Atık Baraj Yerindeki Kaya Kütlelerinin Mühendislik Özelliklerinin Değerlendirilmesi: Gümüşhane Örneği

Evaluation of Engineering Properties of Rock Masses in Waste Dam Site: The Example of Gumushane

Selçuk ALEMDAĞ^{*1,a}, Mustafa KANIK^{2,b}

¹Gümüşhane Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Jeoloji Mühendisliği Bölümü, Gümüşhane ²Fırat Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü, Elazığ

Geliş tarihi / Received: 15.02.2020
Düzeltilerek geliş tarihi / Received in revised form: 12.04.2020
Kabul tarihi / Accepted: 21.04.2020

Öz

Bu çalışmada Gümüştaş Atık Depolama Barajı II eksen yeri kaya kütlelerinin kazılabilirlik, taşıma kapasitesi ve geçirimlilik özellikleri değerlendirilmiştir. Atık depolama alanı hacminin arttırılmasına yönelik yapılacak kazı için, kaya kütlelerinin kazılabilirlik sınıfları andezitik breş için kırma yöntemi, andezit için ise kırma ve patlatma yöntemi olarak belirlenmiştir. Baraj eksen yeri temel kayası olan andezitlerin taşıma kapasitesi ampirik eşitlikler yardımıyla belirlenmiş olup, nihai taşıma kapasitesi 31.07MPa, izin verilebilir taşıma kapasitesi ise 10.44MPa olarak belirlenmiştir. Andezit ve andezitik breş kaya kütlelerinde açılmış olan temel sondaj kuyularında yapılan basınçlı su deneyleri ve sonlu elemanlar yöntemi kullanılarak yapılan sızıntı analizi ile geçirimlilik değerlendirmesi yapılmış olup, temel kaya kütlesinin az gecirimli özellikte olduğu belirlenmistir. Bu durum atık barajı rezervuar alanında biriktirilecek kimyasal atıkların yeraltı suyuna karışmasına sebep olacaktır. Bu sızmayı önlemek için baraj eksen yeri ve rezervuar alanına 35-40cm kalınlığında geçirimsiz doğal kil malzeme serilip sıkıştırılacaktır. Yapılan bu uygulama sonlu elemanlar yöntemi kullanılarak modellenmiş ve rezervuar alanı tamamen atık su ile dolduğu durum için yapılan sızma analizi sonucunda geçirimlilik değeri 5x10-11m/s olarak belirlenmiştir. Ayrıca, temel kazısından 10m derinlikte belirlenen deşarj kesitinde meydana gelen su kaçakları 1.69x10⁻¹⁷m³/s ile 3.44x10⁻¹⁶m³/s arasında değişmektedir. Bu değerler oldukça küçük değerler olup, yine de olası bir sızmanın meydana gelebileceğini göstermektedir. Bu muhtemel sızmayı ortadan kaldırmak için serilecek doğal kil tabakanın üzerine, jeotekstil malzemeler (jeosentetik kil membran, jeomembran ve drenaj jeokompozit) serilerek rezervuar alanı tamamen geçirimsiz duruma getirilmelidir. Böylece atık barajı rezervuar alanında flotasyon sonrası biriktirilecek olan kimyasal atık suyun yeraltı suyuna karısması önlenmis olacaktır.

Anahtar kelimeler: Atık Barajı, Geçirimlilik, Kazılabilirlik, Sızıntı Analizi, Taşıma Kapasitesi

Abstract

In this study, excavatability, bearing capacity and permeability characteristics of rock masses along the Gümüştaş Waste Storage Dam II site were evaluated. For the excavations to be carried out to increase the volume of the waste storage area, the excavation classes of the rock masses were determined as "Hammer" for andesitic breccia and "Hammer&Blasting" for andesite. The bearing capacity of andesite (bedrock) has been determined with the help of empirical equations and, allowable bearing capacity and ultimate bearing capacity were calculated as 10.44MPa and 31.07MPa, respectively. The permeability has been assessed by the Lugeon Tests conducted in the geotechnical drill holes located in the andesite and andesitic breccia rock masses and with the aid of the seepage analysis based on the finite element method the bedrock mass has been defined as low permeable. Low permeable rock masses would possibly cause the chemical wastes to be collected in the waste dam reservoir area to pollute the groundwater. To prevent the seepage, impermeable natural clay material of 35-40cm thickness should be laid and compressed along the dam axis and reservoir area. This suggestion was modeled with the aid of the finite element method, for the case that the reservoir area was completely filled with wastewater and, the permeability value was determined as 5x10⁻¹¹m/s as a result of the seepage analysis. In addition, seepage values in the discharge section at a depth of 10m from the foundation vary between 1.69x10⁻¹⁷m³/s and 3.44x10⁻¹⁶m³/s. These values are quite low but, are indicators of a possible seepage. To eliminate this possible seepage, the geotextile materials (geosynthetic clay membrane, Geomembrane, and drainage geocomposite) should be laid over the compressed natural clay layer, and thus mixing of the chemical wastewater, which collected after flotation, into the groundwater will be prevented.

