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Abstract: Benfluorex is a pharmacological agent with antidiabetic and antihyperlipidemic 
properties. In this study, the brain's oxidative and non-enzymatic antioxidant status in diabetic 
and benfluorex administrated diabetic rats have been investigated. For the experimental 
procedures, three groups of 18 Wistar albino rats were used to control diabetes (induced by 
streptozotocin), and benfluorex treated diabetic rats (benfluorex administration intragastric 50 

mg/kg daily for 21 days). Brain NOx, TBARS, GSH, AA levels, and MPO activity were 
determined spectrophotometrically. Benfluorex administration was caused that decreased lipid 
peroxidation and MPO activity while increased non-enzymatic antioxidant and NOx levels. These 
results showed that benfluorex treatment positively affects lipid peroxidation and the non-
enzymatic antioxidant status of the brain during diabetes.. 
 
Keywords: Benfluorex, brain, diabetes, lipid peroxidation, non-enzymatic antioxidants, nitric 
oxide. 
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Öz: Benflureks, antidiyabetik ve antihiperlipidemik özelliklere sahip farmakolojik bir ajandır. Bu 
çalışmada, uygulanan diyabetik sıçanlarda benfloreks tedavisinin beynin oksidatif ve enzimatik 
olmayan antioksidan durumu üzerindeki etkileri araştırılmıştır. Deneysel prosedürler için, 
kontrol, diyabet (streptozotosin ile indüklenen) ve benfloreks ile tedavi edilmiş diyabetik sıçanlar 
(benfloreks 21 gün boyunca intragastrik 50 mg/kg dozda uygulanmıştır) olarak 18 Wistar albino 
sıçanından oluşan üç grup kullanıldı. Beyin NOx, TBARS, GSH, AA seviyeleri ve MPO 
aktivitesi spektrofotometrik olarak belirlendi. Benfloreks uygulaması, lipid peroksidasyonunu ve 

MPO aktivitesini azaltırken; enzimatik olmayan antioksidan seviyelerini ve NOx düzeylerini 
arttırmıştır. Bu sonuçlar, benfloreks tedavisinin, diyabet sırasında beyinde lipid 
peroksidasyonunu ve enzimatik olmayan antioksidan durumu olumlu etkilediğini göstermiştir. 
 
Anahtar kelimeler: Benfloreks, beyin, diyabet, lipid peroksidasyonu, enzimatik olmayan 
antioksidanlar, nitrik oksit.  
 

INTRODUCTION 

 

Diabetes mellitus (DM) is a metabolic disease 

which is one of the most important causes of morbidity and 

mortality worldwide (Ong et al., 2018). Therefore, the 

diabetes-related in vivo and in vitro studies remain its 

importance and popularity. DM becomes resulting from 

that either deficiency in insulin secretion from the beta (β) 

cells of the pancreatic islets of Langerhans or breakdown 

in the susceptibility of the insulin hormone or both of 

together exists.  Streptozotocin (STZ, 2-deoxy-2-[3-

methyl-3-nitrosoureido]-D glucopyranose) is one of the 

most used pharmacological agents in order to create 

experimental diabetes. The diabetic effects of STZ are 
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caused by the devastation of β pancreatic cells by natural 

killer (NK) cells (Szkudelski, 2001). 

It is a known fact that increased Reactive Oxygen 

Species (ROS) production breaks down tissue homeostasis 

and it causes tissue damage. Particularly, lipids are 

vulnerable to ROS damage. Resulting of diabetic 

processes, hyperglycemia stimulates ROS generation from 

a variety of sources such as cytochrome P450 

monooxygenases, nitric oxide synthase (NOS), oxidative 

phosphorylation, nicotinamide adenine dinucleotide 

phosphate oxidase, lipoxygenase, and glucose auto-

oxidation (Pandey et al., 2010). ROS formation leads to 

devastation and injury on cell membranes by lipid 

peroxidation (Halliwell, 1994). Oxidative stress appears 

when ROS are produced in excess amounts or when 

antioxidant defense systems are impaired. Oxidative stress 

is the one of the causes in the pathogenesis and progression 

of complications from diabetes (Piero et al., 2014).  

