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ABSTRACT 
 

This paper considers parameter estimation of the linear regression model with Ramsay-Novick (RN) distributed errors, 

focusing on its use to aid robustness. Positioning within the class of heavy-tailed distributions, RN distribution can be defined 

as the modification of unbounded influence function of a non-robust density so that it has more resistance to outliers. 

Potential use of this robust density has been assessed in Bayesian settings on real data examples and there is a lack of 

performance assessment for finite samples in the classical approach. Therefore, this study explores its robustness properties 

when used as error distribution compared to normal and other alternating heavy-tailed distributions like Laplace and Student-

t. An extensive simulation study was conducted for this purpose under different settings of sample size, model parameters 

and outlier percentages. An efficient data generation of RN distribution through random-walk Metropolis algorithm is here 

also suggested. The results were supported by a real world application on famously known as Brownlee’s stack loss plant 

data. 

 

Keywords: Heavy-tailed distribution, Modified influence function, Ramsay-Novick, Random walk metropolis, Robust regression 

 
 

 

1. INTRODUCTION 
 

Robustness is a desirable property of statistical estimators so as to make reliable inferences from the 

data without being too sensitive to the underlying statistical assumptions. Departures from the 

assumptions of regression have thus long been an intriguing subject in this respect. In most regression 

modelling scenarios, inference depends much more heavily on the measurement error distribution with 

a long-tail due to either few of many outlying observations. This brings about a major source of 

departure from the assumed normal data generating model as the tails of such distributions decrease 

zero more slowly than the normal case. Robustness to long tails is crucial and achieved by specifying 

the sampling model, or likelihood, within a class of family of symmetric or skewed distributions 

enriched with robustness parameters. Attempts to using alternative error distributions, heavy-tailed 

relative to the normal, have revealed a variety of robust models in the literature [1-4]. A typical 

example is furnished by univariate Student-t family distributions, a special case of elliptical 

distributions and robustness achieved by choosing a proper degrees of freedom parameter. This family 

has been applied widely for robust least-squares fitting of multiple regression [1,5-8]. Slash and 

contaminated normal families serve as alternating in accommodating outlying measurements of the 

modelling applications [3,9]. Besides, Laplace distributed errors were also considered for linear and 

mixture linear regression models [2], having been confirmed that the least absolute deviation (LAD) 

regression estimator is superior to ordinary least square (OLS) estimator in small samples under the 

Laplace error model [10]. [4] uncovered extended power distribution family and investigated its robust 

properties in the context of location parameter estimation. 
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In aiding robustness, [11] proposed a procedure completely different in style for the same purpose. 

They first measured a single observation’s influence as a function that shows the rate of change of the 

sampling model density with respect to the observation. For a density within a certain symmetric 

family of distributions, they applied a modification on the density’s unbounded influence function so 

that it would be bounded. By deriving the modified influence function backwards, they ended up with 

a new family of distributions, namely RN distribution family, with robustness properties. By means of 

this procedure, they also performed a robust Bayesian analysis of linear modelling in their work. Since 

then, [12] applied a similar idea on Bayesian regression and [13] addressed this new robust family’s 

limitations. [14] compared the estimates and also relative local influence measures of the regression 

coefficients under different sampling models including RN, again from a Bayesian point of view. They 

based their comparative study on the same real-world data employed by [11]. An empirical 

performance assessment through a comprehensive simulation study, for the first time, is presented in a 

very recent work [15] that considers likelihood robustness via RN distribution and prior robustness via 

Student-t distribution. They presented theoretical evaluation of robust estimators with these settings as 

well as an algorithm to generate samples from RN distribution by means of the independent 

Metropolis Hastings method. All the above mentioned studies concentrate the role of RN distribution 

in achieving the Bayesian robustness for regression modelling. To the best of our knowledge, there is 

no attempt to evaluate the resistance of RN error distribution to the outliers comparatively with other 

heavy-tailed distributions within the classical regression modelling framework. 

    

The main objective of the present study is therefore to propose new robust estimators for a regression 

model with RN distributed errors when the data have outliers. It is also of our interest to compare the 

estimators of regression with error distributions as Student-t, Laplace and Ramsay-Novick. The 

secondary aim of this study is to develop a new algorithm to generate samples from RN distribution. 

The very first attempt in this respect was made by means of independent Metropolis Hastings 

algorithm in  [15] whereas we here utilized random walk Metropolis algorithm. Therefore, this study 

enlarges the number of alternative data generation processes from RN distribution. In addition, this 

study also offers an approach to determine the optimal value for tuning parameter of RN distribution 

as opposed to the other studies in the literature that assume particular values for the parameters. 

 

In the next section, we first present the procedure to derive the distributional form of RN from a non-

robust normal density. Then, we theoretically evaluate the robust estimators for the unknown 

quantities of regression model when RN distribution is attained to the errors. Section 4 presents the 

connection between the proposed new robust estimators and the previous robust Bayesian estimators 

through the representation of our beliefs about the regression parameters by a non-informative prior. 

Motivated by a performance comparison, RN, Student-t, Laplace and Normal distributions were used 

for the sampling specification of the regression model. The finite sample performances of these error 

distributions are evaluated by a simulation study. In addition, the determination of the robustness 

tuning parameters for RN distribution was performed by the cross-validation as a data-driven method 

with empirical justification. This is followed by a real-world application on the data famously known 

as “stack loss data” and widely used in the literature [16-28] and many others. Then the paper is 

finalized by the results and discussion section. Rv3.2. software [29] is used for all the computations 

necessary throughout this study. 

 

2. RAMSAY-NOVICK (RN) DISTRIBUTION 

 

[11] raised the issue of robustness by modifying the influence function of a non robust density so that 

it is bounded and the resulting density yields modified robust influence function. This modification 

procedure can be applied on a family of densities including Gaussian, the multivariate Gaussian, 

inverse Gaussian, lognormal and log-odds densities.  
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A general expression for these densities can be given in the following way: 
 

             21

2

 
  

 
f x v r x s v exp d v,x                                                        (1) 

 

where x  and v  may be vector valued, v  is the location parameter,  d v,x  is a measure of distance of 

x  from v . Densities of this form are non-robust having unbounded influence functions. As a measure of 

robustness to small deviations from the reference model (1), the influence function of x  is given by (IF); 
 

        
 

 
    d log f x v d d v,x d log r x

d v,x
dx dx dx

                                     (2) 

 

 

Modified influence function (MIF) can be expressed as 
 

                  
 

 
  

 
 b

d log f x v d d v,x d log r x
d v,x exp ad

dx dx dx
                       (3) 

 

noting that the factor  bexp ad  has little effect on the influence function for small values of d . The 

constants a  and b  are the robustness tuning constants [11]. Thus, the robust version of a density in 

Eq. (1) can be defined as 
 

          abf x v , a,b r x A v s v exp d ; a 0 ,b 0                            (4) 

 

where      
1

2 2/ b b

ab d ba / b,ad 


 ,   is the incomplete gamma function and  A v  is a 

normalizing constant that does not depend on x  [11]. If a random variable X  follows the 

distributional form of Eq. (4), then it is said to have a RN distribution with the parameters a  and b . 

 

Suppose, this modification procedure is applied to a random variable X  having N(  , ) density. 

Rephrasing the density function as in Eq. (1) produces    d v,x x     and modified influence 

function of this variable, as defined in Eq. (3), becomes 
 

 
 

2

b
x x

MIF x exp a
 

 

  
  

 
 

 

 

This modified influence function with the details given in Appendix produces a RN distribution with 

the probability density function (p.d.f) as follows: 
 

      2/ 1 2
exp( ( ) ( , )) 

 

b

b x
f x v ba a

b





                                      (5) 

 

and briefly shown as X  RN , ,a,b  , here   and   are the location and scale parameters of the 

distribution, respectively. Figure 1 presents examples of this density with some differing values of 

robustness parameters which influence the thickness of tails of the standard RN distribution  0   

and 1  . 
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Figure 1. Influence of the robustness parameter on the tails of RN density functions comparatively with    

                Standard Normal.  

 
 

Figure 2. Plots of three influence functions from the Gaussian density 
 

Figure 2 shows this procedure’s achievement for converting a non-robust Gaussian density, having an 

unbounded IF, to a robust density with a bounded IF. It can also be seen here parameter b  controls the 

speed of IF approaching to zero. 
 