Keywords: Waste Dam, Permeability, Excavatability, Seepage Analysis, Bearing Capacity

^{*}a Selçuk ALEMDAĞ; selcukalemdag@gmail.com, Tel: 0(456)2331000, https://orcid.org/0000-0003-2893-3681 b orcid.org/0000-0002-1019-5249

1. Giriş

Barajlar tarih boyunca taşkın koruma, sulama, içme suyu sağlama ve enerji elde etmek gibi amaçlarla tasarlanmışlardır. Son 25 yıllık süreçte ise katı atık ve maden atıklarını biriktirme amacıyla da insa edilmektedirler. Farklı kullanım amaçlarına göre tasarlanan baraj projelerinde inşa edilecek mühendislik yapılarına temel oluşturan kaya kütlelerinin dayanım ve geçirimlilik özelliklerinin belirlenmesi oldukça önemlidir. Özellikle atık barajı inşası planlanan bölgelerde rezervuar alanları için geçirimlilik analizi yapılması yeraltı suyu kirliliğinin önlenmesi açısından hayati önem taşımaktadır. Bu kapsamda birçok araştırmacı da (Wang vd., 1999; Karagüzel ve Kılıç, 2000; Foyo vd., 2005; Alemdag vd., 2008; Coli vd., 2008; Ersoy vd., 2008; Nandi, 2011; Gürocak ve Alemdağ, 2012; Noorzad ve Manavirad, 2012; Moosavi vd., 2012; Rad vd., 2013; Türkmen vd., 2013; Alemdağ, 2015; Kanık ve Ersoy, 2019; Ersoy vd., 2019) önemli çalışmalar yapmışlardır.

Bu çalışmaların hassasiyetle yapılmasının önemi ise, 2019 yılının başında Brezilya'nın güneybatısında Minas Gerais eyaletinde yıkılan atık barajının birçok can ve mal kaybına, özellikle de çevre kirliliğine neden olmasıyla bir kez daha ortaya çıkmıştır.

Bu çalışmada, Gümüşhane ili, Harmancık köyü sınırları içerisindeki organize sanayi bölgesinde

Gümüştaş Madencilik ve Ticaret A.Ş. tarafından yapılması planlanan 2. atık depolama barajı (Şekil 1) gövde ve rezervuar alanında yayılım gösteren kaya kütlelerinin jeoteknik açıdan incelenmesi amaçlanmaktadır.

Bu amaçla baraj eksen yeri ve rezervuar alanında yayılım gösteren temel kayanın geçirimliliği yerinde deneyler ve sayısal analiz yöntemleri ile, taşıma kapasitesi ampirik eşitlikler yardımıyla, rezervuar alanı ve temel kayasının kazılabilirliği ise Jeolojik Dayanım İndeksi (GSI) dikkate alınarak belirlenmiştir.

Taşıma kapasitesi hesaplamaları için; Hoek vd. (2002) tarafından önerilen m_b, s, a kaya kütle sabitleri belirlenmiş, bu değerler Kulhawy ve Carter (1992) ve Wyllie (1992) tarafından kapasitesi önerilen taşıma esitliklerinde kullanılarak, baraj eksen yeri temel kayasının taşıma kapasitesi hesaplanmıştır. Baraj ekseni ve alanındaki rezervuar kaya kütlesinin geçirimliliğinin belirlenmesi için, verinde deneyler (basınçlı su testi) yapılmış ve bu değerler sayısal analizlerde girdi parametresi olarak kullanılıp, rezervuar alanı ve baraj eksen yerinin geçirimlilik durumu sayısal olarak da ortaya konmuştur. Ayrıca temel kotunun 10m derinliği için çizilen deşarj kesitinde meydana gelecek sızma miktarı RS2 (Rocscience, 2019) programında yapılan sızma analizi yardımıyla belirlenmistir.

Şekil 1. İnceleme alanına ait uydu görüntüsü

2. Baraj Alanının Jeolojisi

Baraj inşasının gerçekleştirileceği alanda Eosen yaşlı Alibaba Formasyonu yüzeyleme vermektedir (Şekil 2). Tekkeköy ve civarında yüzeylenen Alibaba Formasyonu üzerine acısal bir uvumsuzlukla Kermutdere Formasyonu gelmektedir. Alibaba Formasyonu, yersel olarak izlenen ince bir taban konglomerası ve nummulitli kumlu kireçtaşlarıyla başlar ve volkano-tortul istif özelliği taşır. Bunların üzerinde tabakalı tüfler, andezitik breslerle ardalanmalı olarak bulunmaktadır. Genellikle arazide üst seviyelerde andezit. bazalt piroklastları ve seklinde gözlenmektedir (Kaygusuz vd., 2011; Arslan ve Aliyazıcıoğlu, 2001). Baraj inşa alanı Alibaba Formasyonu'nun üst seviyelerinde bulunan andezitik breş ve andezit birimleri içerisinde gerçekleştirilecektir. Topoğrafyada engebeli bir görüntü sunan andezitik breşler genellikle üst üste dizilmiş yastıklar şeklinde ve siyahımsı gri renklidir.

