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Abstract: Case method is a powerful method in solving one-speed neutron transport equation. 

The method can be applied to one-speed neutron transport problems and pseudo- geometry 

problems. The method basis on the usage of Case’s eigenfunctions and the orthogonality 

relations with the certain boundary conditions according to the interested problem. The 

scattering effects can be investigated via Mika scattering formula and also İnönü’s scattering 

formula. In this study Case method’s formalism is derived by using Anlı-Güngör scattering 

formula as an analogue of Mika’s scattering function. This study is about the Case’s 

eigenfunctions, normalization relation and the orthogonality properties among these 

eigenfunctions and, moreover; Case’s eigenfunctions and the orthogonality properties must be 

rewritten according to the studied scattering order as the number of scattering order increase in 

Anlı-Güngör scattering formula. 

 

Key words: Case’s method, Case’s eigenfunctions, Mika’s scattering function, Anlı-Güngör 

scattering function  

 

Anlı-Güngör Saçılma Formülü için Case Metodu 

 
Öz: Case metodu, tek-hızlı nötron transport denkleminin çözümünde güçlü bir metottur. Case 

metodu tek hızlı nötron transport problemlerine ve psedo-geometrilere uygulanabilir. Method, 

ilgilenen problemin özelliklerine göre belirli sınır şartlarıyla Case özfonksiyonları ve bu 

özfonksiyonlar arasındaki diklik bağıntılarının kullanımına dayanır. Saçılma etkileri Mika 

saçılma formülü ve İnönü saçılma formülü ile araştırılabilir. Bu çalışmada Case metodunun 

formalizmi, Mika saçılma fonksiyonunun analoğu olarak Anlı-Güngör saçılma formülü için 

türetilmiştir. Bu çalışma, Case özfonksiyonlarını, normalizasyon bağıntısını ve bu 

özfonksiyonlar arasındaki diklik bağıntıları ile ilgilidir ve dahası Anlı-Güngör saçılma 

formülündeki saçılma mertebesinin sayısı arttıkça Case özfonksiyonları ve diklik bağıntıları 

çalışılan saçılma parametresine göre yeniden yazılmalıdır.   

 

Anahtar kelimeler: Case metodu, Case özfonksiyonları, Mika saçılma formülü, Anlı-Güngör 

saçılma fonksiyonu 
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1. Introduction  

 

The solution of one-speed, homogeneous medium and time-independent neutron 

transport equation is important to get approximate solutions in neutron transport theory. 

The equation in 3D has seven independent variables. Therefore, some approximations 

are performed to get a solution with analytical methods. These are reasonable 

approximations such as homogeneous medium, time-independent and one-speed 

approximations etc.  

The one-speed, time independent and homogeneous medium neutron transport equation 

is a homogeneous equation in the absence of neutron sources. This homogeneous 

equation was solved by Case [1,2]. His method basis on the usage of the orthogonality 

properties of Case eigenfunctions which are discrete and continuum eigenfunctions. The 

method can be also applied two different orthogonality properties, half-range and full-

range. But it is well known that half-space problems can be investigated by using the 

Placzek lemma [3]. This lemma is used to transform the half-space problems to full-

space problems.  

The scattering properties in one-speed reactor theory problems are investigated by Mika 

scattering function [3] and also İnönü’s scattering function [4,5]. Mika scattering 

function is written in terms of Legendre polynomials and scattering coefficients. İnönü 

scattering function is written by forward and backward scattering. İnönü showed that 

the solution of the one-speed neutron transport equation with İnönü’s scattering can be 

written by Case’s method. The linear anisotropic scattering has been applied to the 

original spherical geometry problem by Sahni [7].  

Recently studied Anlı-Güngör scattering function [8] is based on the usage of the 

Legendre polynomials too. But Mika anisotropic scattering function can be written by 

partial scatterings such as pure-linear anisotropic scattering, pure-quadratic anisotropic 

scattering, linear-quadratic anisotropic scattering, which is the combination of the pure-

linear and pure-quadratic anisotropic scatterings, etc. But Anlı-Güngör scattering 

function cannot be written by partial scatterings. The quadratic scattering function in 

Anlı-Güngör scattering must include the linear anisotropic scattering. Therefore, to 

investigate the reactor theory problems with Anlı-Güngör scattering function could be 

interesting. 

