chitravadivelu (1974)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

	-	÷	~ ~		~										А	ge									
Population	Lat	Long	GI	Z-RP	GT	1	2	2 3	;	4	5	6	7	8	9	10	11	12	13	14	4 1	5 1	6 1	7 18	_ Source
Darent (gravel pit lake)	51°42'N	00°26'W	109.1	_	S	53	8	8 13	5 1	75 2	23 2	248													Gee (1978)
Dneprovsk Reservoir	47°34'N	34°58'E	120.7	L	F		13	5 14	4 1	81 1	94														fide Zivkov and Raikova-Petrova (2001)
Dnieper River (a)	_	_	97.2	L	S	41	8.	3 11	4 1	44 1	70 1	96 2	20 2	240 2	264	265									fide Zivkov and Raikova-Petrova (2001)
Dnieper River (b)	_	-	100.4	L	S	48	8 89	9 12	23 1	51 1	77 2	203 2	237 2	259											fide Zivkov and Raikova-Petrova (2001)
Dnieper River (Dnipropetrovsk)	48°27'N	34°59'E	117.8	_	А				1	90 2	05 2	222 2	236												fide Kas'yanov et al. (1995)
Dnieper River (upper)	-	_	86.9	_	S			10	8 1	20 1	47 1	62 1	95 2	211											Kas'yanov et al. (1995)
Dnistrovskyi Reservoir	46°11'N	30°20'E	119.3	_	А					2	11 2	226													Kas'yanov et al. (1995)
Don River	-	_	131.2	А	А	76	5 12	9 17	2 2	04															fide Zivkov and Raikova-Petrova (2001)
Don River (upper)	_	_	89.3	_	S				1	34 1	44 1	173 1	84		227										Kas'yanov et al. (1995)
Dospat Reservoir	41°41'N	24°05'E	133.5	А	F	76	5 13	6 18	33 2	12 2	34 2	238 2	271												Zivkov and Raikova-Petrova (2001)
Elbe region (1951–1956)	50°10'N	14°46'E	93.3	_	S	48	8 9	1 12	20 1	51 1	73 1	184													Frank (1962)
Elbe region (Malá and Velká)	50°10'N	14°46'E	126.6	_	А	53	11	4 18	34 2	18 2	38 2	257 2	260												Frank (1962)
Elbe region (Poltruba – 1955)	50°10'N	14°46'E	81.2	L	S	50) 84	4 10	01 1	21 1	34 1	53 1	68 1	192											fide Zivkov and Raikova-Petrova (2001)
Elbe region (Poltruba – 1956)	50°10'N	14°46'E	90.4	_	S	50) 83	3 11	3 1	39 1	84														Frank (1962)
Ellesmere	52°90'N	02°89'W	124.9	_	А	45	5 12	20 16	50 2	20 2	40 2	260 2	270 2	280	300										fide Goldspink (1978)
Emba River	46°37'N	53°19'E	100.6	_	S			12	.4 1	54 1	79														Kas'yanov et al. (1995)
Exeter Canal	50°66'N	03°46'W	102.1	_	S	56	5 92	2 12	20 1	45 1	86 2	206 2	222 2	241	252	266									<i>fide</i> Cowx (1988)
Filipoin channel (Danube Delta)	45°08'N	29°50'E	102.7	А	S	50) 10	0 13	91	79															fide Zivkov and Raikova-Petrova (2001)
Fosterudbekken stream ^{1,2}	59°41'N	10°44'E	87.3	_	S				1	27 1	49 1	65 1	75 1	187	198	213	215	23	7 23	8 23	8 26	6			Vøllestad and L'Abée-Lund (1990)
G. Dimitrov Reservoir (1964–1968)	41°40'N	26°34'E	158.5	Н	F	91	15	2 19	92	65															fide Zivkov and Raikova-Petrova (2001)
G. Dimitrov Reservoir (1973–1977)	41°40'N	26°34'E	158.5	Н	А	79) 15	6 21	0 2	57 2	96														fide Zivkov and Raikova-Petrova (2001)
Goczałkowickie Reservoir	49°55'N	18°52'E	80.1	_	S		64	49	6 1	20 1	44 1	68 1	76 1	184	188	201									fide Epler et al. (2005)
Gomishan wetland	37°04'N	54°04'E	110.7	_	S	77	11	6 13	91	61 1	82 1	94													Naddafi et al. (2005)
Gorjkovsk Reservoir	54°59'N	73°22'E	87.1	L	S		62	29	91	34 1	75 1	190 1	95												fide Zivkov and Raikova-Petrova (2001)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