In every aerobic organism has antioxidant defense system 

existing of non-enzymatic antioxidant substances and 

antioxidant enzymes to protect the physiological activities 

of organisms against oxidative stress. Ascorbic acid (AA) 

and Glutathione (GSH) are a part of the non-enzymatic 

antioxidant that their cycle is known to act a fundamental 

role in the keeping of cellular redox homeostasis (Noctor 

et al., 2002). 

The brain is one of the major organs of the body 

which responsible for maintaining of neuronal and 

hormonal processes and homeostasis. It is vulnerable to 

oxidative stress induced by diabetes consequence of its rich 

oxidizable polyunsaturated fatty acids content, high rate of 

oxygen consumption the existence of redox-active metals 

(Cu, Fe), and low defending of enzymatic antioxidant 

(Montilla et al., 2005; Uzar et al., 2012). 

Benfluorex was an amphetamine derivative drug 

widely medicated by Type II diabetes patients through 

worldwide due to both lipid-lowering and 

antihyperglycemic effects until withdrawn in 2010 

(Tribouilloy et al., 2012). In contrast to other antidiabetic 

drugs, the nonexistence of gastrointestinal side effects of 

benfluorex has increased the possibility of its preference 

(Moulin et al., 2009). Nevertheless, after the publication of 

several reports suggesting the link between the 

administration of benfluorex and serious cardiac valve 

regurgitation, it was withdrawn from the European market 

in 2010 (Rafel Ribara et al., 2003; Noize et al., 2006; 

Boutet et al., 2009; Frachon et al., 2010; Tribouilloy et al., 

2010; Le Ven et al., 2011). The drug-induced cardiac side 

effects of benfluorex are caused by serotoninergic 

mechanisms via its metabolite norfenfluramine which has 

the ability to activate 5-HT2B serotonin receptors in the 

heart valve, where it plays a role in the synthesis of 

glycosaminoglycans and collagen (Rothman et al., 2000; 

Roth, 2007; Tribouilloy et al., 2012). Besides known their 

cardiac and pulmonary adverse effects, amphetamines and 

their derivatives also could produce several neurological 

changes such as intracerebral vasculitis, ischemic stroke, 

and cerebral hemorrhage (Galvan-Arzate & Santamaria, 

2002). On the other hand, there is no finding pointing to 

the effect of benfluorex on brain oxidant-antioxidant status 

during diabetes. 

In this context, the present study was carried out to 

put forth the effects of benfluorex treatment on brain 

oxidative events throughout the diabetic process. 

 

MATERIALS AND METHODS 

 

Animals and Groups:  Male adult Wistar albino rats 

were use in experiments (18, weighing 190–200 g). All 

animals were held in a temperature-controlled room with 

12 hours of light and 12 hours of the dark cycle, in separate 

cages with access to water and food. All animal studies 
were performed in accordance with international ethical 

rules, and all animal procedure were approved by the 

Animal Experimentation Ethics Committee of Giresun 

University (Report no: 2019/06). 

The animals have divided into three different 

groups as 1) Control (n=6) 2) Diabetes (n=6) and 3) 

Diabetes+benfluorex (n=6), randomly. Rats of the control 

group were given only an injection of 0.1 M, 1 ml citrate 

buffer at pH 4.5. On the Diabetes group, disease model was 

created by intraperitoneal injection of a single dose of STZ 

(Serva 35503) (45 mg/kg body weight) dissolved in 0.1 M, 

1 ml citrate buffer at pH 4.5 (2). Rats were accepted 
diabetic if their fasting blood glucose (FBG) levels 

exceeded 200 mg/dl at 48 h after STZ injection. Rats of 

Diabetes+benfluorex group were treated with benfluorex 

(Sigma B-7522) intragastric (IG) 50 mg/kg daily for 21 

days (Brindley et al., 1988; Serradas et al., 1993). The 

equal volume of tap water was IG delivered to control and 

diabetes groups for the same period. 

After FBGs and body weights were measured, on 

day 22 of the experimental protocol, rats were sacrificed 

with taken blood from the heart under anesthesia. The brain 

tissues were removed rapidly and instantly freeze in liquid 
nitrogen and stuck at –80 °C until use. 