3. ROBUST REGRESSION BASED ON RN DISTRIBUTION 
 

Consider the following linear regression model, 
 

   i iy  ix 'β                                                         (6) 

 

where 
iy  is a dependent variable,  1i ipx ,...,xix '  is a set of regressors,  0 1 p, ,...,   β  is a vector 

of unknown model parameters and 
i  are i.i.d. random errors. Assuming the validity of normal data 

generating model, maximum likelihood (ML) and also ordinary least square (OLS) estimates of β  are 

   
1ˆ -

OLSβ = X'X X'y . The ML estimate for 2  is    2

ML
ˆ ˆˆ / n  y - Xβ ' y - Xβ   [30-33]. 

 

These estimates are known to be highly sensitive to the departures from the assumption of normality 

mainly due to the presence of outliers in the data set. One suggested way of achieving inferences more 

robust to outliers is to employ a unimodal heavy-tailed error distributions. Student-t and Laplace 

distributions are examples of heavy-tailed distributions and are widely applied within the regression 

framework in the literature [34-38]. We here tried to place the position of RN distribution within those 

applications as it also has a bounded influence function. Leaving aside the Bayesian perspective, 

which was the main consideration of the work by [11], we assume that the errors in model (6) have 
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modified RN distribution  (0, , , )i RN a b   and carry on estimation of the parameters of interest 

using the ML method with this assumption. We have  
 

           
1

i if y , , ,a,b A exp 


 ix β   for  1,2,...,i n                            (7) 

 

where  
 

     
1

2 2/ b b

ab i id ba / b,ad  


   ,   
2

1

exp ( (u))

u

i ab i

u

A d du   ,  i id y '   ix β  

Note that the quantity 
iA  is a normalizing constant, 

1u  and 
2u  are finite fixed limits of integration. 

The choice of 
1u  and 

2u  is not important as long as they are adequately far away from any dependent 

variable observation to provide robustness. It is assumed that the parameters a  and b  are fixed and 

parameters are regarded as the robustness tuning constants like 'k' in Huber's   function. In Eq. (7), 

 ab d   term behaves like the   function for M estimator and assures the influence function to be 

bounded [11]. Plot of   function can be seen in Figure 3. 
 

 
Figure 3. Plot of  ab x   function with 0 05a .  and 2b   

 

Figure 4 reveals a visual comparison of 
2 2x   used for OLS estimation and  ab x   for robust 

estimation. It is here clearly seen that  ab x   obtained from RN distribution is bounded and 

robust to outlying observations of any given data. 
 

 

Figure 4. Plots of 
2 2x   and  ab x  function 
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To obtain estimates of the model parameters, log-likelihood function can be defined as  

 

                   
1

2

11 1

2
n n n

/ b b

i i i

ii i

ln L ; , ln f y , , ,a,b ln A ba γ / b, ad 


 

  
     

  
 iy β x β       (8) 

Robust estimator of β  are the solutions of the equations:  

 

0
RN

RN

ˆ

ˆσ σ

ln L( ; , )






 β β

y β

β
 

 

   
 

2

1
2

1 1

2

0
RN

RN

b

in n
/ b

ˆi i b
ˆi i σ σi

γ ,ad
b

A A ba
ad




  

 
  

   
     

  
  β β

β
β

                              (9) 

 
The derivatives of these equations are a computational problem since it requires numerical integration 

for each observation. However, it is shown that the quantities  i i
A A 

RN
β̂  approach zero in the 

limit [11]. The partial derivative of lower incomplete gamma function in Eq. (9) w.r.t β  can be 

obtained as follows: 

 

 
     

2

2 2

2

RN

b

i
/ b -

ˆ RN i ib
ˆσ σi

γ ,ad
b ˆˆ ˆa b y w

ad





 
  

     
  RN

RN

i RN iβ β
x β x

β
 

 

where 
   RN

b
b

i i RN
ˆˆ ˆw exp a y 

    
 

i RNx β . In this respect, derivative of log-likelihood function for 

β  is obtained as 

 

 
   2

1

0
RNRN

RN

n

ˆ RN i i i RN

ˆ iσ σ

ln L( ; , ) ˆˆ ŵ x y
 


 




    
  

 i

y β
x β

β
 

 

Then, robust estimator of β  is defined as follows: 

 

   

1

1 1
RN RN

n n

i i i

i i

ˆ ˆ ˆw w y



 

   
    
   
 RN i i iβ x x ' x  

 

In matrix form as 

 

       
1-

RN
β̂ = X'WX X'Wy                                               (10) 
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where y  is a column vector of n  elements, X  is an  1n p     design matrix and β  is a column 

vector of the  1p   elements. The matrix  ˆ ˆ ˆdiag , ,..., 1 2 nW w w w  with the scalars ˆ
iw . Similarly, 

robust estimator of 2  is obtained from the following equation: 

 

    0
RN

RN

ˆ

ˆσ σ

ln L( ; , )

 





 β β

y β
                                               (11) 

 

The partial derivative of lower incomplete gamma function in Eq. (8) w.r.t   can be obtained as 

follows: 

 

 
 

 
 

2

i
2

2 3

σ σi

2
γ d

d
ix 'β

 









 
  

 
  

  RNRN

RN

b

/ b
ˆ RN i i RNb
ˆ

,a
b ˆˆ ˆa b w y

a
 

 

Derivative of log-likelihood function for   is obtained as 
 

   

 
 

 

1
2

1

2
2 3

1

0

RN

RN

n
/ b

ˆ i RN i

ˆ iσ σ

n
/ b

RN i i

i

ln L( ; , )
ˆA A ba

ˆˆ ˆa b w y

















  
     

  

   
  





RNβ β

i RN

y β

x 'β

 

 

Here the quantities ˆ( ) /i RN iA A   converge in the limit to a value that does not depend on i  if it is 

assumed that the interval of integration includes all observations [11], thus can be ignored in this 

equation. In this case, robust estimator of 2  is defined as follows: 

      
 

 
212

1
RN

n

RN RN i i RN

i

ˆˆ ˆ ŵ y 




  ix 'β                                       (12) 

 

Numerical methods are necessary in obtaining these estimators because of W  matrix includes both β  

and  . 

 

 

4. BAYESIAN INTERPRETATION OF RN ESTIMATES 
 

Consider the standard multiple linear regression model as in Eq. (6). Assuming that the errors are 

independent and RN distributed random variables, the likelihood function is: 
 

       
1

2

1

2

b

n i i
/ b

b
i

y x
p x , , , a,b exp ba / b, a


 







    
   

  
  

y β              (13) 

 

A vague prior jointly for β  and   is  

 

  1p , / β  
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Resulting posterior distribution is 

 

     p , y , x , a,b p y x , , , a,b p ,   β β β  

     
1

1 2

1

2

b

n i i
/ b

b
i

y x
exp ba / b, a


 








    
   

  
  

  

 

 

The log-posterior function is defined as 

 

            
1

2

1

2

b

n i i
/ b

b
i

y x
ln p , y , x ,a,b ln ba / b,a


  







  
    

 
 

β         (14) 

 

The partial derivative of the log-posterior w.r.t. β  produces the following equations: 

 

 

     
1

2 2 2

1

0

0

RNbayes

bayes

bayes

ˆ

ˆσ σ

n
/ b / b

RN i

i

b

i

b

RN

ln p , , , a,b

ˆˆba a b y

ˆy
exp a

ˆ















   

  
   

 
 



RNbayes

bayes

bayes

β β

i RN i

i RN

β y x

β

x β x

x β







                            (15) 

 

where 
   bayesRNbayes

b
b

i i RN
ˆˆ ˆw exp a y 

    
 

bayesi RNx β . In this case, Bayesian estimator of β  is obtained 

as follows: 

 
1

1 1
RN RNbayes bayes

n n

i i i

i i

ˆ ˆ ˆw w y



 

       
   
 bayesRN i i iβ x x x  

 

In matrix form as 

        
1ˆ 

bayes

-

RNβ X'WX X'Wy                                                    (16) 

 

which is exact the same give in Eq. (10). Similarly, Bayesian estimate of 2 can be obtained from the 

solution of the following Eq. (17).   

 

 
0

RNbayes

ˆ

ˆσ σ

ln p , , , a,b








 RNbayes
β β

β y x


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    

 

1
2 2 3

1

2

1

0

bayes

bayes

bayes

n
/ b / b

RN

iRN

b

i

ib

RN

ˆba a b
ˆ

ˆy
ˆexp a y

ˆ











  

  
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Arranging this equation we get the following 
bayes

2

RN̂ . 