	• .		at	7.55											Age										
Population	Lat	Long	GI	Z-RP	GT	1	2	3	4	5	6	7	8	9	10	0 1	11	12	13	14	15	16	17	18	Source
Grantham Canal	52°86'N 0)0°98'W	83.0	-	S	66	61	104	4 124	4 142	157	178													Hartley (1947)
Grey Mist Mere (1969)	50°89'N 0)1°38'W	60.8	_	S		93	101	1 100	5 109	114	113	117	7 11	8 12	21 1	19	122							fide Linfield (1979)
Grey Mist Mere (1971)	50°89'N 0)1°38'W	75.7	_	S		89	110	0 152	2	155	157	147	15	7 15	4 1	67	191	161						Linfield (1979)
Grimnitzsee	52°58'N 1	13°47'E	80.6	_	S	66	79	102	2 114	4 124	145	155													fide Hartley (1947)
Groote Brekken Lake	52°88'N 0	05°70'E	66.5	А	S	74	121	159	9 200) 222	264	285	305	5 30	9 32	5 3	28								fide Zivkov and Raikova-Petrova (2001)
Großer Plöner See	54°70'N 1	10°24'E	130.6	_	А		58	92	102	2 112	118	132	159	9 16	8										Goldspink (1979)
Hamr pond ¹	50°42'N 1	14°50'E	165.3	Н	А	75	161	232	2 280	0 301															fide Zivkov and Raikova-Petrova (2001)
Heegermeer ¹	52°57'N 0	05°35'E	70.6	_	S		79	95	110) 118	126	129													Goldspink (1979)
Humbie Reservoir ¹	55°85'N 02)2°85'W	71.6	_	S	26	60	93	120	0 140	152	164	169	9 17	3										fide Goldspink (1978)
IJsselmeer	52°49'N 0	05°15'E	83.8	_	S				142	2 156	166	178	173	3 18	5 18	31									Goldspink (1979)
Irtysh River	54°59'N 7	73°22'E	96.1	_	S							196	207	23	5										Kas'yanov et al. (1995)
Ivankovskoye Reservoir	56°44'N 3	37°10'E	109.9	L	S		107	130	0 15	1 172	197	226	251	28	7 32	20									Baranova (1984)
Kakhovka Reservoir (a)	47°28'N 3	34°10'E	180.1	_	F				250	304	343	385	416	5 42	9 45	5									Spivak et al. (1979)
Kakhovka Reservoir (b)	47°28'N 3	34°10'E	162.8	Н	А			180	0 248	8 295	341														fide Zivkov and Raikova-Petrova (2001)
Kama Reservoir	58°59'N 5	56°10'E	90.1	_	S			128	8 138	8 151	170	182	192	2											fide Kas'yanov et al. (1995)
Kanevsk Reservoir	46°05'N 3	38°57'E	125.1	L	А	69	107	146	5 184	4 217	249	272	295	5 30	9 32	21 3	32	334							fide Zivkov and Raikova-Petrova (2001)
Khutorskoye (Solovetsky Islands)	65°05'N 3	35°53'E	101.9	_	S				15	1 173	206														fide Kas'yanov et al. (1995)
Kiev Reservoir	50°49'N 3	30°27'E	115.1	_	А			106	5		238	260	285	5											Kas'yanov et al. (1995)
Klíčava Reservoir (a)	50°30'N 1	13°56'E	110.9	_	S	44	66	144	4 189	9 220	243	258	274	1 28	3										Holčík (1967a)
Klíčava Reservoir (b)	50°30'N 1	13°56'E	123.8	L	А	66	139	181	1 200) 221	238	249	259	26	7 27	4									fide Zivkov and Raikova-Petrova (2001)
Kozłowa Góra Reservoir	50°24'N 1	18°56'E	71.3	_	S				96	124	136	148	160) 17	2 18	30 1	88								fide Epler et al. (2005)
Kremenchuk Reservoir (a)	49°16'N 3	32°38'E	121.1	А	А			158	8 18	5 206	230	242	267	7 29	6										fide Zivkov and Raikova-Petrova (2001)
Kremenchuk Reservoir (b)	49°16'N 3	32°38'E	130.4	А	А		138	161	1 202	2 214	238	263	288	3 3 0	2 34	0									fide Zivkov and Raikova-Petrova (2001)
Kuban River ³	_	_	140.4	А	А	85	139	179	9 214	1															fide Zivkov and Raikova-Petrova (2001)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

Population Lat Long GI Z-RP GT Age													<u></u>											
Population	Lat	Long	GI	Z-RP	GI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	- Source
Kurshskiy Zaliv Lagoon	55°00'N	21°00'E	107.3	_	S				1	90	204 2	222	238											Kas'yanov et al. (1995)
Kuybyshev Reservoir (a)	53°46'N	48°55'E	95.0	L	S	47	78	105	131 1	57	181 2	206	232	252	271	283								fide Zivkov and Raikova-Petrova (2001)
Kuybyshev Reservoir (b)	53°46'N	48°55'E	82.6	L	S		47	78	105 1	31	157 1	181 2	206	232	252	271								fide Zivkov and Raikova-Petrova (2001)
Kuybyshev Reservoir (c)	53°46'N	48°55'E	107.6	_	S			106	134 1	49	180 2	229	273	297	305	332								fide Kas'yanov et al. (1995)
Lac de Pareloup (after refilling)	44°20'N	02°76'E	83.4	_	S	58	82	103	123 1	34														Angèlibert et al. (1999)
Lac de Pareloup (before draining)	44°20'N	02°76'E	56.2	_	S	33	51	70	89 1	07														Angèlibert et al. (1999)
Lac des Quatre-Cantons	47°00'N	08°24'E	121.6	_	А	95	134	175	184 2	201	2	245	257	262	257			261						Zaugg (1987)
Lac du Loclat	47°00'N	06°59'E	70.5	_	S			87	102 1	32														Zaugg (1987)
Lake Balaton	46°50'N	17°44'E	135.0	_	А	96	135	174	205 2	234	257 2	272	279	291										Specziár et al. (1997)
Lake Balkhash	46°10'N	74°20'E	146.8	_	А				2	274	287 2	294 :	309											fide Kas'yanov et al. (1995)
Lake Beloye (a)	60°10'N	37°38'E	86.3	L	S	50	74	105	135 1	53	179 1	198												fide Zivkov and Raikova-Petrova (2001)
Lake Beloye (b)	60°10'N	37°38'E	95.6	_	S			122	141		2	204												Kas'yanov et al. (1995)
Lake Biel (a)	47°50'N	07°10'E	101.3	_	S				164 1	76	192 2	201												Büsser and Schumi (1987)
Lake Biel (b)	47°50'N	07°10'E	120.3	_	А	95	119	164	186		225 2	248	253	256	268	265								Zaugg (1987)
Lake Biserovo	55°46'N	38°07'E	98.4	L	S	60	97	128	149 1	70	187 2	205												fide Zivkov and Raikova-Petrova (2001)
Lake Charkhal	51°32'N	46°00'E	119.4	_	А				2	205	232 2	245	263	285										Kas'yanov et al. (1995)
Lake Charzykowy	53°43'N	17°30'E	121.3	А	А	62	93	143	183 2	233	259 2	282	306											fide Zivkov and Raikova-Petrova (2001)
Lake Cherven ¹	43°16'N	24°06'E	114.0	А	А	53	98	136	167 1	96	222 2	252	279	301	324									fide Zivkov and Raikova-Petrova (2001)
Lake Dąbie (a)	53°27'N	14°39'E	101.8	_	S	59	91	121	149 1	73	197 2	223	250	262										fide Więsky and Załachowsky (2000)
Lake Dąbie (b)	53°27'N	14°39'E	72.1	_	S	39	61	81	99 1	15	132 1	147	164	175	187	199	209	217	219					Załachowsky and Krzykawska (1995)
Lake Dąbie (c)	53°27'N	14°39'E	97.5	_	S	58	89	121	151 1	73	188 2	204	221	241										Więsky and Załachowsky (2000)
Lake Dąbie (Kwiecińska 1984)	53°27'N	14°39'E	90.9	_	S	36	73	109	142 1	67	182 2	210	233	256										Więsky and Załachowsky (2000)
Lake d'Aydat	45°66'N	02°98'E	72.6	_	S	48	72	92	109 1	24	136 1	147												Jamet and Desmolles (1994)
Lake Dusya	54°30'N	23°70'E	117.6	_	А				147 2	206	233			314										Kas'yanov et al. (1995)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