Ayrıca yamaç eteklerinde bulunan ve yamaçların bulunduğu alandaki kayaç türlerine göre köşeli, yassı ve bazıları küt köşeli, blok, çakıl, kum, silt ve killerden oluşan yamaç molozları da çalışma alanında Alibaba Formasyonu üzerinde uyumsuz olarak gözlenmektedir. Buna ek olarak Kozevrez ve Kocapınar dereleri boyunca sığ derinliklerde 25-30cm kalınlığına sahip alüvyon birikintilerine de rastlanılmaktadır.

Şekil 2. Çalışma alanının jeoloji haritası

Gümüşhane civarındaki tektonik unsurlar genel olarak K-G yönlü bir sıkışmanın izlerini yansıtmakta olup, bu durum kaya kütlelerinden alınan eklem yönelim ölçülerinin analizleriyle de ortaya konulmuştur (Gurocak vd., 2017; Bostanci vd., 2018). Buna ek olarak inceleme alanında aktif veya pasif bir fay bulunmamaktadır. Bölgeyi etkileyecek en önemli tektonik yapı Kuzey Anadolu Fay hattı olup, çalışma alanına olan mesafesi yaklaşık 80 km civarındadır.

3. Saha ve Laboratuvar Çalışmaları

İnceleme alanında yapılan temel sondajlarının üç adeti SK1 (40m), SK2 (50m) ve SK3 (50m) atık

barajı eksen yerinde, diğer üç adeti SK4 (50m), SK5 (58m) ve SK6 (58m) ise rezervuar alanında yapılmıştır. Atık barajı eksen yerindeki birimlerin jeoteknik özelliklerini belirlemek amacıyla arazi çalışmaları kapsamında, andezitik breş ve andezit kava kütlelerinin içerdiği süreksizliklerin mühendislik özellikleri ISRM (2007) tanımlama ölcütleri dikkate alınarak ve hat etüdü vöntemi kullanılarak belirlenmiştir (Tablo 1). Ayrıca laboratuvarda kaya malzemelerine ait jeomekanik özellikleri belirlemek için temel sondajlarından karot örnekleri derlenmiş (Şekil 3) ve ISRM (2007) tarafından önerilen yöntemlere göre karotlar hazırlanarak. deneyler Gümüşhane Üniversitesi Kaya Mekaniği Laboratuvarında yapılmıştır. Kaya kütlelerine ait RQD (%) değerleri ise temel sondajlarından elde edilen karot örneklerinde (Şekil 3) yapılan ölçümler ile her bir kaya kütlesi için ayrı ayrı hesaplanmış ve istatistiksel dağılımları Şekil 4'de verilmiştir.

Sürəlççizlik özəllikləri	Tanımlama		Puan			
Sureksiziik özenikieri	1 ammama	Andezit	Andezitik Breş			
Dürüzlülülz	Az pürüzlü	-	3			
r uluzluluk	Pürüzlü	5	-			
Dozunma	Orta derecede bozunmuş		3			
Dozumna	Az bozunmuş	5	-			
Dolgu	Kalsit dolgu kalınlığı 2 – 4 mm	4	4			
Devamlılık	3 – 10 m	2	2			
Açıklık	0.1 – 1 mm	4	4			
JCond ₈₉		20	16			
JCond ₈₉ : RMR 1989 ver	rsiyonuna göre süreksizlik durumu p	uanlaması (J	Bieniawski, 1989)			

Tablo 1.	Andezit ve	Andezitik Bres	kava	kütlelerinin	süreksizlik	özellikleri
1 4010 1.		i maezitik Dieş	Ruyu	Kutterennin	Sureksiziik	OZemikien

Laboratuvar deneyleri ile andezit ve andezitik breşlerin ortalama tek eksenli basınç dayanımı ve birim hacim ağırlıkları belirlenmiştir. Deneylerden elde edilen tek eksenli sıkışma dayanımı andezitler için ortalama 54MPa, andezitik breşler için ise 37MPa'dır. Birim hacim ağırlık değerleri andezitler için 26.87kN/m³, andezitik breşler için ise 26.18kN/m³ olarak belirlenmiştir. Andezit ve andezitik breşler için ortalama RQD değerleri sırasıyla %81 ve %35'tir.

Şekil 3. Andezitik breş (ilk 2.5m) ve andezitlerin (SK-5) karot sandıklarında görünümü.

Baraj eksen yerindeki birimlerin kaya kütle kazılabilirliği ve dayanımını belirlemek amacıyla GSI sınıflama sisteminden faydalanılmıştır. Andezit ve andezitik breş kaya kütlesine ait Jeolojik Dayanım İndeksi (GSI) değerini belirlemek için Hoek vd. (2013) tarafından önerilen sayısal sınıflama abağı kullanılmıştır. Bu sınıflamada kullanılan 1.5*JCond₈₉ (Süreksizlik durumu) değerleri Tablo 1'de verilmiş olup, RQD/2 değeri Şekil 4'te verilen ortalama RQD değerleri kullanılarak belirlenmiştir.