 

 
 

2
2

1
bayes RNbayes

n

RN i i

i

ˆˆ ŵ y


  bayesi RNx 'β                                       (17) 

 

Note that this weights have same forms given in Eq. (10). In addition, numerical methods are 

necessary for solution of Eq. (16) and Eq. (17).  

 

 

5. GENERATING SAMPLES FROM RN DISTRIBUTION 

 

Due to the unusual functional form of RN, direct sampling of this distribution is not straightforward. 

We therefore utilized random walk Metropolis Hastings algorithm to generate samples from this 

distribution [39-40]. Target distribution is here the standard RN with density function (d.f.); 

 

 
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b
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                   

 incomplete gamma function 

 

For the generation of candidate values of the chain, the proposal distribution  g x  is chosen as 

Normal with a mean determined by the chain’s current state (i.e. random walk), and with a scale 

defining the size of the walk.  Therefore, the scale of the proposal was chosen big enough to ensure 

tail thickness and good mixing properties. A realization of a first-order Markov process,
     1 2 t

x ,x , ,x , can then be generated by the following steps: 

 

1) Set the parameter values for a  and b . Then initialize the algorithm by an arbitrary value (0)x . 

2) At step ( 1t  ), current state is ( 1)tx  . Generate a candidate state, *x , using a random walk as; 

 

1
*

tx x      where  N 0,3.4  

 

3) Calculate the ratio of two states: 
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as the proposal density is symmetric, the ratio reduces to 
 
  1

*

t

f x ;a,b

f x ;a,b


 . 

 

4) Generate a random value of u from U(0,1) 

5)  If     1t *

tu x ,x


        set ( ) *tx x  else set ( ) ( 1)t tx x    

6) Repeat steps (2)-(5)  N times (# of iteration) 

 

An initial run of the chain with 15000 iterations and a burn-in period of 5000 produced the acceptance 

rate as 0.398 which is plausible as the desirable value for an acceptance rate is stated to be between 0.2 

and 0.7 [41]. In the process of generating samples, we run the chain longer and recorded every 5
th
 

value in order to minimize the autocorrelation. Figure 5 presents the resulting chain and its 

autocorrelation function.  
 

A sample with the size of 500, randomly chosen from the whole chain, was also plotted here for a 

comparison of theoretical and empirical densities, which indicated that the generated sample follows a 

RN distribution. 

 

 
Figure 5. Comparison of density functions of theoretical RN( a = 0.05, b = 2) and generated sample 

 

6. SIMULATION STUDY 

 

We consider the following model 

 

0 1 1 1 2i i p ip iy x ... x , i , ,...,n          

 

with 5p  . All j  coefficients are set to the value of 1. The sample size are taken as n  = 20, 50 and 

100. The regressors are generated from the standard normal distribution. For the error, we consider the 

following distributions: N(0,1), Student-t  3v  , standard Laplace, standard RN (0, 1, a = 0.05, b = 

2). Tail behaviours of these alternative error distributions are given in Figure 6. To assess the influence 

of outliers on the proposed estimators, we consider adding outliers to the data in y   direction with 

the amount of * %n k  were k  is taken as 5 and 10. The outliers are generated from N(100,1) and 
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added to the data. With these settings; four error distributions, three sample sizes, an outlier case with 

a percentage of 5 or 10 and  no outlier case altogether made up to 108 scenarios in total for this 

simulation study. We generated 1000 Monte Carlo replicates for each settings.  
 

Parameter estimates for Normal model were obtained by means of “lm” function in {stats} library, for 

Laplace model via “l1fit” function as well as “rlaplace” function to generate Laplace distributed errors 

in {vgam} library and for Student-t model by means of “tlm” function in {hett} library of Rv.3.2 

software [29]. Iteratively Reweighted Least Squares (IRLS) numerical solution of the Eq. (10) and Eq. 

(12) were applied for the same purpose when the errors of the model are assumed to follow RN 

distribution. Functions of our own were used to calculate the RN estimates. We computed the 

empirical mean, standard error (SE), bias and root mean square error (RMSE) of the parameter 

estimators and the results are presented in Tables 1-5. All necessary computations were performed 

within R platform. 
 

 

 

Figure 6. Visual comparison of tails of the considered error distributions 
 

6.1. Simulation Results  

 

Regression modelling of the Normal generating data without outliers revealed that the results for 

robustified version of Normal density namely Ramsay-Novick are similar with the estimates of OLS 

estimators at the expence of some computational cost. RMSE’s of RN estimates appears slightly larger 

than Normal, however this difference diminishes as the sample size enlarges. When there is no 

departures from normality assumption, Student-t and Laplace regression estimators also perform well 

except for scale parameters evaluated incorrectly with larger RMSE’s (Table 1). Assumption of the 

Student-t data generation process without outliers produced performances, in the decreasing order, as 

RN, Laplace and Normal followed by naturally the best estimates of Student-t. It must be noted that 

the scale parameter was better estimated by Student-t and Laplace estimators compared to others. 

Student-t fit of the model out performs even though the errors were generated from Laplace 

distribution for both considered number of parameters. RN estimates except for scale parameter also 

appears reasonably well. If a RN distribution family is assumed to fit best to the data, performances of 

both OLS and RN estimates appear almost the same. Estimates of Student-t and Laplace follow those 

comparatively with respect to the RMSE measure (Table 1). 
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Table 1. Robust and non-robust estimates of the regression model without outliers 

 

i  Normal 

 

n 

 

Estimators 0̂  

(RMSE)
 

1̂  
(RMSE)

 

2̂  

(RMSE)
 

3̂  
(RMSE)

 

4̂  

(RMSE)
 

5̂  

(RMSE)
 

̂  

(RMSE) 
 

 

20 

Normal 0.994(0.26) 1.005(0.28) 0.999(0.28) 1.019(0.28) 0.994(0.27) 0.993(0.28) 0.816(0.24) 

t(3) 0.991(0.29) 1.006(0.31) 0.999(0.30) 1.019(0.31) 0.994(0.31) 0.997(0.31) 0.588(0.43) 

Laplace 0.991(0.32) 1.013(0.34) 0.996(0.33) 1.027(0.34) 0.987(0.34) 0.997(0.34) 0.603(0.42) 

RN(0.05,2) 0.993(0.26) 1.006(0.28) 0.999(0.28) 1.019(0.27) 0.996(0.28) 0.993(0.28) 0.748(0.29) 

 
 

50 

Normal 0.994(0.14) 1.001(0.15) 0.997(0.15) 0.998(0.15) 0.998(0.15) 0.999(0.15) 0.929(0.12) 

t(3) 0.993(0.16) 1.003(0.16) 0.998(0.16) 0.995(0.16) 0.998(0.16) 0.995(0.16) 0.720(0.29) 

Laplace 0.990(0.18) 1.005(0.19) 0.999(0.18) 0.991(0.18) 1.004(0.18) 0.988(0.18) 0.721(0.29) 

RN(0.05,2) 0.993(0.15) 1.001(0.15) 0.997(0.15) 0.997(0.15) 0.998(0.15) 0.998(0.15) 0.854(0.17) 

 

 
100 

Normal 1.002(0.09) 0.999(0.10) 1.007(0.10) 0.999(0.10) 1.005(0.10) 1.001(0.10) 0.961(0.08) 

t(3) 1.003(0.10) 0.999(0.11) 1.007(0.11) 0.999(0.11) 1.006(0.11) 1.003(0.11) 0.753(0.25) 

Laplace 1.001(0.12) 0.999(0.13) 1.006(0.13) 0.996(0.12) 1.004(0.12) 0.999(0.13) 0.755(0.25) 

RN(0.05,2) 1.002(0.09) 0.999(0.10) 1.007(0.10) 0.999(0.10) 1.005(0.10) 1.002(0.10) 0.884(0.13) 

(3)i t  

 

 

20 

Normal 1.001(0.25) 1.005(0.27) 1.005(0.28) 0.995(0.27) 1.001(0.27) 1.007(0.27) 0.829(0.23) 

t(3) 1.009(0.28) 1.005(0.30) 1.002(0.31) 0.997(0.30) 1.005(0.31) 1.004(0.30) 0.598(0.42) 

Laplace 1.017(0.31) 1.007(0.33) 1.000(0.34) 0.989(0.33) 1.007(0.34) 1.005(0.34) 0.609(0.41) 