In this study, Case’s method formalism is improved for Anlı-Güngör scattering function 

as an analogue of Mika scattering function. The investigation is performed for half-

space.  

 

2. Material and Method 

2.1 Case method for the Anlı-Güngör scattering  

 

The one-speed, time-independent and homogeneous medium transport equation for free 

source is given as  

 
     

1

1

,
, , ,

2

x c
x f x d

x

 
       




   

   (1) 

here x  is the spatial variable in mfp unit,   is the direction cosine, c  is the secondary 

neutron number and  ,f    is the scattering function. Mika scattering function is 

written as  
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       
0

, 2 1 .
N

f f P P   


    (2) 

Case method was improved by Mika for his scattering function. If 0N   with 0 1f  , 

then the scattering is defined as isotropic scattering. The scattering probabilities are 

equal in every direction in isotropic scattering. If 1N   with 0 1f   and  1 1 3,1 3f   ,  

then the scattering is defined as linear anisotropic scattering, etc. The Anlı-Güngör 

scattering function is given as  

     
0

,
N

n

n n

n

f t P P   


   (3) 

where t  is the scattering parameter, 1t  .  If Eq.(2) is used in Eq.(1), then we get  
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If the neutron flux is taken as  

   , , xx e        (5) 

and Eq.(5) is used in Eq.(4), then we get  
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(6) 

 

where  nJ    corresponds to  

     
1
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, .n nJ P d     
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     (7) 

Thus Case eigenfunction for the Anlı-Güngör scattering is  
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or we can define Eq.(8) as following 
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where  
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 nJ   which is given in Eq.(7) has a recursion relation. If. Eq.(8) is multiplied with 

 kP  , and both the orthogonality relation, Eq.(11a), and the recursion relation, 

Eq.(11b), between Legendre polynomials are applied,  

   
1

,

1

2

2 1
n k n kP P d

k
   




  (11a) 
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2 1 2 1
k k k
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
 

 
 (11b) 

then we can find this recursion relation of  nJ   as 

       1 12 1 .
1 1

k

k k k

k
J k ct J J

k k


   

      
 (12) 

 0J   corresponds to the normalization of Case’s eigenfunction and its value equals to 

unity:  

 0 1.J    (12a) 

If Eq.(8) is directly integrated over  1,1  , then  1J   is found as  

   1 1 .J c    (12b) 

Upper  nJ    functions can be calculated by using Eqs.(11, 11a and 11b): 

     2

2

1
1 3 1

2
J c ct      (12c) 
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             (12d) 

Thus, Case eigenfunctions for the Anlı-Güngör scattering could be written clearly by 

using  ,nK    which are written for the scattering order.  

 0 , 1K     (13a) 

   1 , 1 1K t c       (13b) 

         
2

2 2

2 , 1 1 3 1 1 3 1
4

t
K t c c ct              (13c) 

  

2.2 Normalization 

Case eigenfunctions are normalized for the Anlı-Güngör scattering as in Mika 

scattering.  

 
1

1

, 1d   
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  (14) 
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If. Eq.(9) is used in Eq.(14), then the normalization is found as  

 
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If Neumann’s formula [9,10] is used in Eq.(15),  
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where  nQ   corresponds to second kind Legendre functions, then a more compact 

relation can be written for the normalization as following: 

   
0

1.
N

n
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n

c t J Q  


  (17) 

If 0N   in Eq.(17), then  
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1 1
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2 1
Q






 
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 
 (18a) 

and the result of the normalization is  

1
ln 1.