Şekil 4. Andezit ve andezitik breşler için RQD histogramları

Buna göre Andezit kaya kütlesine ait GSI değeri 64, andezitik breş kaya kütlesine ait GSI değeri ise 48 olarak belirlenmiştir (Şekil 5). Her bir kaya kütlesine ait sabitler (m_b , s, a) ise Hoek-Brown (Hoek vd., 2002) yenilme kriteri dikkate alınarak, RocLab V1.03 (2007) programı ile hesaplanmıştır.

Şekil 5. Andezit ve andezitik breş kaya kütlelerinin Hoek vd. (2013) tarafından önerilen GSI abağına göre değerlendirilmesi

Atık barajı eksen yeri ve rezervuar alanı kazıları için kaya kütlelerinde kontrollü patlatma veya mekanik kazı uygulanacağı için örselenme faktörü (D) 0.7 olarak alınmıştır. Andezit ve andezitik breşin dinamik Poisson oranlarını belirlemek amacıyla yapılan sismik çalışmalarda ortalama Poisson oranları andezitler için 0.16, andezitik breşler için ise 0.33 olarak belirlenmiştir (Tablo 2). Dinamik Poisson oranları hesaplanırken, Bowles (1996) tarafından önerilen eşitlik (1) kullanılmıştır.

$$v = \left(V_p^2 - 2 x V_s^2\right) / \left(2 x V_p^2 - 2 x V_s^2\right)$$
(1)

Burada; V_p: P dalga hızı, V_s: S dalga hızıdır.

	1 1 1 .		1 1	•	1 ~ 1 .
Tablo 2. Kava	küflelerine a	nt V., V	hizlari	ve poisson	oranı değerleri
14010 20 11494	nationerentine a	ne (p,)	SIIIZIGII	, e poisson	orann aegerren

Serim No	Birim	Birim $V_p (m/s) = V_s (m/s)$		Poisson oranı (v)
1 Hat	Andezitik Breş	1320	630	0.32
I. Hat	Andezit	2400	1500	0.18
2 Hot	Andezitik Breş	900	480	0.30
2. Hal	Andezit	2350	1470	0.18
2 Hot	Andezitik Breş	1550	760	0.34
5. па	Andezit	2000	1290	0.14
4 Hot	Andezitik Breş	1100	560	0.33
4. Hat	Andezit	2600	1640	0.17
5 Hat	Andezitik Breş	1400	650	0.36
5. Hat	Andezit	2500	1560	0.18
6 Hat	Andezitik Breş	1370	680	0.34
0. Hat	Andezit	2040	1295	0.16
7 Hot	Andezitik Breş	950	460	0.35
/. Паl	Andezit	2040	1360	0.10

4. Bulgular ve Tartışma

4. 1. Kaya Kütlelerinin Taşıma Kapasitesi

Baraj eksen yerindeki andezit ve andezitik breşlerin taşıma kapasitesi hesaplamalarında farklı araştırmacılar tarafından önerilen ampirik eşitlikler kullanılmıştır.

Kulhawy ve Carter (1992) tarafından önerilen Nihai taşıma kapasitesi (q_u) eşitlik (2) de verilmiş olup, eşitlikteki m_b, s, a parametreleri Hoek-Brown kaya kütle sabitleridir. σ_{ci} ise kaya malzemesinin tek eksenli sıkışma dayanımıdır.

$$q_{\rm u} = \sigma_{ci} \left[s^a + (m_b \ s^a + s)^a \right] \tag{2}$$

Wyllie (1992) tarafından önerilen izin verilebilir taşıma kapasitesi (q_a) eşitlik (3) te verilmiş olup, bu eşitlikte F: güvenlik katsayısı (bu çalışma için 3 alınmıştır), C_{f1} ise temel şekline bağlı düzeltme faktörüdür (şerit temel için 1 alınmıştır).

$$q_{a} = \frac{C_{fl} s^{-0.5} \sigma_{ci} \left[1 + (m_{b} s^{-0.5} + 1)^{0.5} \right]}{F}$$
(3)

Bu eşitliklerden elde edilen kaya kütlelerinin taşıma kapasitesi değerleri Tablo 3'de verilmiştir.

Tablo 3. Kaya kütlesinin nihai ve izin verilebilir taşıma kapasitesi

Yazarlar	Eşitlik No	Kaya Kütlesi Andezit
Kulhawy ve Carter (1992)	2	31.07 (MPa)
Wyllie (1992)	3	10.44 (MPa)

Yapılan hesaplamalara göre andezit kaya kütlesinin nihai taşıma kapasitesi 31.07MPa, izin verilebilir taşıma kapasitesi ise 10.44MPa olarak belirlenmiştir. İnceleme alanında andezitik breşler sıyırılıp, baraj gövdesinin oturacağı temel kaya andezit kaya kütlesi olacağı için hesaplamalarda andezitik breşler dikkate alınmamıştır.