		Ŧ	CT.	7.55									А	ge									<u></u>
Population	Lat	Long	GI	Z-RP	GT	1	2 3	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	Source
Lake Erken (location 1)	59°50'N	18°35'E	76.3	_	S	60	80 10	00 1	12 128	3 132	148	156	168										Putkis and Batsianiou (2005)
Lake Erken (location 2)	59°50'N	18°35'E	86.0	_	S	72	84 9	6 1	16 132	2													Putkis and Batsianiou (2005)
Lake Erken (location 3)	59°50'N	18°35'E	86.1	_	S	84	96 10	08 1	16 128	3 140	152	164											Putkis and Batsianiou (2005)
Lake Erken (location 4)	59°50'N	18°35'E	73.0	_	s	56	72 8	8 1	08 120) 136	148	152											Putkis and Batsianiou (2005)
Lake Erken (location 5)	59°50'N	18°35'E	78.0	_	S	64	84 9	2 1	08 128	3 136	148	168											Putkis and Batsianiou (2005)
Lake Erken (location 6)	59°50'N	18°35'E	91.8	_	s	88	108 11	12 1	24 132	2 140	148												Putkis and Batsianiou (2005)
Lake Gardno	54°39'N	17°06'E	163.8	_	А		162 19	96 2	235 275	5 323	369	374	381										Hornatkiewicz-Żbik (2003)
Lake Geneva ¹	46°26'N	06°33'E	106.4	_	s	66	104 13	37 1	66 192	2 195	221	229											Ponton and Gerdeaux (1987)
Lake Glaningen	60°12'N	15°04'E	111.5	_	s	51	99 14	40 1	64 206	5 229	248	264	273	282	292	2							Kempe (1962)
Lake Haarajärvi ¹	62°52'N	23°37'E	45.0	_	S	28	44 5	6	68 76	88	92	104											Estlander et al. (2010)
Lake Halmsjön	59°65'N	17°97'E	72.5	_	S	51	75		87 116	5 137	150	161	168	171	170	182	2 20'	7 229					Kempe (1962)
Lake Haukijärvi	61°52'N	21°41'E	53.2	_	S	40	56 6	8	76 84	92	108	116											Estlander et al. (2010)
Lake Hiidenvesi (deep basin)	60°22'N	24°11'E	60.6	_	s	36	60 8-	4 1	00 104	4 116	120	128	136										Vinni et al. (2000)
Lake Hiidenvesi (shallow basins)	60°22'N	24°11'E	60.7	_	s	44	64 8	4	96 100) 112	116	120	128										Vinni et al. (2000)
Lake Hjälmaren	59°15'N	15°45'E	87.4	_	s	58	79 10	07 1	30 150) 168	183	203	208										fide Hartley (1947)
Lake Hokajärvi	61°13'N	25°12'E	54.0	_	s	36	56 7	2	80 88	100	108	116											Estlander et al. (2010)
Lake Ilmen (a)	58°16'N	31°17'E	87.8	L	S		66 8	5 1	15 143	3 173	184	218	228	243	247	259	Ð						fide Zivkov and Raikova-Petrova (2001)
Lake Ilmen (b)	58°16'N	31°17'E	107.6	L	S	67	104 13	38 1	65 185	5 206													fide Zivkov and Raikova-Petrova (2001)
Lake Kamyshovoye	54°22'N	22°42'E	96.2	_	S				170) 180	194		223	245									Kas'yanov et al. (1995)
Lake Kloten	59°52'N	15°27'E	87.8	_	S	53	81 10	09 1	32 147	7 170	191	201	218										fide Hartley (1947)
Lake Kyvann	63°25'N	10°50'E	74.7	_	S				138	3	161	176	181	177	153	206	5	191					Vøllestad and L'Abée-Lund (1990)
Lake Łebsko	54°42'N	17°24'E	158.5	_	F		149 18	80 2	230 259	9 293	359	380	369	418		422	2						Hornatkiewicz-Żbik (2003)
Lake Lebyazh'ye	64°44'N	42°00'E	97.0	_	S			1	52 169	9 181	192	204	233	253									Kas'yanov et al. (1995)
Lake Libiszowskie	51°26'N	20°18'E	61.5	_	S	36	60 7	2	88 112	2 128	136												fide Epler et al. (2005)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

