Araştırma Makalesi
BibTex RIS Kaynak Göster

Üç Farklı Sıcaklığa Alıştırılan Türk Kereviti (Astacus leptodactylus)’nin Sıcaklık Toleransı

Yıl 2019, Cilt: 5 Sayı: 1, 1 - 5, 25.04.2019
https://doi.org/10.17216/limnofish.422903

Öz



15, 20 ve 25 °C’ye
alıştırılan Türk kereviti için kritik termal maksima (CTMax) ve minima (CTMin)
değerleri belirlenmiştir. CTMin ve CTMax değerleri sırasıyla 1,3, 1,1 ve
2,0 ile 37,4, 37,5 ve 38,7 °C’dir. Sıcaklık tolerans testleri alıştırma
sıcaklıklarının (15, 20 ve 25 °C) A.
leptodactylus
CTMin değerlerine
önemli etkilerde bulunduklarını göstermiştir (P≤0,05). Sıcaklık tolerans alanı CTMin ve CTMax sınırları ile değerlendirilerek 364°C2 olarak
hesaplanmıştır. Genel olarak 15 ile 25
°C arası alıştırma sıcaklıklarında, alıştırma tepki oranı (ARR) 0,07 ile 0,13 olarak hesaplananmıştır.
Kerevitlerin tamamı 0,5 °C’de kıvrılma ve geneli 32,0- 33,0°C’de kasılma
göstermiştir. Akdeniz bölgesinin güneydoğu kesiminde A. leptodactylus yetiştiriciliği sıcaklık toleransı açısından uygun
olabilir.