4. 2. Kaya Kütlelerinin Kazılabilirliği

Baraj eksen yeri ve rezervuar alanının kazısı esnasında, yapı maliyetini etkileyen en önemli faktörlerden birisi de kayaçların kazılabilirliğinde hangi yöntemin kullanılacağıdır (Gurocak vd., 2008; Kaya vd., 2011). Bu sebeple, kazı yapılacak kazılabilirlik durumlarının kayaçların ivi değerlendirilmesi gerekmektedir. Bu çalışmada, andezit ve andezitik bres kayaçlarının kazılabilirliği Tsiambos ve Saroglu (2010) tarafından önerilen kazılabilirlik sınıflama abağı yardımı ile belirlenmiştir (Şekil 6).

Alemdağ ve Kanık / GUFBED 10(3) (2020) 569-580

Şekil 6. Kazılabilirliğin belirlenebilmesi için önerilen abak (Tsiambos ve Saroglu, 2010)

Hem baraj eksen yeri, hem de rezervuar alanında yapılacak kazılarda, özellikle baraj ekseninde, mühendislik özellikleri andezite göre zayıf olan andezitik breşin tamamen kazılması gerekmektedir. Şekil 6'daki abak incelendiğinde, andezitler için "kırma ve patlatma" yönteminin birlikte kullanılması önerilirken, andezitik breşler için "kırma yöntemi" kullanımının uygun olacağı öngörülmektedir.

4. 3. Kaya Kütlelerinin Geçirimliliği

Geçirimlilik eksen yerinde yapılan basınçlı su testleri ve sonlu elemanlar tabanlı sızma analizleri ile değerlendirilmiştir. Öncelikle, inceleme alanında açılmış olan sondaj kuyularında 2m'lik deney zonlarında yapılan basınçlı su deneylerine ait veriler değerlendirilerek kaya kütlelerinin Lugeon (Lugeon, 1933) değerleri belirlenmiştir. Elde edilen Lugeon değerleri Şekil 7'de verilen histogramlar ile değerlendirilmiş ve geçirimlilik sınıflarına göre yüzde dağılımları ise Tablo 4' de verilmiştir. Elde edilen deney verilerine göre andezitler az geçirimli-geçirimli (ortalama 4.3 Lugeon), andezitik breşler ise az geçirimligeçirimsizdir (Ortalama 2.1 Lugeon). Andezitik breşler tamamen kazı ile kaldırıldığı için, analizlerde andezitlerin ortalama K değeri olan 2.99x10⁻⁵ değeri kullanılmıştır.

Sadece sondaj noktaları ile sınırlı olan bu veriler sonlu elemanlar yöntemi ile değerlendirilerek baraj eksen yeri için sızma analizleri yapılmıştır. Bu analizde 2-3m kalınlığa sahip olan andezitik breşler kazılarak, baraj ekseninin andezitler üzerine oturduğu kabul edilmiştir. RS2 (Rocscience, 2019) programında kullanılan girdi parametreleri Tablo 5'de verilmiş olup, eksen veri Sonlu Elemanlar Yöntemi kullanılarak ile modellenmiştir (Şekil 8).

Şekil 7. Kaya kütlelerine ait Lugeon değerlerinin dağılımı ve istatistiksel değişimi

Tablo 4. Lugeon (1933)'un geçirimlilik sınıflamasına göre çalışma alanındaki andezit ve andezitik breşlerin % dağılımı ve sınıflandırılması.

Lugeon sınır değerleri	Kava Sınıfı	Andezit	Andezitik Breş
(1/m/dak)	Kaya Shiili	(%)	(%)
< 1	Geçirimsiz	0	13
1 - 5	Az Geçirimli	75	87
5 - 25	Geçirimli	25	0
> 25	Çok Geçirimli	0	0

Yapılması planlanan atık barajı temel kayası olan andezitlerin az-geçirimli özellikte olması nedeni ile atık barajından meydana gelecek kaçakların yeraltı sularına etkisi kaçınılmazdır. Andezit ve andezitik breşler akifer özelliği göstermemesine kaya kütlelerinde bulunan rağmen, catlak sistemleri atık barajında toplanacak atık suların veraltı suyuna karısmasında etkili olacaktır. RS2 ile yapılan analiz modelinde 8 düğüm noktalı, dörtgen dereceli ağ sistemi kullanılmış olup (Şekil 8), eksen verinde, rezervuar alanının tamamen atık su ile dolu olduğu durum için yapılan sızma analizi (Şekil 9) sonucunda elde edilen düşey geçirimlilik değerleri 1.5x10⁻⁶m/s ile 2.99x10⁻⁵m/s arasında değişim göstermektedir. Bu durum eksen yeri ve göl alanında yayılım gösteren kaya kütlesinin geçirimli özellikte olduğunu ifade etmektedir. Ayrıca yaklaşık 10m derinlikte çizilen deşarj kesitinde (Şekil 9) meydana gelen su $2.35 \times 10^{-16} \text{m}^3/\text{s}$ $5.22 \times 10^{-17} \text{m}^3/\text{s}$ ile kaçakları arasında değişmektedir. Bu su sızıntıları kaya kütlesi akifer özellikte olmadığı için oldukça küçük değerlerdedir. Ancak bu durum meydana gelecek olası bir sızma durumunda bile yeraltı suyunun kirlenmesine neden olacak değerdedir. Bu nedenle, atık baraj yerinde sızıntıların önlenebilmesi amacıyla ek önlemlerin alınması gerekmektedir.