2 1

c 



 
 

 
 (18b) 

Eq.(18b) is identical to the isotropic scattering in Mika scattering. If 1N   in Eq.(17), 

then  

 1

1 1
ln 1

2 1
Q


 



 
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and the result of normalization is  

 

 

2

2

1 11
ln
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ct cc
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 
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 (19b) 

Eq.(19b) is identical to the linear anisotropic scattering if 13t f . Similarly, if 2N   in 

Eq.(17), then the result of the normalization integral is the following 

         2

0 1 1 2 2 1.c Q tJ Q t J Q           (19c) 

Eqs.(18b, 19b and 19c) which are written for different scattering situations, are 

transcendental equations. Therefore, these equations for different scattering situations 

can be solved as numerical methods such as Newton-Raphson method or Muller’s 

method. The numerical solution for  1,1     gives the discrete eigenvalues which are 

represented as 0 .  If  1,1   , then the integral has a singular point for   . The 

continuum eigenfunction correspond to this situation. Finally, discrete and continuum 

Case eigenfunctions are given as following, respectively:  
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,
,

2
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 
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where P  symbol correspond to Cauchy principal value and     is defined as  

 
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nKc
P d
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Thus the general solution of Eq.(4) becomes  

         0 0
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
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2.3 Orthogonality relations  

 

It is well known that Case eigenfunctions have orthogonality relations among them. 

These orthogonality relations are given as  

         
1

0 0 0 0 0
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, , , ,d M M M         


        (24a) 

   
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     
1
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, , d M       


  (24c) 

The results of the normalization integrals are the same in the Mika scattering situation 

for 0N    and 1N  , with 13t f  in Mika’s scattering.  

Isotropic scattering:   

 
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0
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c c
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 

 
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 (25a) 

Isotropic + linear anisotropic scattering:   

 
  

 
2 22 3 2 2 4
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 (25b) 

where  1w t c  .  The orthogonality relation for the continuum eigenfunction is  

     
2 2 3

2 2 ,
4

n

c
M K

 
       (25c) 

where the second term comes from Poincaré-Bertrand formula [10] and     will 

change in the terms of the scattering situation.  

 

3 Conclusion and Comments  
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The solution of one-speed neutron transport is important to get approximate results in 

reactor theory. There are a lot of numerical and analytical methods have been improved 

by researchers. Therefore, the addition of the anisotropic scatterings could be important 

in the reactor theory problems.  

Case method relations are investigated in this study. Basically, the solution of Eq.(1) is 

the same for the first order scattering terms for Mika scattering function and the Anlı-

Güngör scattering function, which corresponds to isotropic scattering. The second order 

scattering parameter in the Anlı-Güngör scattering formula corresponds to 13t f . We 

can call it as linear anisotropic scattering. 

The one-speed neutron transport problems have been investigated for certain scattering 

or scatterings such as linear anisotropic, pure-quadratic, linear-quadratic anisotropic 

scattering or pure-triplet anisotropic scattering with Mika anisotropic scattering 

formula. But this separation is not impossible in the Anlı-Güngör scattering formula and 

the differences from Mika scattering formula appear in the further scatterings for 2N 

. Therefore, if we accept that 13t f , then the third scattering term in the Anlı-Güngör 

scattering should be  
22

13t f  etc. Therefore, this t  parameter lies in  1,1t  . It is 

obviously that the further scatterings is proportional of 13 f , such as 

   
2 32 3

1 13 , 3t f t f  , etc. Moreover, if any researcher deal with the third scattering 

term, the linear anisotropic scattering situation is automatically is in the scattering, and 

so on. Equations (16, 20,21,24a and 24c) must be written the order of scattering and the 

numerical calculations must be calculated with these written mathematical relations. 

There is also an important point that the physical meaning of t  parameter must be 

investigated for further scatterings. The definition interval of t  is  1,1t   for linear 

anisotropic scattering in the Anlı-Güngör scattering formula. But the value interval of t  

for example for quadratic anisotropic scattering is not the same this interval.  

It is well known that the dominant scattering in Mika’s scattering function is the linear 

anisotropic scattering. The other scattering terms gives very small effects in any 

investigated problem. Therefore, the usage of the Anlı-Güngör scattering formula in 

neutron transport problems could give interesting results since t  parameter equals to 

13 f  
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