RN(0.05,2) 1.002(0.25) 1.005(0.27) 1.004(0.28) 0.995(0.27) 1.001(0.28) 1.007(0.27) 0.761(0.28) 

 
 

50 

Normal 0.995(0.14) 1.009(0.15) 0.998(0.15) 1.004(0.15) 0.998(0.15) 0.995(0.15) 0.930(0.12) 

t(3) 0.993(0.16) 1.006(0.16) 1.002(0.17) 1.008(0.16) 1.000(0.17) 0.994(0.17) 0.719(0.29) 

Laplace 0.991(0.18) 1.004(0.19) 1.000(0.19) 1.006(0.19) 1.000(0.19) 0.992(0.19) 0.721(0.29) 

RN(0.05,2) 0.995(0.14) 1.008(0.15) 0.998(0.15) 1.005(0.15) 0.999(0.15) 0.995(0.15) 0.855(0.17) 

 

 
100 

Normal 0.999(0.10) 1.001(0.10) 0.995(0.10) 1.002(0.10) 1.009(0.10) 0.995(0.10) 0.965(0.08) 

t(3) 0.999(0.10) 1.002(0.11) 0.993(0.11) 1.004(0.11) 1.010(0.17) 0.994(0.11) 0.756(0.25) 

Laplace 0.995(0.12) 1.003(0.13) 0.990(0.12) 1.004(0.12) 1.009(0.12) 0.993(0.13) 0.759(0.25) 

RN(0.05,2) 0.999(0.10) 1.001(0.10) 0.995(0.10) 1.002(0.10) 1.009(0.10) 0.995(0.10) 0.887(0.13) 

i Laplace 

 
 

20 

Normal 1.003(0.26) 0.993(0.28) 1.003(0.28) 1.011(0.26) 1.005(0.27) 1.005(0.28) 0.817(0.24) 

t(3) 1.001(0.29) 0.988(0.30) 1.009(0.32) 1.012(0.30) 1.007(0.30) 1.009(0.32) 0.591(0.43) 

Laplace 1.006(0.32) 0.987(0.33) 1.013(0.34) 1.006(0.32) 1.003(0.33) 1.006(0.35) 0.610(0.42) 

RN(0.05,2) 1.002(0.26) 0.992(0.28) 1.005(0.28) 1.012(0.27) 1.006(0.27) 1.006(0.29) 0.750(0.29) 

 

 
50 

Normal 0.996(0.15) 0.998(0.14) 0.998(0.15) 1.003(0.16) 0.994(0.15) 1.006(0.15) 0.935(0.12) 

t(3) 0.998(0.16) 0.998(0.16) 0.998(0.16) 1.003(0.17) 0.995(0.17) 1.007(0.16) 0.722(0.29) 

Laplace 1.001(0.18) 0.999(0.18) 0.999(0.19) 1.001(0.19) 0.993(0.19) 1.008(0.19) 0.724(0.29) 

RN(0.05,2) 0.997(0.15) 0.998(0.14) 0.998(0.15) 1.002(0.16) 0.994(0.16) 1.007(0.15) 0.859(0.17) 

 

 
100 

Normal 0.999(0.10) 1.000(0.09) 1.005(0.11) 0.999(0.10) 0.997(0.10) 1.003(0.10) 0.965(0.08) 

t(3) 0.999(0.11) 1.002(0.10) 1.007(0.11) 0.997(0.11) 0.997(0.11) 1.003(0.11) 0.754(0.25) 

Laplace 0.999(0.13) 1.002(0.12) 1.008(0.13) 0.994(0.13) 0.995(0.13) 1.002(0.13) 0.757(0.25) 

RN(0.05,2) 0.999(0.10) 1.000(0.10) 1.005(0.11) 0.999(0.10) 0.997(0.10) 1.004(0.11) 0.886(0.13) 

i RN(0.05,2) 

 
 

20 

Normal 1.011(0.29) 1.003(0.30) 1.008(0.29) 0.992(0.29) 1.002(0.30) 0.992(0.31) 0.893(0.21) 

t(3) 1.008(0.32) 1.005(0.33) 1.014(0.33) 0.983(0.32) 1.000(0.33) 0.992(0.34) 0.635(0.39) 

Laplace 1.003(0.35) 1.006(0.36) 1.018(0.36) 0.985(0.36) 1.001(0.37) 0.994(0.36) 0.655(0.38) 

RN(0.05,2) 1.009(0.29) 1.003(0.30) 1.009(0.29) 0.991(0.29) 1.003(0.30) 0.994(0.31) 0.813(0.25) 

 

 
50 

Normal 1.003(0.16) 0.995(0.16) 0.999(0.17) 0.989(0.16) 1.005(0.15) 0.998(0.16) 0.981(0.11) 

t(3) 1.005(0.17) 0.996(0.17) 0.997(0.18) 0.987(0.17) 1.005(0.16) 1.006(0.17) 0.754(0.26) 

Laplace 1.007(0.20) 0.996(0.20) 0.992(0.21) 0.990(0.19) 1.009(0.19) 1.002(0.19) 0.757(0.26) 

RN(0.05,2) 1.002(0.16) 0.995(0.16) 0.999(0.17) 0.988(0.16) 1.005(0.15) 0.998(0.16) 0.898(0.14) 

 

 

100 

Normal 1.012(0.11) 1.001(0.11) 1.002(0.11) 0.994(0.10) 0.998(0.10) 1.001(0.11) 1.023(0.09) 

t(3) 1.000(0.12) 1.000(0.12) 0.999(0.12) 0.994(0.11) 0.998(0.11) 1.001(0.12) 0.791(0.22) 

Laplace 0.999(0.14) 0.999(0.13) 0.999(0.13) 0.997(0.13) 1.001(0.13) 1.002(0.14) 0.797(0.21) 

RN(0.05,2) 1.007(0.11) 1.001(0.11) 1.001(0.11) 0.994(0.11) 0.998(0.10) 1.001(0.11) 0.933(0.09) 
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Existence of outliers in y   direction however caused large departures in the parameter estimates 

when Normal distribution was adapted for the errors. It can also be seen that the estimates are very 

vulnerable to increasing number of outlying observations. On the other hand, RN estimators can 

tolerate such an influence without being affected regardless of the outliers percentage level with 

respect to the sample size. This robust likelihood correctly assigned the parameter values with 

RMSE’s getting smaller as the sample size increases. It must be noted that under all settings Student-t 

estimators also behave well with very slightly larger variances (Table 2).  

 

Table 2. Robust estimates for the regression model with outliers in y   direction ( (0,1)i N ) 

 

 

It is challenging to observe that RN estimates perform almost equivalently well as the Student-t 

estimates when the errors were allowed to have tails of Student-t and also included outliers. LS 

estimates are again vulnarable to the abnormal observations but its robustified version shows great 

performance in obtaining real values of parameters (Table 3). When the errors were generated from 

Laplace distribution, Student-t estimates were observed to be better than Laplace estimates. The 

performance of RN estimators follow the Student-t and as the sample size gets larger they compete 

with Student-t estimates (Table 4). 

 

 

 

 

 

 

 

 

 

 

n 

 
 

Outlier 
(%) 

 
 

Estimators 

 

0̂  

(RMSE)
 

 

1̂  
(RMSE)

 

 

2̂

(RMSE)
 

 

3̂  
(RMSE)

 

 

4̂

(RMSE)
 

 

5̂

(RMSE)
 

 

̂  
(RMSE) 

 

 
20 

5 

 

Normal 3.636(3.11) 1.354(3.46) 1.064(2.64) 0.801(3.31) 1.186(3.00) 1.134(3.03) 9.144(8.19) 

t(3) 1.034(0.28) 1.059(0.34) 0.990(0.32) 0.999(0.34) 0.995(0.35) 1.019(0.33) 0.722(0.31) 

Laplace 1.179(0.39) 1.066(0.44) 1.005(0.39) 0.990(0.41) 1.001(0.44) 1.032(0.41) 2.991(1.99) 

RN(0.05,2) 1.019(0.26) 1.052(0.33) 0.999(0.30) 1.010(0.29) 0.990(0.32) 1.007(0.30)   0.738(0.29) 

10 

Normal 6.261(5.65) 1.395(3.87) 0.923(3.82) 1.387(4.16) 1.369(3.96) 1.406(4.02) 12.752(11.79) 

t(3) 1.019(0.31) 1.051(0.33) 0.999(0.30) 1.071(0.34) 1.022(0.31) 1.029(0.29) 0.870(0.26) 