Determination of TBARS: Lipid peroxidation in 

tissues was determined by the formation of TBARS (Casini 

et al., 1986). Brain tissues homogenized in cold 

trichloroacetic acid and centrifuged at 3000 rpm for 15 

minutes. The supernatant then added to the tube containing 

an equal amount of thiobarbituric acid of 0.67% (w/v) and 

boiled at 100°C for 15 minutes. The absorbance of the 

samples determined at 535 nm. 

Determination of GSH: The GSH levels of 

tissues were measured by the modified Elman method 

(Aykaç et al., 1985). Brain tissue samples homogenized in 
trichloroacetic acid solution and homogenate then 

centrifuged at 3000 rpm for 10 min. Supernatant added on 

the tube containing 0.3 mol/L Na2HPO4·2H2O solution. 

After, the dithiobisnitrobenzoate solution added in the tube 

and the absorbance was determined at 412 nm. 
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Determination of NOx: The Griess method was 
used to determine total nitric oxide (NOx) values in the 

brain tissues (Green et al., 1982). Tissue samples were 

homogenized in cold phosphate-buffered saline (pH = 7.5) 

then centrifuged at 3000 rpm for 5 min.  Supernatant added 

to a tube containing 0.3 M NaOH. After 5% (w/v) ZnSO4 

was added for deproteinization, mixture incubated for 5 

min at room temperature, then centrifuged at 14,000 rpm 

for 5 min. The nitrate levels in brain tissues were measured 

spectrophotometrically by method of Miranda et. al. 

(Miranda et al., 2001). The Griess reaction was used to 

determine nitrite levels of tissues. 
Determination of AA: Total ascorbate levels of 

brain tissues were measured by the modified Roe and 

Keuther method (Berger et al., 1989). Brain tissues 

homogenized on cold in 35% perchloric acid and 

centrifuged at 12,000 rpm for 3 min. Supernatants were 

combined with color reagent (0.6% copper sulfate, 5% 

thiourea, and 2,4-dinitrophenlyhydrazine at 1:1:20, v/v/v) 

and mixtures incubated 3 h at 37°C in a water bath. After 

they were cooled to 0°C, 65% (v/v) sulfuric acid was added 

and absorbances were measured at 515 nm. 

Determination of MPO activity: MPO activity 

was measured by method of Glowick and Kaplan (1955). 
Tissue samples homogenized in cold phosphate buffer (pH 

7.5). After centrifuged at 3000 g for 10 minutes at 4°C, 

supernatants were added to tubes containing 0.5 M 

phosphate buffer, 30% H2O2, 1% o-dianisidin, H2O 

(10:1:2:3 v/v/ v/v). Mixtures incubated at 37°C for 30 

minutes then HCl was added. One unit (U) of enzyme 

activity was defined as the amount of MPO present that 

caused a change in absorbance of 1.0/min at 410 nm and 

37°C. 

Statistical analysis: All data were submitted as 

the mean ± standard deviation. Evaluation of the values for 
all experimental groups was used by ANOVA variance 

analysis and nonparametric Mann–Whitney U test. The p-

value less than 0.05 was well-considered significant. 

 

RESULTS  

 

The NOx levels of the brain in the control group 

were found to be 145.63 ± 14.88 µmol g-1, while, they were 

101.46 ± 7.61 µmol g-1 in the diabetes group and 115.06 ± 

9.30 µmol g-1 in the benfluorex treatment group. In Figure 

1, NOx levels are shown as diagrams. While the NOx 

levels were found to be significantly reduced in both 

groups than in the control group (p<0.05). In the 

benfluorex treatment group, NOx level was found to be 

significantly increased than the diabetes group (p<0.05). 

The brain TBARS value in the control group was 

found to be 261.47±32.18 nmol g-1, while they were 

430.07±46.12 nmol g-1 in the diabetes group, and 

262.65±44.74 nmol g-1 in the benfluorex treatment group. 

In Figure 2, TBARS values are shown as diagrams. 

TBARS level of the diabetes group was found to be 

elevated significantly compared to the control group 

(p<0.05). However, benfluorex treatment was significantly 

reduced TBARS levels compared to the diabetes group 

(p<0.05). 

 

 
Figure 1. The effects of benfluorex administration during diabetes on the 

brain NOx levels. 
a p < 0.05 compared to the control group; b p < 0.05 compared to the diabetes group. 