Kaynakça

  • Beitinger T, Bennett W, McCauley R. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Env Biol of Fish. 58:237–275. doi: 10.1023/A:1007676325825
  • Bennett WA, Beitinger TL. 1997. Temperature Tolerance of the Sheepshead Minnow, Cyprinodon variegatus. Copeia 1997:77–87. doi: 10.2307/1447842
  • Bowler K. 1963. A study of the factors involved in acclimatization to temperature and death at high temperatures in Astacus pallipes. I. Experiments on intact animals. J Cell Comp Physio. 62:119–132. doi: 10.1002/jcp.1030620203
  • Claussen DL. 1977. Thermal acclimation in ambystomatid salamanders. Comp Biochem Physio Part A: Physio. 58(4):333–340. doi: 10.1016/0300-9629(77)90150-5
  • Claussen DL. 1980. Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis. Comp Biochem Physio Part A: Physio. 66(3):377–384. doi: 10.1016/0300-9629(80)90183-8
  • Cowles RB, Bogert CM. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulle Ame Mus Nat His. 83:261–296. doi: 10.1086/394795
  • Díaz F, Sierra E, Denisse Re A, Rodríguez L. 2002. Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman). J Therm Bio. 27(5):423–428. doi: 10.1016/S0306-4565(02)00011-6
  • Díaz F, Re AD, Sierra E, Amador G. 2004. Behavioral thermoregulation and critical limits applied to culture of red claw crayfish Cherax quadricarinatus (Von Martens). Fresh Cray. 14:90–98.
  • Diaz F, Salas A, Denisse Re A, Gonzalez M, Reyes I. 2011. Thermal preference and tolerance of Megastrea (Lithopoma) undosa (Wood, 1828; Gastropoda: Turbinidae). J Therm Bio. 36:34–37. doi: 10.1016/j.jtherbio.2010.10.004
  • Eme J, Bennett WA. 2009. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. J Therm Bio. 34:220–225. doi: 10.1016/j.jtherbio.2009.02.005
  • Espina S, Diaz Herrera F., Bückle RLF. 1993. Preferred and avoided temperatures in the crawfish Procambarus clarkii (Decapoda, Cambaridae). J Therm Bio. 18:35–39. doi: 10.1016/0306-4565(93)90039-V
  • Firkins I. 1993. Environmental tolerances of three species of freshwater crayfish. [PhD Thesis]. Nottingham University. 288 p.
  • Firkins I, Holdich DM. 1993. Thermal studies with three species of freshwater crayfish. Freshwater Crayfish. 9(1):241–248.
  • González RA, Díaz F, Licea A, Denisse Re A, Noemí Sánchez L, García-Esquivel Z. 2010. Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures. J Therm Bio. 35(5):218–224. doi: 10.1016/j.jtherbio.2010.05.004
  • Harlioǧlu MM. 2004. The present situation of freshwater crayfish, Astacus leptodactylus (Eschscholtz, 1823) in Turkey. J Aquac. 230:181–187. doi: 10.1016/S0044-8486(03)00429-0
  • Hernández-Rodriguez M, Bückle-Ramirez F, Díaz-Herrera F. 1996. Critical thermal of Macrobrachium tenellum. J Therm Bio. 21:139–143. doi: 10.1016/0306-4565(95)00039-9
  • Herrera FD, Uribe ES, Ramirez LFB, Mora AG. 1998. Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palaemonidae). J Therm Bio. 23:381–385. doi: 10.1016/S0306-4565(98)00029-1
  • Holdich DM. 1993. A review of astaciculture: freshwater crayfish farming. Aq Liv Resour. 6:307–317. doi: 10.1051/alr:1993032
  • Huey RB, Stevenson RD. 1979. Integrating Thermal Physiology and Ecology of Ectothenns: A Discussion of Approaches Department. Am Zoo. 19:57–366.
  • Köksal G. 1988. Astacus leptodactylus in Europe. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London: Timber Press. p. 365-400.
  • Kumlu M, Kumlu M, Turkmen S. 2010a. Combined effects of temperature and salinity on critical thermal minima of pacific white shrimp Litopenaeus vannamei (Crustacea: Penaeidae). J Therm Bio. 35:302–304. doi: 10.1016/j.jtherbio.2010.06.008
  • Kumlu M, Türkmen S, Kumlu M. 2010b. Thermal tolerance of Litopenaeus vannamei (Crustacea: Penaeidae) acclimated to four temperatures. J Therm Bio. 35:305–308. doi: 10.1016/j.jtherbio.2010.06.009
  • Layne JR, Claussen DL, Manis ML. 1987. Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. J Therm Bio. 12:183–187. doi: 10.1016/0306-4565(87)90001-5
  • Manush SM, Pal AK, Chatterjee N, Das T, Mukherjee SC. 2004. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. J Therm Bio. 29:15–19. doi: 10.1016/j.jtherbio.2003.11.005
  • Paladino FV, Spotila JR, Schubauer JP, Kowalski KT. 1980. The critical thermal maximum- a technique used to elucidate physiologial stress and adaptation in fishes. Rev Can Bio. 39:115–122.
  • Pérez E, Díaz F, Espina S. 2003. Thermoregulatory behavior and critical thermal limits of the angelfish Pterophyllum scalare (Lichtenstein) (Pisces: Cichlidae). J Therm Bio. 28:531–537. doi: 10.1016/S0306-4565(03)00055-X
  • Re AD, Diaz F, Sierra E, Rodríguez J, Perez E. 2005. Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea, Penaeidae). J Therm Bio. 30:618–622. doi: 10.1016/j.jtherbio.2005.09.004
  • Salas A, Díaz F, Re AD, Galindo-Sanchez CE, Sanchez-Castrejon E, González M, Licea A, Sanchez-Zamora A, Rosas C. 2014. Preferred Temperature, Thermal Tolerance, and Metabolic Response of Tegula regina (Stearns, 1892). J Shell Res. 33:239–246. doi: 10.2983/035.033.0123
  • Simčič T, Pajk F, Jaklič M, Brancelj A, Vrezec A. 2014. The thermal tolerance of crayfish could be estimated from respiratory electron transport system activity. J Therm Bio. 41:21–30. doi: 10.1016/j.jtherbio.2013.06.003
  • Spoor WA. 1955. Loss and gain of heat-tolerance by the crayfish. T Bio Bull. 108:77–87. doi: 10.2307/1538399
  • Tepler S, Mach K, Denny M. 2011. Preference versus performance: Body temperature of the intertidal snail Chlorostoma funebralis. Bio Bull. 220:107–117.
  • Westhoff JT, Rosenberger AE. 2016. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth. Rev Fish Biol Fisheries 26:329-349. doi: 10.1007/s11160-016-9430-5
  • Wickins JF, O’C Lee D. 2003. Crustacean Farming, Ranching and Culture, 2nd edition. Aqua Res. 34:269-270. doi: 10.1046/j.1365-2109.2003.00813.x

Thermal Tolerance of Turkish Crayfish (Astacus leptodactylus) Acclimated to Three Different Temperatures

Yıl 2019, Cilt: 5 Sayı: 1, 1 - 5, 25.04.2019
https://doi.org/10.17216/limnofish.422903