Tablo 5. Sayısal analizde kullanılan parametreler

Andozit	CSI	σ_{ci}		γ		Л	K	Em	Ho	oek - Bro sabitleri	wn
Anuezn	(MPa) ^{IIII} (kN/m ³) ^O ^D (m/sn) (GPa)	mb	S	a							
Eksen Yeri	64	54	25	26.87	0.16	0.7	2.99x10 ⁻⁵	5.39	3.45	0.005	0.502
											_
Yenilme Kriteri	Genell	eștirilmiș	Hoek	c-Brown					Rezidi	üel Hoek sabitleri	-Brown
Yenilme Kriteri Malzeme Tipi	Genell	eștirilmiș	Hoek	a-Brown Plas	tik				Rezidi mb	iel Hoek sabitleri s	-Brown a

Şekil 8. Atık barajı II eksen yerinin sonlu elemanlar ağ sistemi ile modellenmesi

Şekil 9. Atık barajı II için yapılan sonlu elemanlar sızma analizi

4. 4. Atık Baraj Yeri ve Rezervuar Alanında Geçirimsizlik Uygulamaları

Atık baraj yeri rezervuar alanında yapılan sızma analizi değerlendirildiğinde, kaya kütlesinin geçirimli olması yeraltı suyu kirlenmesinin kaçınılmaz olduğu göstermektedir. Bu durumu önlemek için baraj eksen yerinde ve rezervuar alanında önlem alınması gerekmektedir. Geçirimsizliği sağlamak amacıyla ilk önce ince bir kil tabakası (35-40 cm) serilmesi ve sıkıştırılması (Şekil 10) sonucunda sızmanın kontrol altına alınıp, alınamadığını belirlemek için yeniden sayısal analizler yapılmıştır.

Sayısal analizlerde andezit kaya kütlesi için Tablo 5'deki veriler kullanılmış olup, sıkıştırılmış kilin mühendislik özellikleri ise Tablo 6'de verilmiştir.

Şekil 10. Atık barajı eksen yerinin iyileştirme sonrası (kil sıkıştırma) sonlu elemanlar ağ sistemi ile modellenmesi

Tablo 6. Rezervuar alanına serilecek kilin malzeme özellikle	ri
--	----

	γ (kN/m ³)	E (MPa)	υ	Ф (Pik)	c (Pik) (MPa)	Φ (Artık)	c (Artık) (MPa)	Ks	$K_2 \setminus K_1$
Kil	15.4	3.8	0.4	26°	0.035	16°	0.012	1.24x10 ⁻⁹	1

Analiz sonucunda elde edilen düşey geçirimlilik değerleri 5.00x10⁻¹¹m/s olmuştur. Bu durum, yüzeyde yapılan kil sıkıştırma sonucunda geçirimsiz bir taban oluşturduğunu (T.C. Resmi Gazete, 2015) ve barajdan olabilecek sızıntıların engellendiğini ifade etmesine (Sekil 10) ve yaklaşık 10m derinlikte çizilen deşarj kesitinde (Şekil 11) meydana gelen atık su kaçakları 1.69x10⁻¹⁷m³/s ile 2.21x10⁻¹⁶m³/s gibi sıfıra yakın değerlere düşmesine karşın, hala olası bir sızmanın meydana gelebileceğini göstermektedir.

Şekil 11. Atık barajında iyileştirme sonrası sonlu elemanlar sızma analizi

Bu sızıntıları önleyebilmek için sıkıştırılan doğal kil tabakanın üzerine daha güvenli bir geçirimsizlik ortamı sağlanması amacı ile sırasıyla jeosentetik kil membran, jeomembran ve drenaj jeokompozit serilmelidir. Bu uygulamalardan sonra rezervuar alanı ve eksen yeri tamamıyla geçirimsiz hale getirilmiş olacak olup, olası bir yeraltı suyu kirlenmesi engellenmiş olacaktır.

5. Sonuçlar

Bu çalışmada, inşa edilmesi planlanan Gümüştaş Atık Depolama Barajı II'nin eksen yeri ve rezervuar alanı mühendislik jeolojisi açısından incelenmiştir. İnceleme alanında Eosen yaşlı üst Alibaba Formasyonu'nun kısımlarında bulunan andezit ve andezitik bresler yüzeyleme vermektedir. Andezitlerin üzerinde bulunan andezitik breslerin kalınlıklarının 2-3m olması ve rezervuar alanının hacimsel olarak genişlemesinden dolayı tamamen kazılarak kaldırılması öngörülmektedir.