	¥ . ¥	CT.	7.55										A	Age										
Population	Lat Long	g Gl	Z-RP	GT	1	2	3	4	5	6	7	8	9	10) 11	1 1	2	13	14	15	16	17	18	- Source
Lake Lugano	45°59'N 08°58	E 143.	9 –	F	89	143	183	223	240															Guthruf (2002)
Lake Lukom	49°49'N 32°53	E 105.	5 L	s			146	154	173 2	205														fide Zivkov and Raikova-Petrova (2001)
Lake Majajärvi	62°04'N 22°53	'E 52.0) _	s	40	56	68	76	84	88	100	108												Estlander et al. (2010)
Lake Mälaren	59°30'N 17°12	'E 69.9		S	34	61	89	112	129	143	153	160	165	17	1 17	6 1	84 1	88						Kempe (1962)
Lake Miedwie	53°17'N 14°54	E 103.	0 –	S	69	97	119	147	183 2	201 2	229													fide Hartley (1947)
Lake Morotskoye	58°42'N 37°39	'E 57.3	-	s				84	91	106	113	121	143	160	6									Kas'yanov et al. (1995)
Lake Myadelka	55°08'N 27°10	E 138.	2 A	А		138	175	194	232 2	263 2	295	329												fide Zivkov and Raikova-Petrova (2001)
Lake Myatyalis	55°15'N 21°18	E 115.	9 –	А				177	194 2	222 2	237		286											Kas'yanov et al. (1995)
Lake Narach	54°51'N 26°44	E 134.	4 A	А		128	161	209	241 2	265														fide Zivkov and Raikova-Petrova (2001)
Lake Nero	57°90'N 39°26	'E 95.2		S			93	122	150	177 2	207	236	259	27	5									fide Kas'yanov et al. (1995)
Lake Neuchâtel	46°54'N 06°51	E 119.	7 —	А	89	134	168	185	212 2	232 2	237	249	265	273	3 27	7 2	79 2	287						Zaugg (1987)
Lake Norra Hörken	60°07'N 14°89	'E 65.0) _	s				112	116	124	128	136	156	14	7 16	4								Kempe (1962)
Lake of Sainte-Croix	43°45'N 06°11	E 94.5	i _	S	48	93	126	153	171	185	196													fide Angèlibert et al. (1999)
Lake Oltush	51°42'N 23°58	E 106.	0 L	S		116	142	153	166	198														fide Zivkov and Raikova-Petrova (2001)
Lake Øyeren	59°51'N 11°09	Έ 72. 6	. –	S	56	72	96	112	120	136	140	144	160	164	4 18	0 1	96 2	201	205	196	201	196		fide Naddafi et al. (2005)
Lake Paliastomi	42°70'N 41°43	'E 95.9) _	S				149	166	182														fide Kas'yanov et al. (1995)
Lake Peipus (a)	58°41'N 27°29	'E 94.3	L	s	28	76	118	145	166	182	194	210	225	234	4 25	3 2	71 3	805	316					fide Zivkov and Raikova-Petrova (2001)
Lake Peipus (b)	58°41'N 27°29	E 121.	5 –	А			173	185	195 2	220 2	238	267	276	270	631	9	3	64						Mitrofanova (1976)
Lake Pleshcheyevo (1930)	56°45'N 38°47	E 110.	8 –	s	59	99	138	175	203	228 2	249													fide Kas'yanov and Izyumov (1995)
Lake Pleshcheyevo (1960)	56°45'N 38°47	'E 97.7	_	s	60	92	120	147	173	191 2	206	226												fide Kas'yanov and Izyumov (1995)
Lake Pleshcheyevo (1979–1980)	56°45'N 38°47	E 81.8	-	s	55	78	101	122	138	156	173	183												Kas'yanov and Izyumov (1995)
Lake Pleshcheyevo (1980)	56°45'N 38°47	'E 81.2	-	s				115	144	157	168	190												fide Kas'yanov et al. (1995)
Lake Pleshcheyevo (1991a)	56°45'N 38°47	E 103.	5 –	s	78	106	130	151	170	189 2	205	219	232	25	7									Kas'yanov and Izyumov (1995)
Lake Pleshcheyevo (1991b)	56°45'N 38°47	'E 93.9		S			105	132	157	180	199	215	240	249	9									Kas'yanov et al. (1995)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

	x .			7.55											Age	e										~
Population	Lat	Long	GI	Z-RP	GT	1	2	3	4	5	6	7	8	9) 1	10	11	12	13	14	15	5 16	5 1	7 18	— S	Source
Lake Pskov	58°00'N	28°00'E	100.4	L	S	55	70	106	5 138	3 160	177	194	213	3 23	0 2	66 2	291	309	323	357	,				ſ	fide Zivkov and Raikova-Petrova (2001)
Lake Pyaozero	66°08'N	30°97'E	81.7	_	S				130) 141	149	173													}	Kas'yanov et al. (1995)
Lake Pyhäjärvi (Finnish zone)	63°35'N	25°57'E	83.6	_	S				136	5 148	164	172	188	8 19	2 1	96		217	209						1	Auvinen (1987)
Lake Pyhäjärvi (Soviet zone)	63°35'N	25°57'E	87.2	_	S					172	172	184	192	2 20	01 2	09 2	213	221	209						1	Auvinen (1987)
Lake Royk-Navolokskoye	63°10'N	32°90'E	90.1	_	S			109	9 139	152	170		217	7											ł	Kas'yanov et al. (1995)
Lake Sæbyvannet ¹	59°25'N	10°59'E	82.6	_	S				138	3 144	153	176	184	4 19	8 1	95 1	90								۲	Vøllestad and L'Abée-Lund (1990)
Lake Sapanca	40°43'N	30°15'E	95.7	_	S	56	88	131	149	160	173	193	218	8 24	9										(Okgerman et al. (2009)
Lake Sarnen	46°51'N	08°12'E	95.2	_	S	55	84	114	4 145	5 170	188	203	217	7 22	2 2	45 2	246	254							1	Müller and Meng (1986)
Lake Sayram	44°60'N	81°20'E	135.2	_	А	95	140) 178	3 189	222	235														١	Wenlin et al. (1992)
Lake Seliger (a)	57°11'N	33°04'E	74.1	_	S			92	105	5 130	144	158	172	2											Ĵ	fide Kas'yanov et al. (1995)
Lake Seliger (b)	57°11'N	33°04'E	93.1	L	S		76	121	143	161	179	200	214	4 22	3	2	242								1	Baranova (1984)
Lake Shivchey ¹	-	_	95.2	_	S					162	176	195	217	7 23	3										ł	Kas'yanov et al. (1995)
Lake Södra Hörken (fast)	60°04'N	15°03'E	97.9	_	S	46	90	128	3 155	5 190	209														1	Kempe (1962)
Lake Södra Hörken (immigrants)	60°04'N	15°03'E	83.1	_	S	34	55	74	91	104	161	213	226	6 25	3 2	76 2	289								1	Kempe (1962)
Lake Södra Hörken (slow)	60°04'N	15°03'E	57.5	_	S	31	50	83	98	105	109	119	122	2											1	Kempe (1962)
Lake Somova	45°10'N	28°45'E	120.4	_	А	70	129	9 131	202	2															Ĵ	fide Chitravadivelu (1974)
Lake Sövdeborgssjön	55°58'N	13°70'E	68.9	_	S	44	64	88	101	125															Ĵ	fide Angèlibert et al. (1999)
Lake Stor-Finnsjön (type A)	63°36'N	16°01'E	53.4	_	S	31	47	65	81	96	107	125													1	Kempe (1962)
Lake Stor-Finnsjön (type B)	63°36'N	16°01'E	79.4	_	S	35	67	98	124	144	160	176	189	9 20	4 2	11									1	Kempe (1962)
Lake Stor-Finnsjön (type C)	63°36'N	16°01'E	71.4	_	S	41	72	94	110) 124	133	152													1	Kempe (1962)
Lake Suoyarvi	62°11'N	32°23'E	90.1	_	S			109	9 138	153	170		217	7											1	Kas'yanov et al. (1995)
Lake Svitiaz	51°30'N	23°50'E	99.8	L	S	50	82	119	9 147	175	205	240	267	7											Ĵ	fide Zivkov and Raikova-Petrova (2001)
Lake Syamozero ¹	61°92'N	33°17'E	99.3	_	S				157	170	194	199	213	3 24	0										Ĵ	fide Kas'yanov et al. (1995)
Lake Vesijärvi ¹	61°05'N	25°30'E	74.0	_	S	48	76	100	0 120	128	140	148	152	2 15	6										}	Horppila (1994)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