Laplace 1.169(0.43) 1.082(0.46) 0.974(0.39) 1.082(0.46) 1.025(0.43) 1.073(0.38) 5.384(4.39) 

RN(0.05,2) 1.010(0.29) 1.047(0.31) 1.002(0.29) 1.069(0.34) 1.017(0.29) 1.034(0.29) 0.694(0.35) 

50 

5 

Normal 3.944(3.00) 0.739(1.86) 1.030(1.76) 1.223(1.65) 0.716(1.61) 0.873(1.74) 11.128(10.14) 

t(3) 0.992(0.18) 0.990(0.16) 1.003(0.16) 1.013(0.18) 0.973(0.17) 0.987(0.15) 0.858(0.18) 

Laplace 1.077(0.21) 0.984(0.20) 1.006(0.19) 1.008(0.22) 0.965(0.20) 0.966(0.19) 3.599(2.60) 

RN(0.05,2) 0.986(0.16) 0.992(0.15) 0.999(0.15) 1.016(0.18) 0.976(0.17) 0.989(0.14) 0.812(0.21) 

10 

Normal 6.015(5.06) 0.999(2.09) 0.727(2.27) 1.295(2.29) 0.886(2.35) 0.438(2.39) 13.978(12.99) 

t(3) 1.018(0.18) 0.998(0.16) 1.005(0.17) 0.988(0.16) 1.020(0.17) 1.028(0.18) 1.003(0.12) 

Laplace 1.158(0.25) 0.999(0.19) 1.001(0.21) 1.006(0.21) 1.031(0.24) 1.030(0.23) 5.531(4.53) 

RN(0.05,2) 1.008(0.17) 0.999(0.16) 1.003(0.17) 0.994(0.16) 1.019(0.16) 1.026(0.17) 0.791(0.23) 

 

100 

5 

Normal 3.430(2.45) 0.949(0.99) 0.999(1.11) 0.976(1.18) 0.922(1.24) 1.004(1.07) 10.474(9.48) 

t(3) 1.012(0.11) 0.999(0.11) 0.993(0.12) 1.004(0.13) 0.987(0.11) 1.010(0.12) 0.889(0.13) 

Laplace 1.073(0.16) 0.988(0.13) 1.001(0.14) 1.008(0.16) 1.003(0.13) 1.004(0.14) 3.176(2.18) 

RN(0.05,2) 1.009(0.10) 1.001(0.12) 0.988(0.11) 1.005(0.12) 0.986(0.11) 1.009(0.11) 0.868(0.15) 

10 

Normal 5.958(4.97) 1.036(1.48) 1.035(1.48) 0.978(1.51) 1.196(1.51) 0.728(1.49) 14.375(13.38) 

t(3) 1.036(0.11) 1.010(0.11) 1.006(0.10) 1.020(0.11) 1.006(0.11) 1.022(0.11) 1.057(0.10) 

Laplace 1.171(0.21) 1.016(0.15) 1.013(0.13) 1.015(0.13) 1.019(0.14) 1.029(0.16) 5.559(4.56) 

RN(0.05,2) 1.022(0.11) 1.007(0.11) 1.005(0.10) 1.020(0.11) 1.004(0.10) 1.021(0.11) 0.828(0.18) 
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Table 3. Robust estimates for the regression model with outliers in y   direction ( (3)i t ) 

 

Table 4. Robust estimates for the regression model with outliers in y   direction (
i Laplace) 

 

 
 

n 

 

 

Outlier 
(%) 

 
 

Estimators 

 

0̂

(RMSE)
 

 

1̂  
(RMSE)

 

 

2̂

(RMSE)
 

 

3̂  
(RMSE)

 

 

4̂

(RMSE)
 

 

5̂  

(RMSE)
 

 

̂  
(RMSE) 

 
 

20 

5 

 

Normal 3.429(2.86) 1.052(2.99) 0.873(2.87) 0.889(2.98) 1.057(2.99) 1.338(2.99) 9.149(8.21) 

t(3) 0.985(0.27) 0.988(0.30) 1.039(0.27) 1.004(0.31) 1.003(0.29) 0.999 (0.36) 0.701(0.34) 

Laplace 1.094(0.36) 1.001(0.37) 1.042(0.33) 0.993(0.36) 0.979(0.40) 0.997(0.42) 2.989(1.99) 

RN(0.05,2) 0.984(0.27) 0.986(0.30) 1.035(0.24) 1.004(0.28) 1.014(0.26) 1.012(0.32) 0.725(0.31) 

10 

Normal 5.648(5.11) 0.706(4.45) 0.409(4.26) 0.954(4.52) 0.664(4.67) 0.791(4.47) 12.517(11.61) 

t(3) 1.046(0.31) 0.987(0.30) 0.999(0.28) 0.989(0.29) 0.988(0.32) 0.993(0.34) 0.849(0.25) 

Laplace 1.224(0.46) 0.974(0.42) 0.965(0.39) 0.981(0.46) 0.980(0.43) 0.951 (0.46) 5.419(4.42) 

RN(0.05,2) 1.037(0.30) 0.991(0.29) 0.993(0.27) 0.995(0.28) 0.990(0.31) 0.997(0.33) 0.685(0.35) 

50 

5 

Normal 3.967(3.02) 1.101(1.85) 0.868(1.73) 0.584(1.85) 0.867(1.74) 0.799(1.95) 11.084(10.09) 

t(3) 0.996(0.15) 1.019(0.18) 1.001(0.17) 1.006(0.16) 0.994(0.16) 1.019(0.18) 0.881(0.17) 

Laplace 1.079(0.19) 1.028(0.24) 0.993(0.19) 1.001(0.21) 0.985(0.20) 1.015(0.22) 3.622(2.62) 

RN(0.05,2) 0.998(0.15) 1.021(0.16) 1.001(0.16) 1.015(0.15) 0.994(0.14) 1.019(0.17) 0.833(0.19) 

10 

Normal 5.786(4.86) 1.067(2.14) 0.470(2.36) 0.853(2.43) 1.306(2.50) 0.744(2.61) 13.911(12.92) 

t(3) 1.015(0.18) 1.023(0.17) 1.008(0.17) 0.978(0.18) 0.999(0.19) 1.008(0.17) 1.032(0.12) 

Laplace 1.165(0.27) 1.032(0.23) 0.979(0.23) 0.974(0.24) 1.001(0.22) 1.005(0.24) 5.536(4.54) 

RN(0.05,2) 0.999(0.18) 1.019(0.17) 1.008(0.17) 0.979(0.18) 0.996(0.18) 1.006(0.16) 0.815(0.20) 

 

100 

5 

Normal 3.475(2.49) 0.984(1.07) 0.870(1.04) 0.965(1.06) 1.051(1.28) 0.950(1.17) 10.462(9.47) 

t(3) 1.033(0.12) 0.991(0.12) 1.006(0.12) 0.996(0.11) 0.996(0.11) 0.996(0.12) 0.879(0.14) 

Laplace 1.096(0.16) 1.009(0.14) 1.008(0.14) 0.996(0.14) 0.990(0.14) 0.986(0.14) 3.166(2.17) 

RN(0.05,2) 1.022(0.11) 0.994(0.12) 1.003(0.11) 1.001(0.11) 0.998(0.11) 0.993(0.11) 0.861(0.16) 

10 

Normal 5.972(4.99) 0.794(1.64) 0.888(1.57) 1.182(1.49) 1.028(1.48) 0.999(1.40) 14.349(13.35) 

t(3) 1.022(0.12) 0.989(0.12) 1.017(0.13) 0.992(0.12) 0.999(0.12) 0.988(0.13) 1.069(0.11) 

Laplace 1.159(0.21) 0.990(0.16) 1.004(0.17) 0.997(0.16) 0.996(0.14) 0.979(0.16) 5.564(4.56) 

RN(0.05,2) 1.004(0.11) 0.989(0.12) 1.017(0.13) 0.993(0.11) 0.999(0.12) 0.989(0.12) 0.839(0.18) 

 
 

n 

 

 

Outlier 
(%) 

 
 

Estimators 

 

0̂

(RMSE)
 

 

1̂  
(RMSE)

 

 

2̂

(RMSE)
 

 

3̂  
(RMSE)

 

 

4̂

(RMSE)
 

 

5̂

(RMSE)
 

 

̂  
(RMSE) 