Andezit ve andezitik breşlerin kazılabilirlikleri Tsiambos ve Saroglu'na göre değerlendirilmiş olup, andezitik breşlerin "kırma yöntemi" ile andezitlerin ise "kırma ve patlatma" yöntemi ile kazılabileceği belirlenmiştir. Andezitlerin nihai taşıma kapasitesi değerleri 31.07MPa, izin verilebilir taşım kapasitesi ise 10.44MPa olarak belirlenmiş ve taşıma kapasitesi açısından herhangi bir problem yaşanmayacağı sonucuna varılmıştır. Atık barajı eksen yeri ve rezervuar alanında yapılan sızma analizleri (rezervuar alanı tamamen atık ile dolu olması durumunda) andezit kaya kütlesinin geçirimliliğinin 1.5x10⁻⁶m/s ile 2.99x10⁻⁵m/s arasında değiştiğini göstermiştir. Bu değerler atık barajında biriktirilecek olan atığın yeraltı suyunu kirletebileceğini ve geçirimsizliği sağlamak amacıyla ek önlemlerin alınması gerektiğini göstermiştir. Olumsuzluğun Baraj eksen yeri ve rezervuar alanına 35-40cm kalınlığında kil tabakası serilip sıkıştırılarak, bu sızma problemini ne ölçüde engellenebileceğini belirlemek amacıyla yapılan sayısal analizler sonucunda geçirimlilik değeri 5x10⁻¹¹m/s olarak belirlenmiştir. Ayrıca, 10m derinlikte çizilen deşarj kesitinde meydana gelen atık su kaçaklarına ait deşarj değerleri 1.69x10⁻¹⁷m³/s ile 3.44x10⁻ ¹⁶m³/s arasında değişmektedir. Bu değerler çok

düşük değerler olmasına rağmen, hala olası bir sızmanın meydana gelebileceğini göstermektedir. Bu nedenle, uygulanan doğal kil sıkıştırmanın sırasıyla jeosentetik kil membran, üstüne jeomembran ve drenaj jeokompozit serilmesi ve böylece ortamın tamamen geçirimsiz duruma getirilmesi önerilmiştir. Baraj eksen yeri ve rezervuar alanında yapılacak bu uygulamalardan sonra herhangi sızmanın ve dolayısıyla herhangi yeraltı suyu kirlenmesinin oluşması bir engellenmiş olacaktır.

Katkı Belirtme

Yazarlar, bu çalışmayı destekleyen, çalışma süresince bütün olanaklarından yararlandığı Gümüştaş Madencilik A.Ş.'ye, yardımlarını esirgemeyen Genel Koordinatör Erdal Güldoğan'a, Uğur Ölgen ve Korhan Çubukçu'ya teşekkür eder.

Kaynaklar

- Alemdag, S., Gurocak, Z., Solanki, P. ve Zaman, M., 2008. Estimation of Bearing Capacity of Basalts at Atasu Dam Site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 79–85.
- Alemdag, S., 2015. Assessment of Bearing Capacity and Permeability of Foundation Rocks at the Gumustas Waste Dam Site, (NE Turkey) Using Empirical and Numerical Analysis. Arabian Journal of Geosciences, 8, 1099–1110.
- Arslan, M. ve Aliyazıcıoğlu, I., 2001. Geochemical and Petrological Characteristics of the Kale (Gumushane) Volcanic Rocks: Implications for the Eocene Evolution of Eastern Pontide Arc Volcanism, Northeast Turkey. International Geology Review, 43, 595–610.
- Bostanci, H.T., Alemdag, S., Gurocak, Z. ve Gokceoglu, C., 2018. Combination of Discontinuity Characteristics and GIS for Regional Assessment of Natural Rock Slopes in a Mountainous Area (NE Turkey). CATENA, 165, 487-502.
- Bowles, J.E., 1996. Foundation Analysis and Design, (Fifth Ed.): New York, McGraw-Hill Inc. 1230p.
- Bieniawski, Z.T., 1989. Engineering Rock Mass Classification: New York, Wiley Interscience, 251p.
- Ersoy, H., Bulut, F., Ersoy, A.F. ve Berkün, M., 2008. Municipal Solid Waste Management and Practices in Coastal Cities of the Eastern Black Sea: A Case Study of Trabzon City, NE Turkey.

Bulletin of Engineering Geology and the Environment, 67(3), 321–333.