Öz



Critical thermal maxima (CTMax)
and minima (CTMin) were determined for Turkish crayfish (Astacus leptodactylus)
acclimated to 15, 20 and 25°C. CTMin and CTMax were 1.3, 1.1 and
2.0°C, and 37.4, 37.5 and 38.7°C, respectively. Thermal tolerance tests showed
that acclimation temperatures (15, 20 and 25
°C) had significant effects on CTMin values of A. leptodactylus (P≤0.05). The area of thermal
tolerance assessed using the CTMin and CTMax boundaries were
calculated as 364°C2. The overall ARR values were calculated
as 0.07 for CTMin and 0.13 for CTMax values between 15 and 25
°C acclimation tempera-tures. All the crayfish crumpled at 0.5°C and
showed overall spasm at 32.0 – 33.0°C. Farming A. leptodactylus in the southeastern part of the Mediterranean
region may be practiced in terms of temperature tolerance.



Kaynakça

  • Beitinger T, Bennett W, McCauley R. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Env Biol of Fish. 58:237–275. doi: 10.1023/A:1007676325825
  • Bennett WA, Beitinger TL. 1997. Temperature Tolerance of the Sheepshead Minnow, Cyprinodon variegatus. Copeia 1997:77–87. doi: 10.2307/1447842
  • Bowler K. 1963. A study of the factors involved in acclimatization to temperature and death at high temperatures in Astacus pallipes. I. Experiments on intact animals. J Cell Comp Physio. 62:119–132. doi: 10.1002/jcp.1030620203
  • Claussen DL. 1977. Thermal acclimation in ambystomatid salamanders. Comp Biochem Physio Part A: Physio. 58(4):333–340. doi: 10.1016/0300-9629(77)90150-5
  • Claussen DL. 1980. Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis. Comp Biochem Physio Part A: Physio. 66(3):377–384. doi: 10.1016/0300-9629(80)90183-8
  • Cowles RB, Bogert CM. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulle Ame Mus Nat His. 83:261–296. doi: 10.1086/394795
  • Díaz F, Sierra E, Denisse Re A, Rodríguez L. 2002. Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman). J Therm Bio. 27(5):423–428. doi: 10.1016/S0306-4565(02)00011-6
  • Díaz F, Re AD, Sierra E, Amador G. 2004. Behavioral thermoregulation and critical limits applied to culture of red claw crayfish Cherax quadricarinatus (Von Martens). Fresh Cray. 14:90–98.
  • Diaz F, Salas A, Denisse Re A, Gonzalez M, Reyes I. 2011. Thermal preference and tolerance of Megastrea (Lithopoma) undosa (Wood, 1828; Gastropoda: Turbinidae). J Therm Bio. 36:34–37. doi: 10.1016/j.jtherbio.2010.10.004
  • Eme J, Bennett WA. 2009. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. J Therm Bio. 34:220–225. doi: 10.1016/j.jtherbio.2009.02.005
  • Espina S, Diaz Herrera F., Bückle RLF. 1993. Preferred and avoided temperatures in the crawfish Procambarus clarkii (Decapoda, Cambaridae). J Therm Bio. 18:35–39. doi: 10.1016/0306-4565(93)90039-V
  • Firkins I. 1993. Environmental tolerances of three species of freshwater crayfish. [PhD Thesis]. Nottingham University. 288 p.
  • Firkins I, Holdich DM. 1993. Thermal studies with three species of freshwater crayfish. Freshwater Crayfish. 9(1):241–248.
  • González RA, Díaz F, Licea A, Denisse Re A, Noemí Sánchez L, García-Esquivel Z. 2010. Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures. J Therm Bio. 35(5):218–224. doi: 10.1016/j.jtherbio.2010.05.004
  • Harlioǧlu MM. 2004. The present situation of freshwater crayfish, Astacus leptodactylus (Eschscholtz, 1823) in Turkey. J Aquac. 230:181–187. doi: 10.1016/S0044-8486(03)00429-0
  • Hernández-Rodriguez M, Bückle-Ramirez F, Díaz-Herrera F. 1996. Critical thermal of Macrobrachium tenellum. J Therm Bio. 21:139–143. doi: 10.1016/0306-4565(95)00039-9