 
 

20 

5 

 

Normal 3.762(3.19) 0.891(2.93) 1.058(3.20) 1.217(2.82) 0.879(3.38) 0.876(3.11) 9.186(8.25) 

t(3) 1.022(0.26) 1.028(0.32) 1.004(0.32) 0.999(0.25) 1.039(0.39) 1.007(0.32) 0.703(0.33) 

Laplace 1.096(0.33) 1.059(0.42) 1.012(0.36) 0.994(0.33) 1.049(0.42) 1.022(0.38) 3.004(2.01) 

RN(0.05,2) 1.018(0.24) 1.021(0.30) 1.008(0.30) 0.992(0.25) 1.035(0.39) 1.018(0.29) 0.726(0.31) 

10 

Normal 5.721(5.08) 0.578(3.81) 0.756(4.64) 0.930(4.09) 1.275(4.14) 1.564(4.53) 12.429(11.5) 

t(3) 0.964(0.33) 0.963(0.30) 0.938(0.38) 0.978(0.29) 1.023(0.31) 1.032(0.33) 0.896(0.22) 

Laplace 1.173(0.45) 0.912(0.45) 0.972(0.54) 0.948(0.51) 1.029(0.46) 1.017(0.49) 5.415(4.42) 

RN(0.05,2) 0.950(0.33) 0.974(0.29) 0.938(0.36) 0.989(0.28) 1.023(0.31) 1.020(0.32) 0.717(0.32) 

50 

5 

Normal 3.997(3.07) 1.229(1.95) 0.809(1.71) 0.823(1.84) 0.584(1.64) 1.112(1.96) 11.083(10.09) 

t(3) 1.001(0.15) 1.009(0.18) 0.990(0.16) 1.001(0.17) 0.993(0.14) 0.985(0.16) 0.859(0.17) 

Laplace 1.089(0.21) 1.013(0.23) 0.996(0.19) 0.992(0.22) 0.988(0.16) 0.980(0.20) 3.599(2.60) 

RN(0.05,2) 0.996(0.14) 1.010(0.18) 0.990(0.15) 1.005(0.16) 0.994(0.14) 0.986(0.15) 0.815(0.20) 

10 

Normal 5.881(4.93) 0.800(2.25) 0.957(2.30) 1.002(2.68) 0.596(2.33) 1.084(2.16) 13.936(12.95) 

t(3) 1.005(0.17) 0.979(0.18) 1.019(0.16) 1.015(0.16) 0.989(0.19) 1.001(0.19) 1.032(0.12) 

Laplace 1.151(0.26) 0.979(0.23) 1.016(0.23) 0.995(0.22) 0.985(0.23) 1.003(0.22) 5.544(4.54) 

RN(0.05,2) 0.992(0.16) 0.983(0.18) 1.017(0.16) 1.008(0.16) 0.991(0.18) 1.001(0.18) 0.815(0.20) 

 

100 

5 

Normal 3.465(2.48) 0.874(1.11) 0.777(1.09) 0.897(1.12) 0.808(1.08) 0.848(1.18) 10.517(9.52) 

t(3) 0.990(0.11) 0.994(0.12) 0.988(0.11) 0.989(0.11) 1.022(0.12) 1.002(0.11) 0.874(0.14) 

Laplace 1.045(0.13) 0.990(0.14) 0.991(0.15) 0.994(0.14) 1.022(0.14) 0.992(0.14) 3.175(2.18) 

RN(0.05,2) 0.986(0.09) 0.995(0.11) 0.988(0.11) 0.987(0.10) 1.015(0.10) 1.002(0.10) 0.857(0.16) 

10 

Normal 5.899(4.91) 0.902(1.29) 1.012(1.62) 1.137(1.59) 0.683(1.67) 0.952(1.66) 14.336(13.34) 

t(3) 1.019(0.12) 0.985(0.10) 1.006(0.11) 0.997(0.10) 1.007(0.11) 1.017(0.12) 1.044(0.09) 

Laplace 1.158(0.21) 0.990(0.13) 1.012(0.14) 1.010(0.15) 0.996(0.14) 1.030(0.15) 5.553(4.55) 

RN(0.05,2) 1.007(0.11) 0.986(0.10) 1.007(0.11) 0.993(0.09) 1.007(0.11) 1.013(0.11) 0.819(0.19) 
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Robustness properties of RN estimators become more evident when the errors follow RN distribution 

and data include outliers (Table 5). In all cases, RN estimates perform better than the others. However, 

the difference between the performances of RN and Student-t diminishes as the sample size increases. 

Laplace estimator follows those performances with larger RMSE values. Besides, all results indicate that 

least squares estimates behave badly when the errors are heavy-tailed and contaminated by outliers. 

 

Table 5. Robust estimates for the regression model with outliers in y   direction ( (0.05,2)i RN ) 

 

 

6.2. Choosing Optimal Tuning Parameters 

 

RN distribution involves two robustness tuning parameters which control the degree of boundedness 

of the IF. So far we have assumed that the values of these parameters are known and set the values as 

a =0.05 and b =2 the most preferable in the literature. It is now of our interest for real world 

applications to determine the optimal tuning parameters via a data-driven method. We here preferred 

the k-fold cross-validation (CV) method that has been widely used for the evaluation of model 

accuracies. In k-fold CV procedure, the original data set is randomly divided into “k” equal size 

subsets (or folds). One of the “k” subsets is used as validation data to test the model constructed by the 

remaining “k-1” subset known as training data [42-45]. For choosing optimal tuning parameters, it is 

necessary to impose boundedness condition on the IF to achieve a comparable trade-off. We here 

followed the statement of [11] “The robustness parameters (a, b) should be chosen so that (a) the 

robust density has the same shape in the central region as the target density and (b) the influence 

function (3) attains its bounds at approximately the point at which the target density (1) begins to 

assign negligible probability to y. These bounds are attained at   (ab)
-1/b

. In the case of a Gaussian 

target density, the choices (.3, 1.0) and (.05, 2.0) position the bounds at about three scale units from 

the location”. Therefore, we started with the value of 0.3 for the parameter a  when b =1 and 

decreased its value with a grid of 0.1.  

 

 
n 

 
 

Outlier 

(%) 

 
 

Estimators 

 

 

0̂  

(RMSE)
 

 

 

1̂  

(RMSE)
 

 

 

2̂  

(RMSE)
 

 

 

3̂  

(RMSE)
 

 

 

4̂  

(RMSE)
 

 

 

5̂  

(RMSE)
 

 

 

̂  

(RMSE) 

 

 
20 

5 
 

Normal 3.633(2.98) 0.991(2.71) 1.040(3.37) 0.849(2.87) 0.213(3.16) 0.919(3.19) 9.298(8.35) 

t(3) 1.057(0.36) 1.020(0.34) 1.035(0.35) 1.004(0.33) 1.007(0.29) 0.957(0.29) 0.735(0.31) 

Laplace 1.116(0.43) 1.026(0.42) 1.020(0.39) 0.991(0.40) 0.999(0.40) 0.957(0.37) 3.046(2.05) 

RN(0.05,2) 1.045(0.33) 1.012(0.31) 1.019(0.33) 1.009(0.30) 0.996(0.29) 0.945(0.28) 0.762(0.28) 

10 

Normal 5.907(5.55) 0.901(4.20) 0.590(4.24) 0.877(4.46) 0.429(3.65) 1.176(4.15) 12.726(11.78) 

t(3) 0.988(0.32) 0.980(0.33) 0.991(0.35) 1.004(0.31) 0.991(0.35) 1.028(0.33) 0.904(0.24) 

Laplace 1.223(0.48) 0.988(0.44) 0.986(0.45) 1.014(0.41) 1.010(0.48) 1.018(0.40) 5.465(4.48) 

RN(0.05,2) 0.975(0.31) 0.988(0.30) 0.997(0.34) 1.001(0.30) 0.988(0.35) 1.031(0.32) 0.730(0.32) 

50 

5 

Normal 3.842(2.93) 1.289(1.75) 0.883(1.87) 0.984(2.10) 0.821(1.84) 0.990(1.74) 11.039(10.05) 

t(3) 0.973(0.15) 1.012(0.16) 1.019(0.17) 0.975(0.19) 0.972(0.17) 1.009(0.17) 0.913(0.14) 

Laplace 1.053(0.20) 1.010(0.18) 1.023(0.22) 0.975(0.23) 0.964(0.22) 1.014(0.21) 3.649(2.65) 