	x .	T	CI	7	C.T.											Age	;									
Population	Lat	Long	GI	Z-RP	GI	1	2	3	4	4 5	5	6	7	8	9	1	0	11	12	13	14	15	16	17	18	- Source
Lake Vesijärvi (Enonselkä Basin)	61°05'N	25°30'E	69.5	-	S	51	79	98	10	08 11	191	24	128	132	2 140	0										Horppila (2000)
Lake Vesijärvi (Laitialanselkä Basin)	61°05'N	25°30'E	71.1	_	S	49	77	99	11	3 12	24 1	30	136	140) 14:	5										Horppila (2000)
Lake Volvi	40°40'N	23°28'E	73.7	L	S	61	91	99	11	1 12	21 1	28	138	145	5 15:	5 16	64 1	175	181							Papageorgiou (1979)
Lake Vyshtenetskoye	54°43'N	20°31'E	121.8	_	F				19	94 20)3 2	217 2	228	263	3 3 02	2 33	36									fide Kas'yanov et al. (1995)
Lake Węgorzewskie	54°18'N	21°45'E	56.3	_	S	36	56	68	8	0 9	6 1	12	120	128	3											fide Epler et al. (2005)
Lake Zhizhitskoye	56°14'N	31°15'E	88.6	_	S			97	14	42 16	67															Kas'yanov et al. (1995)
Leeds and Liverpool Canal	53°47'N	01°31'W	60.9	_	S		50	70	8	0 9	5 1	10	130	150) 170	0 18	80									fide Goldspink (1978)
Lena River (a)	_	_	76.7	L	S		46	92	10)4 13	38 1	50	173	184	20	7 21	19									fide Zivkov and Raikova-Petrova (2001)
Lena River (b)	_	_	95.5	_	S					16	571	83														fide Kas'yanov et al. (1995)
Lipno Reservoir	48°42'N	14°04'E	111.7	А	S	51	96	136	5 17	75 20)6 2	35 2	263	274	ł											fide Zivkov and Raikova-Petrova (2001)
Loch Lomond	56°05'N	04°34'W	90.0	_	S	32	66	104	14	43 17	76 1	99 2	217	228	3 240	0										fide Goldspink (1978)
Lower Don River	_	_	100.2	А	S	61	71	137	7 18	35																fide Zivkov and Raikova-Petrova (2001)
Madingley (upper pond)	52°22'N	00°04'E	119.8	_	А	90	101	142	2 18	30																Hartley (1947)
Maly Uzen River	51°22'N	48°19'E	101.5	_	S			119	9 13	37 16	54 2	204 2	223	235	5	27	75									Kas'yanov et al. (1995)
Müggelsee	52°26'N	13°39'E	83.2	_	S	61	84	104	4 12	22 13	371	47	168													fide Hartley (1947)
Mušov Reservoir	48°53'N	16°36'E	90.1	L	S	46	75	111	14	45 18	80 1	99														fide Zivkov and Raikova-Petrova (2001)
Neman River ²	_	_	107.1	А	S	39	79	118	3 15	53 18	32 2	211 2	234	251	27	1 29	94 3	328	363							fide Zivkov and Raikova-Petrova (2001)
Nizhnekamsk Reservoir	55°53'N	52°45'E	97.7	_	S			119) 14	49 17	72 1	85	198	218	3 223	3 25	57									Kas'yanov et al. (1995)
Norfolk Broads	52°43'N	01°38'E	89.1	-	S	69	91	118	3 12	27 13	35 1	52	172	198	3 210	6										Hartley (1947)
North Caspian Sea (a)	_	_	138.2	_	А				20	06 24	14 2	272 2	283													fide Kas'yanov et al. (1995)
North Caspian Sea (b)	_	_	120.9	_	А				18	84 20)4 2	29 2	253	279)											fide Kas'yanov et al. (1995)
Ob River	-	-	98.6	-	S						1	84 2	202	222	2 23'	7										Kas'yanov et al. (1995)
Odra River Mouth (Międzyodrze)	53°24'N	14°34'E	107.6	-	S	67	96	124	4 15	51 18	30 2	210 2	240	258	8 28	1										Więsky and Załachowsky (2000)
Old West River	52°21'N	00°01'E	90.3	_	S	66	91	118	3 12	24 14	42 1	65														Hartley (1947)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