 

 
Figure 2. The effects of benfluorex administration during diabetes on the 

brain TBARS levels. 
a p < 0.05 compared to the control group; b p < 0.05 compared to the diabetes group. 

 

GSH levels of the brain were found to be 

respectively 3.86±0.36 µmol g-1, 2.96 ± 0.49 µmol g-1 and, 

4.48 ± 0.89 µmol g-1 in the control group, in the diabetes 

group and, in the benfluorex treatment group. In Figure 3, 

GSH levels are shown as diagrams. GSH level was found 

to be significantly decreased in the diabetes group 

compared to the control (p<0.05). Whereas with 

benfluorex administration, GSH level was shown to be 

significantly increased compared to the diabetes group 

(p<0.05). 

The brain AA levels in the control group was 

3.49±0.29 mg g-1, while they were 2.98±0.21 mg g-1 in the 

diabetes group, and 3.48±0.16 mg g-1 in the benfluorex 

treatment group. In Figure 4, AA levels are shown as 

diagrams. AA level was found to be significantly reduced 

in the diabetes group compared to the control (p<0.05). 

Although in the benfluorex treatment group AA level was 

found to be significant enhancements than diabetes group 

(p<0.05). 
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Figure 3. The effects of benfluorex administration during diabetes on the 

brain GSH levels. 
a p < 0.05 compared to the control group; b p < 0.05 compared to the diabetes group. 

 

 
Figure 4. The effects of benfluorex administration during 

diabetes on the brain AA levels. 
a p < 0.05 compared to the control group; b p < 0.05 compared to the diabetes group. 

 

 
Figure 5. The effects of benfluorex administration during 
diabetes on the brain MPO activities. 
a p < 0.05 compared to the control group; b p < 0.05 compared to the diabetes group. 

 

MPO activity of the brain was found to be 

respectively 0.29±0.01 U g-1 tissue, 0.31 ± 0.02 U g-1 tissue 

and, 0.26 ± 0.04 U g-1 tissue in the control group, in the 

diabetes group and, in the benfluorex treatment group. In 

Figure 5, MPO activities are shown as diagrams. MPO 

activity of the diabetes group was found to be increased 

significantly compared to the control group (p<0.05). But, 

benfluorex treatment was significantly reduced MPO 

activity compared to the diabetes group (p<0.05). 

 

DISCUSSION 

 

This was the first study to show brain oxidative 

status, non-enzymatic antioxidants levels and MPO 

activity between diabetic rats who were treated with 

benfluorex compared with untreated diabetic rats. 

Several studies have indicated that the altered 

oxidative state due to hyperglycemia may be induced to the 

diabetic nerve damage (Aragno et al., 2000; Ateş et al., 

2006; Ateş et al., 2007; Zhang et al., 2008). One of the 

underlying causes of this damage has been that increased 

intracellular glucose concentration, therefore, the 

excessive formation of ROS originating from auto-

oxidation. (Piero et al., 2014). Different investigators have 

been revealed that lipid peroxidation was elevated in the 

brain, arising from diabetes (El‐Akabawy & El‐Kholy, 

2014; Muriach et al., 2014; Ogunyinka et al., 2016; 

Ibrahim, 2016; Fheem & Askary, 2017; Gürel-Gökmen et 

al., 2018). The results of this study showed that TBARS 

levels were increased in the brains of diabetic animals than 

in controls as demonstrated in other studies. Additionally, 

in the current results, non-enzymatic antioxidants GSH and 

AA levels, the inverse of rising lipid peroxidation, were 

found decreased in the diabetic group. Antioxidant defense 

system including antioxidant enzymes and non-enzymatic 

antioxidant compounds may be affected by diabetic 

processes (Kurutaş, 2016). Evaluation of TBARS and non-

enzymatic antioxidant levels of the diabetic group has been 

suggested that excessive ROS production via both 

hyperglycemia and increased auto-oxidation of glucose 

during diabetes may cause lipid peroxidation. Also, it has 

been thought that of GSH and AA radical scavenging 

properties may be used to prevent from oxidative damage. 