RN(0.05,2) 0.966(0.14) 1.004(0.16) 1.017(0.16) 0.978(0.18) 0.970(0.16) 1.004(0.17) 0.872(0.16) 

10 

Normal 5.823(4.88) 1.346(2.42) 0.815(2.39) 0.579(2.37) 0.549(2.18) 1.215(2.41) 13.916(12.93) 

t(3) 1.014(0.18) 1.014(0.18) 0.989(0.18) 1.032(0.19) 0.996(0.17) 0.992(0.16) 1.074(0.15) 

Laplace 1.153(0.25) 1.012(0.24) 0.986(0.24) 1.020(0.25) 0.971(0.23) 0.996(0.20) 5.562(4.56) 

RN(0.05,2) 1.002(0.18) 1.016(0.18) 0.989(0.17) 1.035(0.19) 0.999(0.17) 0.991(0.15) 0.850(0.18) 

 

100 

5 

Normal 3.438(2.45) 0.898(1.22) 1.152(1.08) 0.977(1.03) 0.660(1.19) 1.009(1.23) 10.458(9.46) 

t(3) 0.995(0.12) 0.996(0.12) 1.022(0.12) 0.997(0.11) 1.019(0.15) 0.996(0.12) 0.931(0.10) 

Laplace 1.058(0.15) 1.004(0.15) 1.027(0.14) 1.001(0.14) 1.008(0.17) 0.993(0.14) 3.215(2.22) 

RN(0.05,2) 0.991(0.12) 0.993(0.12) 1.019(0.11) 0.999(0.10) 1.018(0.14) 0.994(0.12) 0.919(0.11) 

10 

Normal 5.915(4.93) 0.548(1.61) 0.949(1.73) 0.678(1.56) 0.789(1.54) 0.879(1.60) 14.379(13.38) 

t(3) 1.035(0.12) 1.005(0.13) 0.982(0.12) 1.009(0.12) 0.979(0.12) 1.016(0.11) 1.117(0.15) 

Laplace 1.179(0.23) 0.996(0.17) 0.980(0.15) 1.000(0.14) 0.993(0.16) 1.004(0.15) 5.622(4.62) 

RN(0.05,2) 1.019(0.12) 1.004(0.13) 0.982(0.11) 1.010(0.12) 0.977(0.11) 1.017(0.10) 0.882(0.14) 
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Similarly, we began with a =0.05 when b =2 and decreased its value with a grid of 0.01. Note that the 

optimality search within those values put the boundedness condition at the values of “3 or more” as 

the standard RN distribution scale is one. In order to show an empirical justification, we again 

simulated a model with 5 regressors using the same settings in section 6.1 except for the sample size 

taken as 1000. Pure (no outlier) and contaminated models (5 or 10 outliers created by adding a 

constant, C, to y   direction) were tested. 10-fold CV is performed for the models with the trial 

values of tuning parameters above mentioned. Prediction values of compared models ( ˆ k

iy   ) are 

obtained and the residuals are evaluated as  
 

,
ˆ( ) ,k

i k i ie y y i   validation set  

Then the mean square error (MSE) is calculated as 

,

10
2

,

1 3

,

( )

(# 3)

i k

i k

k e

i k

e

MSE
of e

 




 
 

To achieve a more precise estimate of MSE, this 10-fold cross validation process was repeated “100” 

times and the averages of the MSEs were calculated and the model with the smallest estimate is 

chosen as the “optimal” model. The results for the pure model are presented in Table 6. It appears that 

CV method achieved to discover the optimal values of tuning parameters which are a = 0.05 and b =2 

as we set. However, inclusion of outliers affects the issue of selecting “optimum” tuning parameters 

(see Table 7). In case of moderate outliers (C=10), the optimal model still appears as RN(0.05, 2). The 

optimum for increasing values of outliers (C=25, 50 and 100) is highlighted as RN(0.3,1) with 

however very close MSE values to those of RN(0.05,2).    

 
Table 6. The average MSE values for the model without outliers (n =1000) 

 

 

 

 

 

 

 

 

 

 

 

 
Table 7. The average MSE values for the model with outliers achieved by adding the constant, C = 10, 25, 50, 100; 

   (n =1000) 

 

 

 

 

 

 

 

 

 

 

 

 

RN distribution Average MSE 

RN(0,0) 12.4099 

RN(0.1,1) 12.4095 

RN(0.2,1) 12.4093 

RN(0.3,1) 12.4094 

RN(0.01,2) 12.4096 

RN(0.02,2) 12.4094 

RN(0.03,2) 12.4091 

RN(0.04,2) 124090 

RN(0.05,2) 12.4088 

 

 

RN 

distribution 

Number of outliers 

5 10 

 C constant 

10 25 50 100 10 25 50 100 

RN(0,0) 12.3852 12.4617 12.4704 12.4347 12.3959 12.4067 12.4858 13.2494 

RN(0.1,1) 12.3393 12.1106 10.9064 7.4676 12.2863 11.5102 8.7284 4.0858 

RN(0.2,1) 12.3155 12.0591 10.8933 7.4635 12.2208 11.3043 8.6826 4.0845 

RN(0.3,1) 12.3069 12.0547 10.8930 7.4593 12.1955 11.2985 8.6814 4.0834 

RN(0.01,2) 12.3405 12.0626 10.8938 7.4696 12.2977 11.3042 8.6843 4.0862 

RN(0.02,2) 12.3167 12.0599 10.8936 7.4683 12.2285 11.2997 8.6839 4.0859 

RN(0.03,2) 12.3074 12.0586 10.8935 7.4670 12.2002 11.2993 8.6837 4.0857 

RN(0.04,2) 12.3042 12.0574 10.8934 7.4657 12.1908 11.2989 8.6832 4.0855 

RN(0.05,2) 12.3030 12.0560 10.8933 7.4643 12.1876 11.2987 8.6830 4.0854 
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7. REAL DATA APPLICATION  

 

The dataset, famously known as “Brownlee’s stack loss plant data” in the literature, here is chosen to 

illustrate the performance of RN distribution comparatively with Normal, Student-t and Laplace 

distributions. This data set has been first introduced as an example to apply procedures of multiple 

regression using the least squares method by [46] and since then it has been used in, at least, 90 

distinct papers and books for various applications of linear modelling [47]. Four observations were 

detected as outliers by many authors [48-54], which caused it to be entitled as “a real data set with four 

outliers”. Estimated regression models by different robust methods as well as OLS are listed in Table 

8 with corresponding references. 

 
Table 8. Literature review for the methods of regression modelling for stack loss data 

 

y : Stack Loss ,  
1x  : Air Flow ,  

2x  : Cooling Water Inlet Temperature , 
3x  : Acid Concentration 

 

This study was first of interest to investigate the effect of considered heavy-tailed error distributions 

by excluding all outliers from the data. Then we repeated the whole analysis on the data with four 

outliers one of which is in x  and three of which are in y   directions. For choosing optimal tuning 

parameters of RN distribution, we applied 10-fold CV method to stack loss data set. This method 

suggested the RN (0.05.2) model with the smallest MSE.  

 
Method 

 

Estimated Regression Models 

 

Ordinary Least 

Square (OLS) 

 

1 2 339 9 0 716 1 295 0 152 ([46])ŷ . . x . x . x      

 

 

Huber's M-estimate 

with outliers 

 1 2 341 0 0 83 0 91 0 13 [49]ŷ . . x . x . x      

 1 2 339 21 0 8297 0 7512 0 1088 [55]ŷ . . x . x . x    

1 2 341 19 0 811 1 010 0 133 ([53])ŷ . . x . x . x      

 1 2 339 33 0 8288 0 7590 0 1087 [56]ŷ . . x . x . x    
 

 1 2 341 17 0 8133 1 000 0 1324 [52]ŷ . . x . x . x      

Huber's M-estimate 

without outliers  1 2 337 35 0 8301 0 4918 0 0711 [55]ŷ . . x . x . x      

Least Median 

of Squares (LMS) 

with outliers 

 

 1 2 339 25 0 75 0 50 0 0 [57]ŷ . . x . x . x      

 

LMS without 

outliers 

 

 1 2 335 9 0 82 0 43 0 07 [58]ŷ . . x . x . x      

Tukey's Biweight 
 

 1 2 340 56 0 7668 1 129 0 1392 [55]ŷ . . x . x . x      

 

L-Estimate 
 1 2 340 37 0 72 0 96 0 07 [49]ŷ . . x . x . x      

 1 2 340 79 0 851 0 869 0 129 [59]ŷ . . x . x . x      
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For the sake of consistency with our simulation study, we also created an artificial case by altering the 

outliers of just y   direction with a constant value of 50 so as to put more emphasis on the influence 

of y   direction outliers. CV method in this case again suggested RN(0.3, 1) as an alternative to 

RN(0.05,2).  