	-	_	~~		~										А	ge										
Population	Lat	Long	Gl	Z-RP	GT	1	2	3	4	5	(6	7	8	9	10	11	12	13	14	4 1	5	6	7 1	8	Source
Orava Reservoir	50°30'N	13°56'E	84.8	L	S	48	67	83	97	114	4 12	21 1	45	167	179	207	230	0 249	9 26	8 28	0 2	85 2	913	00 30)4	Holčík (1967b)
Orlík Reservoir	49°36'N	14°10'E	98.0	L	S	54	79	109	143	3 17	7 19	99 2	22 2	244	262											fide Zivkov and Raikova-Petrova (2001)
Ovcharitsa Reservoir (1976–1985)	42°15'N	26°13'E	179.8	Н	F	120	192	241	267	288	8 30	02														Zivkov and Raikova-Petrova (2001)
Ovcharitsa Reservoir (1976–1989)	42°15'N	26°13'E	183.3	Н	F	127	197	243	272	2 288	8 30	02														Zivkov and Raikova-Petrova (2001)
Ovcharitsa Reservoir (1986–1989)	42°15'N	26°13'E	213.6	Н	А	145	215	256	301																	Zivkov and Raikova-Petrova (2001)
Paimionjoki River	60°25'N	22°40'E	54.5	_	S	30	48	64	79	93	10	09 1	27	144												Kännö (1969)
Pechora River (a)	65°42'N	52°28'E	103.4	_	S						20	00 2	15 2	229	244	248										fide Kas'yanov et al. (1995)
Pechora River (b)	65°42'N	52°28'E	88.9	L	S	46	77	111	146	5 169	9 19	92														fide Zivkov and Raikova-Petrova (2001)
Plußsee	54°10'N	10°26'E	99.0	_	S	49	80	128	149	9 16:	5 17	74 2	04 2	228	235	257	26	1 279	9 323	3						Arzbach (1997)
Pond Velký Tisý	49°00'N	14°46'E	138.2	_	А	75	142	187																		Frank (1962)
Ponds at Valkenswaard (1958)	51°21'N	05°28'E	142.9	-	А	77	161	197	221	23'	7 25	52														Hofstede (1974)
Ponds at Valkenswaard (1959)	51°21'N	05°28'E	143.5	_	А	83	160	195	206	5 220	5															Hofstede (1974)
Porsuk Reservoir	39°63'N	30°28'E	94.1	_	S	65	102	124	139	9 148	8 1 5	55														Başkurt et al. (2015)
Pripyat River	51°09'N	30°29'E	103.2	L	S	43	100	126	159	9 18	1 19	99 2	29 2	259	276											fide Zivkov and Raikova-Petrova (2001)
Proletarskoye Reservoir	46°35'N	42°00'E	122.8	_	А				196	5 21	1 22	28														fide Kas'yanov et al. (1995)
Przeczyce Reservoir	50°44'N	19°17'E	146.0	_	F				212	2 2 3	8 27	793	13 3	333	355	359	370	0 378	3 384	4						Skóra (1972)
Puiu Lake (a)	45°30'N	29°29'E	177.7	Н	F	101	191	220	271																	fide Zivkov and Raikova-Petrova (2001)
Puiu Lake (b)	45°30'N	29°29'E	229.1	Н	А	172	217	237																		fide Zivkov and Raikova-Petrova (2001)
Red Lake (Lacu Roșu) ²	46°47'N	25°47'E	145.1	А	А	86	141	192	221																	fide Zivkov and Raikova-Petrova (2001)
Regalica River (a)	53°25'N	14°33'E	133.7	_	А	89	124	147	193	3 23	1 2:	592	87 3	310	338											fide Hartley (1947)
Regalica River (b)	53°25'N	14°33'E	98.8	_	S	56	84	114	145	5 174	4 20	03 2	28 2	252												fide Więsky and Załachowsky (2000)
River Birket ¹	53°41'N	03°12'W	77.5	_	S	73	81	94	109	9 12:	5 13	30 1	36	152												fide Linfield (1979)
River Cam (Barrington)	51°48'N	01°42'W	109.1	-	S	69	107	130	160) 180	0 2	16 2	41 2	231	274											Hartley (1947)
River Creedy ¹	50°44'N	03°33'W	86.0	-	S	56	79	105	125	5 140	0 15	571	74	198	211	220	230	5								Cowx (1988)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

	T .	Ŧ	CT.	7.55	6T									A	Age										
Population	Lat	Long	GI	Z-RP	GT	1	2	3	4	5	6	7	8	9	10	11	1 1	2	3 14	4 1	5 1	6 1	7 18	<u> </u>	Source
River Culm	50°46'N	03°30'W	95.0	_	S	51	88	126	158	176	192	202	206	212	2 2 2 6	5 23	37 24	47						(Cowx (1988)
River Desna ¹	50°33'N	30°32'E	89.4	_	S				130	141	161			251										ŀ	Kas'yanov et al. (1995)
River Exe (Cowley Bridge) ¹	50°36'N	03°25'W	91.3	_	s	51	85	116	140	162	176	194	207	216	5 225	5 23	8							(Cowx (1988)
River Exe (Fortesque) ¹	50°36'N	03°25'W	101.6	_	S	51	92	141	161	190	201	216												(Cowx (1988)
River Exe (Trew's weir)	50°36'N	03°25'W	98.0	_	S	55	97	123	146	168	184	200	214	228	3 239	9 24	63	01						(Cowx (1988)
River Frome	50°67'N	02°18'W	114.7	А	А	50	90	131	164	194	221	246	271	293	3 3 1 1	32	24 33	34 3	41					N	Mann (1973)
River Funshion	52°15'N	08°24'W	106.1	_	S			150	166	183	188	199	240	235	5 278	3								f	îde Linfield (1979)
River Glomma (Glengshølen)	59°30'N	11°13'E	89.2	_	S			104	119	149	167	179	200	196	5 231	22	29 22	25 2	63 28	3				١	Vøllestad and L'Abée-Lund (1990)
River Glomma (Langnes) ¹	59°36'N	11°07'E	77.4	_	S				119	120	133	143	154	182	2 189	9 20	2 2	16 2	17 23	6 23	85			١	Vøllestad and L'Abée-Lund (1990)
River Glomma (Vestvannet)	59°20'N	11°50'E	93.4	_	S				149	155	172	198	209	204	224	22	22 24	49 2	53	28	30			١	Vøllestad and L'Abée-Lund (1990)
River Granta	52°21'N	00°16'E	88.0	_	S		89	117	130	142	165	191												ł	Hartley (1947)
River Lugg	52°01'N	02°38'W	106.1	_	S			159	169	177	215	228	235	245	5 258	3 26	53 20	62 2	25					ł	Hellawell (1972)
River Nene (Cogenhoe) (above sluice)	52°24'N	00°79'W	102.6	_	S		105	140	165	180	190	205	210	230)									ł	Hart (1971)
River Nene (Cogenhoe) (below sluice)	52°24'N	00°79'W	101.2	_	S		105	130	150	180	190	210	220	235	5 240)								ł	Hart (1971)
River Nene (Kislingbury)	52°23'N	00°98'W	95.3	_	S	55	95	130	150	160	180	205	215	215	5 245	5 22	20							ł	Hart (1971)
River Nene (Wollaston)	52°25'N	00°66'W	128.5	_	А	105	150	180	190	220	230	245	250	255	5 265	5								ł	Hart (1971)
River Nene (Yarwell)	52°56'N	00°43'W	118.4	_	А	75	125	150	175	190														ł	Hart (1971)
River Ryck	54°06'N	13°28'E	105.7	_	S		104	136	154	187														f	<i>îde</i> Więsky and Załachowsky (2000)
River Stour	50°79'N	01°92'W	98.7	L	S	46	84	119	154	177	192	206	219	229	239	27	4 2	85 2	98					N	Mann (1973)
River Thames (Reading)	51°27'N	00°58'W	73.0	-	S	43	79	95	113	129	138	147	156	167	7 176	5								V	Williams (1967)
River Uil	49°38'N	56°72'E	121.8	-	А			150	189	214	235													ŀ	Xas'yanov et al. (1995)
River Wensum	52°38'N	01°16'E	102.9	_	S	40	75	125	160	195	225	255	280											F	Beardsley and Britton (2012)
Rostherne Mere (Banks 1970)	53°35'N	02°39'W	119.3	_	А	48	104	165	198	228	246	267	270	280)									F	Banks (1970)
Rostherne Mere (Mills 1969)	53°35'N	02°39'W	121.9	_	А		100	160	189	209	232	264	294											f	îde Goldspink (1978)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