It has been demonstrated that several vascular 

complications related to diabetes may result from changes 

in the production and action of endothelially derived NO 

(Avogaro et al., 2006). In the literature, contradictory data 

about the amount of NO in diabetes have been reported. In 

the animal model of STZ-induced diabetes, some 

investigators have found to be increased NO levels in the 

cerebral cortex, hippocampus, cerebellum, brain stem, and 

spinal cord (Ateş et al., 2007; Xu et al., 2015), although in 

another study it was reported that NO levels were 

decreased in the hippocampus (Kino et al., 2004). 

However, Gurel-Gokmen et al. (2018) have observed that 

NO levels did not change in the brains of diabetic animals 

induced by STZ. According to the results of this study, the 

NOx levels of the brain during diabetes were found 
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decreased significantly compared to the controls. This 

situation may be elucidated by the raised catabolism of NO 

or the reduced production of NO by endothelial 

dysfunction due to diabetes. 

Myeloperoxidase (MPO) is an important pro-

oxidant enzyme that is physiologically released in 

circulating neutrophils, monocytes and some tissue 

macrophages including microglia as also described an 

inflammatory marker (39,42). When discharged to the 

extracellular environment as a component of inherent host 

defense, tissue damage can occur via MPO-derived 

oxidants (Lazarević-Pasti et al., 2015). MPO can also 

debilitate lipoprotein function, initiate endothelial 

dysfunction, and disrupt synthase of inducible NO 

(Avogaro et al., 2006). Consistent with other findings, the 

activity of MPO was found increased in diabetes group, 

and also at the same time, NO level was found the decrease 

in diabetic animals because of MPO’s probably effect of 

triggering endothelial dysfunction. 

Benfluorex was shown to have hypolipidemic and 

antihyperglycemic effects in diabetic animal models and in 

humans (Ravel & Laudignon, 1996). However, there has 

been never examined the relationship between benfluorex 

administration with oxidative events in the brain during 

diabetes. In the current study, the consequences of 

benfluorex treatment on the brain oxidative status were 

found to be interesting. According to the results of this 

study, benfluorex application was reduced TBARS level 

and MPO activity, but it was increased NO, GSH and AA 

levels.  In the previous studies, benfluorex has been shown 

to reduce hepatic glucose production, ameliorate binding 

of insulin to its receptor, and increase aerobic glucose 

utilization in skeletal muscle (Bianchi et al., 1993; De Feo 

et al., 1993; Riccio et al., 1993; Kohl et al., 2002). Also, 

that has been showed that benfluorex affects the expression 

of genes encoding enzymes related to both glucose and 

fatty acid metabolism, resulting in inhibition of 

mitochondrial β-oxidation, that resulted reduces in 

gluconeogenesis (Kohl et al., 2002). On the other hand, it 

has been known that fenfluramine derivatives including 

benfluorex initiate serotonergic mechanisms via increasing 

synaptic levels of 5-HT. Because, norfenfluramine, a 

metabolite of benfluorex, has a strong agonistic effect for 

the 5-HT2B receptor (Rothman et al., 2000). Furthermore, 

it has been established that 5-HT2 receptor activation 

promotes glycogenolysis, which halted the process of 

gluconeogenesis. (Darvesh, & Gudelsky, 2003). The 

cumulative effect of all these metabolic paths constitutes 

both the antidiabetic and antihyperlipidemic effects of 

benfluorex. Based on our results, it may be suggested that 

hypolipidemic properties of benfluorex decrease lipid 

peroxidation, which as a result of changing lipid 

metabolism due to inhibition of beta-oxidation. In addition, 

its antidiabetic effects, in turn, may alleviate some 

metabolic and physiologic abnormalities associated with 

diabetes such as endothelial dysfunction, preternatural 

inflammation and, tissue damage via excessive ROS 

production. These facts about benfluorex affect mechanism 

may explain that the reason for decreased levels of TBARS 

and MPO activity, and also increased levels of NOx, GSH 

and AA in the brain during experimental diabetes. 

 

 CONCLUSION 

 

Consequently, in this study, besides the known 

life-threatening cardiac side effects; from a different 

perspective, the effects of benfluorex on the brain during 

diabetes were examined. Taken together, the present study 

suggests that brain tissue with its inflammatory enzymatic 

process, ROS production, lipid peroxidation, and its non-

enzymatic antioxidant capacity were affected by 

benfluorex treatment while experimental diabetes. 
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