- Ersoy, H., Karahan, M., Gelişli, K., Akgün, A., Anılan, T., Sünnetci, M.O. ve Yahşi B.K., 2019. Modelling of the Landslide-Induced Impulse Waves in the Artvin Dam Reservoir by Empirical Approach and 3D Numerical Simulation. Engineering Geology, 249, 112– 128.
- Foyo, A., Sanchez, M. A. ve Tomillo, C., 2005. A Proposal for a Secondary Permeability Index Obtained from Water Pressure Tests in Dam Foundations. Engineering Geology, 77, 69–82.
- Gurocak, Z., Alemdag, S. ve Zaman, M., 2008. Rock Slope Stability and Excavatability Assessment of Rocks at the Kapikaya Dam Site, Eastern Turkey. Engineering Geology, 96(1-2), 17-27.
- Gurocak, Z. ve Alemdag, S., 2012. Assessment of Permeability and Injection Depth at the Atasu Dam Site (Turkey) Based on Experimental and Numerical Analyses. Bulletin of Engineering Geology and the Environment, 71, 221–229.
- Gurocak, Z., Alemdag, S., Bostanci, H.T. ve Gokceoglu, C., 2017. Discontinuity Controlled Slope Failure Zoning for a Granitoid Complex: A fuzzy Approach. Rock Mechanics and Engineering, Volume 5: Surface and Underground Projects, CRC Press Taylor & Francis Group, eBook ISBN: 978-1-317-48188-1, Pages 1-25.
- Hoek, E., Carranza-Torres, C. T. ve Corkum, B., 2002. Hoek–Brown Failure Criterion-2002 Edition. In: Proceedings of the 5th North American Rock Mechanics Symposium. Toronto, Canada 1, 267–273.
- Hoek, E., Carter, T. G. ve Diederichs, M. S., 2013. Quantification of the Geological Strength Index Chart. 47th US Rock Mechanics and Geomechanics Symposium, San Francisco, USA.
- ISRM (International Society for Rock Mechanics), 2007. In: Ulusay R, Hudson JA (Eds.), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. Kazan Offset Pres, Ankara, 628 s.
- Kanik, M. ve Ersoy, H., 2019. Evaluation of the Engineering Geological Investigation of the Ayvali Dam Site (NE Turkey). Arabian Journal of Geosciences, 12(3), 89.
- Karaguzel, R. ve Kilic, R., 2000. The Effect of the Alteration Degree of Ophiolitic Melange on Permeability and Grouting. Engineering Geology, 57, 1–12.

- Kaya, A., Bulut, F., Alemdag, S., 2011. Applicability of Excavatability Classification Systems in Underground Excavations: An Example of Konakönü Tunnel, Trabzon, Turkey. Scientific Research and Essays, 6(25), 5331-5341.
- Kaygusuz, A., Arslan, M., Siebel, W. ve Şen, C., 2011. Geochemical and Sr-Nd Isotopic Characteristics of Post-Collisional Calc-Alkaline Volcanics in the Eastern Pontides (NE Turkey). Turkish Journal of Sciences, 20, 137–159.
- Kulhawy, F.H. ve Carter, J.P., 1992. Settlement and Bearing Capacity of Foundations on Rock Masses and Socketed Foundations in Rock Masses. In: Bell F.G. (Ed.), Engineering in Rock Masses. Butterworth–Heinemann, Oxford, pp. 231–245.
- Lugeon, M., 1933. Barrages et Geologic Methods de Recherche Terrasement et un Permeabilisation. Litrairedes Universite, Paris.
- Maden Atıkları Yönetmeliği, 2015. T.C. Resmi Gazete, Sayı: 29417, 15 Temmuz 2015.
- Moosavi, S.A., Goshtasbi, K., Kazemzadeh, E., Aloki Bakhtiari, H., Esfahani, M. R. ve Vali, J., 2012. Relationship Between Porosity and Permeability with Stress Using Pore Volume Compressibility Characteristic of Reservoir Rocks. Arabian Journal of Geosciences, 7(1), 231-239.
- Noorzad, R. ve Manavirad E., 2012. Bearing Capacity of Two Close Strip Footings on Soft Clay Reinforced with Geotextile. Arabian Journal of Geosciences, 7(2), 623-639.

- Rad, H. S., Mohitazar M. ve Dizadji M., 2013. Distinct Element Simulation of Ultimate Bearing Capacity in Jointed Rock Foundations. Arabian Journal of Geosciences, 6(11), 4427–4434.
- Rocscience, 2007. Roclab v1.03 Rock Mass Strength Analysis Using the Generalized Hoek-Brown Failure Criterion. Rocscience Inc., Toronto, Ontario, Canada.
- Rocscience, 2019. RS2 9.0 Finite Element Groundwater Seepage. Geomech Software and Res. Rocsci, Toronto.
- Türkmen, S., Tağa, H. ve Özgüler, E., 2013. Effect of Construction Material on Dam Type Selection of the Büyük Karaçay Dam (Hatay, Turkey). Geotechnical and Geological Engineering, 31, 1137–1149.
- Tsiambaos, G. ve Saroglou, H., 2010. Excavatability Assessment of Rock Masses Using the Geological Strength Index (GSI). Bulletin of Engineering Geology and the Environmental, 69(1), 13-27.
- Wang, J.S.Y., Trautz, R.C., Cook, P.J., Finsterle, S., James, A.L. ve Birkholzer, J., 1999. Field Tests and Model Analyses of Seepage into Drift. Journal of Contaminant Hydrology, 38(1–3), 323–347.
- Wyllie, D. C., 1992. Foundations on Rock: London, Chapman and Hall, 457p.