		.		7.55	6T									А	lge										<u></u>
Population	Lat	Long	GI	Z-RP	GT	1	2	3	4	5	6	7	8	9	10	11	12	2 13	3 1	4	15	16	17	18	Source
Rybinsk Reservoir	58°22'N	38°26'E	103.4	L	S	37	75	103	137	167	198	229	257	282	302	324	4 34	8							fide Zivkov and Raikova-Petrova (2001)
Rybinsk Reservoir (herbivors)	58°22'N	38°26'E	96.5	_	s				143	167	184	204	217	228											fide Kas'yanov et al. (1995)
Rybinsk Reservoir (mollusk-eating form)	58°22'N	38°26'E	104.8	_	S	71	96	122	151	175	199	219	238	258	274	ļ									Kas'yanov and Izyumov (1995)
Rybinsk Reservoir (omnivors)	58°22'N	38°26'E	98.0	_	s			99	132	161	187	218	235	249	272										fide Kas'yanov et al. (1995)
Rybinsk Reservoir (phytophagous form)	58°22'N	38°26'E	92.3	_	s	85	99	114	127	139	150	159													Kas'yanov and Izyumov (1995)
Rye Meads Lagoons	51°77'N	00°01'E	145.0	_	А	75	145	190	240	260	275														White and Williams (1978)
Sagyz River	47°07'N	51°53'E	118.7	_	А				188	204	222														Kas'yanov et al. (1995)
Sakrower See	52°45'N	13°05'E	96.6	_	s	74	91	114	135	157	178	213													fide Hartley (1947)
Saratov Reservoir (a)	52°50'N	48°30'E	128.1	А	А		115	132	190	209	245	281	308	327	351										fide Zivkov and Raikova-Petrova (2001)
Saratov Reservoir (b)	52°50'N	48°30'E	126.1	А	А		109	126	174	198	227	262	308	327	346	392	2								fide Zivkov and Raikova-Petrova (2001)
Saratov Reservoir (c)	52°50'N	48°30'E	100.8	_	s			121	147	173	192	206	228		274										Kas'yanov et al. (1995)
Sea of Azov	46°00'N	37°00'E	126.5	А	А			139	179	214	245	273	310	321											fide Zivkov and Raikova-Petrova (2001)
Seyhan Reservoir	37°02'N	35°19'E	178.1	_	F	147	174	193	220																Ergüden et al. (2008)
Sheksna Reservoir ¹	60°14'N	37°35'E	89.8	_	S			107	138	156	168	187	207	219											Kas'yanov et al. (1995)
Shetirgiz River	48°38'N	58°32'E	123.0	_	А			144	190	218	240	264													Kas'yanov et al. (1995)
Skirvite Stream ²	55°19'N	21°34'E	92.8	_	S					164	174	189	205		234	ļ									Kas'yanov et al. (1995)
Slapton Ley Lake	50°28'N	03°65'W	108.5	_	S	59	107	142	167	199	214	226	238												Burrough and Kennedy (1979)
Slapy Reservoir	49°23'N	14°36'E	94.6	L	S	45	77	112	149	179	203	217	236												fide Zivkov and Raikova-Petrova (2001)
Solina Reservoir	49°22'N	22°27'E	96.2	_	S			127	160	171	179	188	201												Epler et al. (2005)
South Caspian Sea	36°50'N	54°26'E	173.7	_	А	143	183	217	240	260	280														Sedaghat and Hoseini (2012)
Straussee	52°58'N	13°87'E	46.9	_	S	33	41	58	71	81															fide Hartley (1947)
Sutton-at-Hone (gravel pit lake)	51°40'N	00°23'W	110.8	_	S	68	108	122	182	208	214	226													Gee (1978)
Szczecin Lagoon ¹	53°48'N	14°08'E	105.5	_	s	60	98	136	169	195	212	222	229	237											Więsky and Załachowsky (2000)
Szczecin Lagoon (Hajdus 1985) ¹	53°48'N	14°08'E	112.7	_	S	63	101	135	168	202	230	247	263	279											Więsky and Załachowsky (2000)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, Rutilus rutilus (L., 1758)