  • Herrera FD, Uribe ES, Ramirez LFB, Mora AG. 1998. Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palaemonidae). J Therm Bio. 23:381–385. doi: 10.1016/S0306-4565(98)00029-1
  • Holdich DM. 1993. A review of astaciculture: freshwater crayfish farming. Aq Liv Resour. 6:307–317. doi: 10.1051/alr:1993032
  • Huey RB, Stevenson RD. 1979. Integrating Thermal Physiology and Ecology of Ectothenns: A Discussion of Approaches Department. Am Zoo. 19:57–366.
  • Köksal G. 1988. Astacus leptodactylus in Europe. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London: Timber Press. p. 365-400.
  • Kumlu M, Kumlu M, Turkmen S. 2010a. Combined effects of temperature and salinity on critical thermal minima of pacific white shrimp Litopenaeus vannamei (Crustacea: Penaeidae). J Therm Bio. 35:302–304. doi: 10.1016/j.jtherbio.2010.06.008
  • Kumlu M, Türkmen S, Kumlu M. 2010b. Thermal tolerance of Litopenaeus vannamei (Crustacea: Penaeidae) acclimated to four temperatures. J Therm Bio. 35:305–308. doi: 10.1016/j.jtherbio.2010.06.009
  • Layne JR, Claussen DL, Manis ML. 1987. Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. J Therm Bio. 12:183–187. doi: 10.1016/0306-4565(87)90001-5
  • Manush SM, Pal AK, Chatterjee N, Das T, Mukherjee SC. 2004. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. J Therm Bio. 29:15–19. doi: 10.1016/j.jtherbio.2003.11.005
  • Paladino FV, Spotila JR, Schubauer JP, Kowalski KT. 1980. The critical thermal maximum- a technique used to elucidate physiologial stress and adaptation in fishes. Rev Can Bio. 39:115–122.
  • Pérez E, Díaz F, Espina S. 2003. Thermoregulatory behavior and critical thermal limits of the angelfish Pterophyllum scalare (Lichtenstein) (Pisces: Cichlidae). J Therm Bio. 28:531–537. doi: 10.1016/S0306-4565(03)00055-X
  • Re AD, Diaz F, Sierra E, Rodríguez J, Perez E. 2005. Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea, Penaeidae). J Therm Bio. 30:618–622. doi: 10.1016/j.jtherbio.2005.09.004
  • Salas A, Díaz F, Re AD, Galindo-Sanchez CE, Sanchez-Castrejon E, González M, Licea A, Sanchez-Zamora A, Rosas C. 2014. Preferred Temperature, Thermal Tolerance, and Metabolic Response of Tegula regina (Stearns, 1892). J Shell Res. 33:239–246. doi: 10.2983/035.033.0123
  • Simčič T, Pajk F, Jaklič M, Brancelj A, Vrezec A. 2014. The thermal tolerance of crayfish could be estimated from respiratory electron transport system activity. J Therm Bio. 41:21–30. doi: 10.1016/j.jtherbio.2013.06.003
  • Spoor WA. 1955. Loss and gain of heat-tolerance by the crayfish. T Bio Bull. 108:77–87. doi: 10.2307/1538399
  • Tepler S, Mach K, Denny M. 2011. Preference versus performance: Body temperature of the intertidal snail Chlorostoma funebralis. Bio Bull. 220:107–117.
  • Westhoff JT, Rosenberger AE. 2016. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth. Rev Fish Biol Fisheries 26:329-349. doi: 10.1007/s11160-016-9430-5
  • Wickins JF, O’C Lee D. 2003. Crustacean Farming, Ranching and Culture, 2nd edition. Aqua Res. 34:269-270. doi: 10.1046/j.1365-2109.2003.00813.x
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balıkçılık Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Abdullatif Ölçülü 0000-0002-8062-8417

Metin Kumlu 0000-0002-9441-3812

H. Asuman Yılmaz 0000-0001-5627-034X

O. Tufan Eroldoğan 0000-0001-6978-7524

Yayımlanma Tarihi 25 Nisan 2019
Yayımlandığı Sayı Yıl 2019Cilt: 5 Sayı: 1

Kaynak Göster

APA Ölçülü, A., Kumlu, M., Yılmaz, H. A., Eroldoğan, O. T. (2019). Thermal Tolerance of Turkish Crayfish (Astacus leptodactylus) Acclimated to Three Different Temperatures. Journal of Limnology and Freshwater Fisheries Research, 5(1), 1-5. https://doi.org/10.17216/limnofish.422903