 

All the models fitted produced parameter estimates as presented in Table 9. Modelling the data 

without outliers produced parameter estimates almost the same under both error distributions, while 

information criteria implied a slightly better fit of Normal than RN model to the data. Inclusion of four 

original outliers however had lowering effect on the performances of all models in terms of AICs. The 

least affected results belong to the Laplace estimators, having the lowest AIC. Model including 

Student-t estimates follow this performance. This inconsistency with the simulation results might be 

caused by the outlier existence which is in both x  and y   direction. Enlarging the outlier existence 

of y   direction in some amount as described above, however, highlighted the robustness of both RN 

and Student-t estimators. It must be noted that resistance to outliers achieved by RN is now more 

evident when the influence of the outlying observations becomes more immense. 

 
Table 9. Estimated model parameters for the stack loss data 

 

 

 

8. CONCLUSION 

 

Robust methods of estimation in regression modelling have been a fundamental issue because linear 

least squares estimates behave badly, particularly when the errors are heavy-tailed than normal. Some 

contributions for the protection against such ill effects hypothesize that the inference drawn by means 

of heavy-tailed error distributions would be resistant to outliers. Robust modelling can be therefore 

based on measurement distributions having fatter tails than the normal distribution.  

 

 

Outliers 

 

Error 

distributions 

Regression Coefficients Scale 

Akaike 

Information 

Criterion (AIC) 

0̂     
1̂     

2̂    
3̂  ̂  – ln L AIC 

without 

outliers 

Normal – 37.652 0.798 0.577 – 0.067 1.095 25.67 61.34 

Student-t(3) – 37.429 0.833 0.472 – 0.067 0.836 26.16 62.32 

Laplace – 35.941 0.822 0.438 – 0.070 0.829 30.66 71.33 

RN(0.05, 2) – 37.384 0.808 0.546 – 0.069 1.008 25.75 61.50 

with 

original 

outliers 

Normal – 39.920 0.716 1.295 – 0.152 2.912 52.29 114.58 

Student-t(3) – 39.124 0.854 0.657 – 0.104 1.755 51.07 112.14 

Laplace – 39.689 0.832 0.574 – 0.061 2.004 50.15 110.31 

RN(0.05, 2) – 40.554 0.769 1.119 – 0.138 2.612 52.18 114.36 

       with 

       altered 

       outliers 

Normal – 80.259 1.354 3.283 – 0.535 16.459 88.61 187.23 

Student-t(3) – 36.804 0.770 0.659 – 0.078 2.013 76.11 162.22 

Laplace – 39.689 0.832 0.574 – 0.061 9.147 82.04 174.08 

RN(0.05, 2) – 37.265 0.807 0.547 – 0.070 0.911 52.18 114.36 

RN(0.3, 1) – 40.319 0.825 0.892 – 0.125 1.973 53.50 117.01 
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In this study we concentrated on robustness with respect to sampling specifications in the way [11] 

proposed, that is to look at the rate of change of the sampling model density with respect to an 

observation value. For a robust analysis, the observation’s influence should reach a peak and then 

begin to decay as the observation becomes more outlying. It is well known that such influence for 

normal likelihood is unbounded. [11] provided a means of accommodating outliers by converting the 

usual form of a non-robust density such as Normal to a robust likelihood by modifying the density’s 

unbounded influence function. The resulting distributional forms created a family of RN distribution 

having additional parameters that control the tail thickness.  We here illustrated all the details of this 

procedure by drawing parallels with its pioneer Bayesian evaluation and also with the major classical 

robust approach of Huber. We showed how to derive robust estimators of a regression model 

quantities using RN distributed errors. Random data generation of this distribution through random-

walk Metropolis algorithm is here also suggested. 

 

Simulation study indicated that RN produce the same parameter estimates as OLS at the expense of 

slightly lower efficiency when the true error distribution is Normal. Allowing heavy-tailed errors via 

Student-t or Laplace, correct values of model quantities were best recovered by Student-t estimators, 

however RN estimator competes with those, especially when the sample size gets larger. When the tail 

tickness was achieved by RN distribution, it was observed that RN estimates were much more accurate 

than the others. In all cases of heavy-tailed errors, OLS produced estimates with larger RMSEs. When 

the model includes more regressors, results do not change except for the errors of estimates enlarged 

to some extent.  

 

Finite sample performance assesment also indicated that RN estimators are robust to the outliers of y-

direction embedded in the Normal or RN distributed errors. However, Student-t estimators’ robustness 

appears better than the others, especially when the true error distribution Student-t or Laplace again 

includes outliers. It must be noted that RN estimates’ performance closely follow those in both cases 

of no matter what the sample sizes are. Determination of “optimal” tuning parameters was also 

performed via the cross-validation method. Empirical results suggested that the optimum value of 

robustness tuning parameter could be achieved for pure model (without outliers) or a contaminated 

model with moderate outliers. When b =1, a =0.3 appears as alternative best values for the model with 

RN(0.05, 2) in the cases of more influential outliers.  

 

In the results of real world application, the estimators of the modified distribution i.e. RN appeared to 

behave almost the same as OLS estimators, which were badly influenced by the outliers appeared in 

both x  and y   direction. For this case, Laplace distribution presented better performance in 

modeling fit. Considering the empirical results that RN estimators are robust to the outliers of y   

direction, we highlighted the robustness of RN by enlarging the outliers influence in that direction. In 

this case, RN appeared to be superior in tolerating more immense outliers for even small samples. This 

result is consistent with the study of choosing optimal tuning parameters where MSE’s of the model 

get smaller as the amount of the contamination (C) gets larger. 

 

In comparison with the selected heavy-tailed distributions (Student-t and Laplace), the robustness of 

RN becomes better when the influence of outlying observations appears more extensive. Although RN 

distribution serve as a robust alternative not only to unbounded normal model but also to the heavy-

tailed Student-t distribution, there is a price to be paid for the utilization of this procedure, which is 

analytical: it involves derivatives that are difficult to compute apart from a particular family of 

distributions. Due to this limitation, the procedure suggested by [11] has been largely avoided in the 

literature. A generalization of the procedure for the distributions other than normal could however be 

developed with the advanced analytical tools available at the moment, and suggested here as a future 

work. 

 

 



Altuntaş et al. / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo.Sci. 10 (2) – 2022 
 

54 

APPENDIX 

 

Here we show how the modification process is applied on Gaussian distribution so as to evaluate the 

probability density function of a RN distribution. Suppose that a random variable X  follows  N ,   

with the non-robust probability density function defined as in the form of Eq. (1); 

 

            
 

  
 

21
f x v r x s v exp d v,x

2
                                 (18) 

where  
x

d v,x





 . Modified influence function of X  as in Eq. (3) can be expressed as 

 

 
 

  
     

   
bd log f x v d d v,x d log r x

d v,x exp a d v,x
dx dx dx

 

 

 
  
        

  

b

x
d

d log f x v x x
exp a

dx dx



 

 
 

 

 

    
      

    
    

bd log f x v x 1 x x
sgn exp a

dx

  

   
                   (19) 

 

Using the relation (  x sgn x x ) and integrating the both sides gives 

 

 




  
   

 
 


b

2

x x
log f x v exp a

 

 
 

 

          




  
     

  
  


b

2

1 x
f x v exp x exp a dx





                         (20) 

 

This is the robust version of the density in Eq. (18). The integral in the exponential function here can 

be defined as 

   

b
x

1a
1/ b 1b b b bb

u 0

x u 1 u
x exp a dx exp u du

a b a a




   







 

       
                  

   

 

     

b
x

a
22

1
b

2 / b

u 0

1
u exp u du

b a












   

where

b
x

u a





 .  
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Inserting this result to Eq. (20) gives the density as  

 

        
   
     

      

b2

2 2/b

1 1 2 x
f x v exp , a

b ba

 



 

 

                        
b

1
2/ b 2 x

exp ba ,a
b






   
     

      

                           (21)      

 

where   is the lower incomplete gamma function. 
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