			~ *		~										А	Age										
Population	Lat	Long	Gl	Z-RP	GT	1	2	3	4	5	5	6	7	8	9	10	11	12	2 13	3 1	4	15	16	17 1	8	Source
Szczecin Lagoon (Novak 1980)	53°48'N	14°08'E	113.8	_	S	73	114	15	1 18	2 19	992	10 2	22	237												Więsky and Załachowsky (2000)
Szczecin Lagoon (Stasia 1984)	53°48'N	14°08'E	94.0	_	S	63	86	11	2 13	4 15	56 1	791	99 2	219	240											Więsky and Załachowsky (2000)
Tatton Mere	53°33'N	02°38'W	140.8	_	А		107	17	3 21	8 26	58 2	90 3	13													Goldspink (1978)
Tjeukemeer	52°54'N	05°48'E	68.8	_	S	41	67	87	7 10	3 11	6 1	28 1	38	153	163	191										Goldspink (1979)
Trammer See	54°17'N	10°41'E	123.9	А	А	78	119	15	7 18	3 20)6 2	48 2	67													fide Zivkov and Raikova-Petrova (2001)
Tresna Reservoir	49°44'N	19°12'E	94.9	_	S		85	10	8 14	1 16	58 1	88 2	06	217	229	237	245	5								Epler et al. (2005)
Tvärminne Archipelago (1975)	59°51'N	23°15'E	66.9	_	S		53	74	1 92	2 10	08 1	29 1	46	163	180	192										Lappalainen et al. (2001)
Tvärminne Archipelago (1997)	59°51'N	23°15'E	59.7	_	S	38	55	70) 84	4 98	8 1	12 1	26	139	150	162										Lappalainen et al. (2001)
Uchinsk Reservoir (a)	56°01'N	37°45'E	79.2	L	S	36	63	10	0 13	0 15	58 1	87														fide Zivkov and Raikova-Petrova (2001)
Uchinsk Reservoir (b)	56°01'N	37°45'E	121.6	А	А	53	103	15	3 20	2 24	13 2	80														fide Zivkov and Raikova-Petrova (2001)
Uglich Reservoir	57°15'N	37°50'E	111.9	L	S		103	13	0 15	9 17	792	.02 2	15	242	282	288	326	5	34	0						Baranova (1984)
Ulungur Lake (1995–1996)	47°15'N	87°15'E	133.1	_	А	56	124	19	2 22	5 24	192	69 2	81	289												<i>fide</i> Li et al. (2009)
Ulungur Lake (2007–2008)	47°15'N	87°15'E	87.7	_	S	60	89	11	1 12	9 14	15 1	59														Li et al. (2009)
Umba River	66°40'N	34°18'E	91.2	_	S					14	13 1	65 1	83	211	227	240)									Kas'yanov et al. (1995)
Various lakes (Lithuania)	-	_	91.7	L	S			86	5 10	8 12	29 1	52 1	80	204	228	252	272	2 29	3 30	6						fide Zivkov and Raikova-Petrova (2001)
Vilyuy River	-	_	93.5	L	S		81	10	4 13	8 15	50 1	61 1	96	230	253	265										fide Zivkov and Raikova-Petrova (2001)
Vistula Lagoon	54°27'N	19°45'E	113.4	_	S	56	101	14	1 17	9 22	20 2	52														Frank (1962)
Volga River ¹	-	_	94.8	L	S	39	67	92	2 12	2 15	58 1	85 2	40	260	282	230	311									fide Zivkov and Raikova-Petrova (2001)
Volga River Delta (a)	46°73'N	47°85'E	101.7	_	S			11	6 16	2 18	33 2	00														fide Kas'yanov et al. (1995)
Volga River Delta (b)	46°73'N	47°85'E	148.7	А	А		182	20	4 22	5 24	1 2	60 2	83	300												fide Zivkov and Raikova-Petrova (2001)
Volgograd Reservoir	49°12'N	44°93'E	113.2	L	S			12	1 16	7 20)2 2	20 2	48	265	276											fide Zivkov and Raikova-Petrova (2001)
Vollebekken stream (1987)	59°41'N	10°44'E	84.0	_	S		86	10	9 12	8 14	13 1	61 1	67	182	198	202	214	ł								Vøllestad and L'Abée-Lund (1987)
Vollebekken stream (1990)	59°41'N	10°44'E	86.7	_	S			12	0 13	5 15	50 1	67 1	76	189	198	203	211	23	7 24	5 2	27 2	21				Vøllestad and L'Abée-Lund (1990)
Votkinskoye Reservoir	57°17'N	54°47'E	98.4	_	S			12	8 14	4 16	68 1	84 2	02		240	247	,									Kas'yanov et al. (1995)

A Re-assessment of the Growth Index for Quantifying Growth in Length of Fish with Application to Roach, *Rutilus rutilus* (L., 1758)

Tarkan and Vilizzi 2016 LimnoFish 2(1): 49-58

Population	Lat	Long	GI	7-RP	GT									A	Age								Se	ource
ropulation	Lui	Long	01	ZRI	01	1	2	3	4	5	6	7	8	9	10) 11	1	2 1	3 14	1 15	5 16	17 1	18	
Vytegorsk Reservoir	61°00'N	36°50'E	90.2	-	S			114	131	153	177	198											K	as'yanov et al. (1995)
Warta River (zone A)	52°59'N	14°61'E	104.6	_	S	45	90	125	150	180	205	220	230	245	5 28	0 295	5 31	10 32	0				Pı	rzybylski (1996)
Warta River (zone B) ¹	52°59'N	14°61'E	102.2	_	s	45	90	125	150	180	205	230	245	5 270) 27	5							Pı	rzybylski (1996)
Warta River (zone C) ¹	52°59'N	14°61'E	103.9	_	s	40	95	130	160	185	215	230	245	5 260) 27	0 280	0						Pı	rzybylski (1996)
Warta River (zone D) ¹	52°59'N	14°61'E	96.6	_	s	45	80	125	150	180	200	220	225	5 240)								Pı	rzybylski (1996)
Western Dvina River	_	_	100.3	L	s	39	81	120	157	187	213	238	252	264	1								fic	de Zivkov and Raikova-Petrova (2001)
Willow Brook (Apethorpe)	52°55'N	00°49'W	91.1	_	s				141	162	172	188	200	213	3								C	ragg-Hine and Jones (1969)
Willow Brook (Elton)	52°53'N	00°40'W	78.8	_	s	49	70	93	120	131	150	172	179) 194	1 20	6							C	ragg-Hine and Jones (1969)
Willow Brook (Fotheringhay)	52°53'N	00°45'W	75.5	_	s	30	64	108	116	133	142	166	168	3 229)								C	ragg-Hine and Jones (1969)
Willow Brook (Woodnewton)	52°54'N	00°47'W	73.4	_	s	33	83	100	110	123	130	179											C	ragg-Hine and Jones (1969)
Yateley (gravel pit lake)	51°20'N	00°49'W	131.9	_	А	66	118	3 183	216	248	260												G	ee (1978)
Zhrebchevo Reservoir	42°36'N	25°53'E	135.5	А	F	101	130) 159	183														fic	de Zivkov and Raikova-Petrova (2001)

¹Mean LAA values averaged over males and females.

² Caspian roach *R. rutilus caspicus*.

For each population, the latitude and longitude of the corresponding water body, the GI (Hickley and Dexter 1979), indication of the semi-quantitative classification (Z-RP: after Zivkov and Raikova-Petrova 2001) into 'low' (L), 'average' (A) and 'high' (H) growth, and the resulting growth type (GT) are provided. Secondary source studies are indicated as *fide*. A dash '-' indicates.