Yıl 2018, Cilt 4, Sayı 3, Sayfalar 192 - 204 2018-12-27

Using current applications of biotechnology in aquaculture genetics: Next Generation Sequencing Technologies
Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri

Münevver ORAL [1]

32 170

There have been enormous attempts for determining DNA sequences within the last fifty years. Advances in technology have enabled the shift from the sequencing of short oligonucleotides to whole genome sequencing of millions of bases within a single reaction. Such advances have been attained with the launch of Next Generation Sequencing platforms. Techniques used involve two fundamental sections as generating a reduced representation of the genome of interest through random fragmentation based libraries (RADseq, ddRADseq, 2bRADseq, CROPS ve RRL) and target specific libraries (RNA seq). Briefly, library preparation involves fragmentation of the genomic DNA to be sequenced by using restriction digestion or sonication and then sequence massively in parallel via high-throughput sequencers and make assembly of short fragments. In the present review, RADseq and ddRADseq, the most commonly used techniques of NGS in the literature, have been focused on an explanation of library preparation and bioinformatics analyses. The potential that NGS technologies hold has not been fully understood in our country yet, the applications in aquaculture genetics are: (i) reference genome projects (physical), (ii) genetic linkage mapping (i.e. QTL mapping), (iii) population genetics and phylogeny, (iv) SNP chip design, (v) verification and validation studies, (vi) genotyping for selective breeding as well as (vii) genetic traceability studies for sustainable aquaculture and minimize environmental impacts.

Geride bıraktığımız elli yıllık süreçte DNA dizi bilgisinin belirlenmesine yönelik muazzam çaba gösterilmiştir. Geliştirilen teknikler sayesinde kısa oligonukleotidlerden milyonlarca nükleotidlik tüm genom dizilemelerini tek reaksiyonda okuyabilen platformlara geçilmiştir. Bu ilerlemeler, Yeni Nesil Dizileme (YND) teknolojilerinin piyasaya sürülmesi ile gerçekleşmiştir. Kullanılan yöntemler, temelde bir genomun indirgenmiş temsilini oluşturan rastgele kütüphaneler (RADseq, ddRADseq, 2bRADseq, CROPS ve RRL) ile belli bir bölgeyi hedef alan kütüphaneler (RNAseq) olmak üzere ikiye ayrılırlar. Örneklerin hazırlanma süreci kısaca, DNA dizisi çıkarılması hedeflenen türün genomunun restriksiyon ya da sonikasyon yöntemi ile parçalara ayrılarak bir DNA kütüphanesinin oluşturulması ve ardından yüksek üretim hacmine sahip dizileme ekipmanları ile yeni sentezlenen DNA parçalarının yüksek kapasitede (paralel olarak) dizilenmesi, takiben de tüm bu dizilerin bir araya getirilmesi (assembly making) şeklinde özetlenebilir. Bu derlemede, literatürde en fazla kullanılan ve restriksiyon temelli yöntemlerden olan RADseq ve ddRADseq yöntemleri odaklı örneklerin hazırlanması ve biyoinformatik analizleri ele alınmıştır. Ülkemizde potansiyeli henüz keşfedilmemiş olan YND teknolojilerinin su ürünleri genetik literatüründeki kullanım alanları: (i) referans genom haritaları oluşturma (fiziksel), (ii) genetik bağlantı haritalamaları (QTL haritalama), (iii) popülasyon genetiği ve filogeni, (iv) TNP chip dizaynında, (v) verifikasyon ve validasyon çalışmalarında, (vi) ıslah amaçlı genotipleme ile (vii) sürdürülebilir su ürünleri yetiştiriciliği ve çevresel etkinin en aza indirilmesi noktasında bilgilendirici genetik izlenebilirlik alt başlıklarında derlenmiştir.

  • Andrews KR, Luikart G. 2014. Recent novel approaches for population genomics data analysis. Mol Ecol. 23(7):1661-1667. doi: 10.1111/mec.12686
  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 17(2):81-92. doi: 10.1038/nrg.2015.28
  • Baird N, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresco WA, Johnson E. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 3(10), e3376. doi:10.1371/journal.pone.0003376
  • Barba M, Czosnek H, Hadidi A. 2014. Historic perspective, development and applications of next-generation sequencing in plant virology. Viruses. 6(1):106–36. doi: 10.3390/v6010106
  • Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da Silva C, Labadie K, Alberti A, Aury JM, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard GH, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff JN, Genêt C, Wincker P, Jaillon O, Roest Crollius H, Guiguen Y. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun, 5, 3657. doi: 10.1038/ncomms4657
  • Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, Simakov o, Alvin Y. Ng, Lim ZW, Bezault E, Turner-Maier J, Johnson J, Alcazar R, Ji Noh H, Russell P, Aken B, Alföldi J, Amemiya C, Azzouzi N, Baroiller J-F, Barloy-Hubler F, Berlin A, Bloomquist R, Carleton KL, Conte MA, D'Cotta H, Eshel O, Gaffney L, Galibert F, Gante HF, Gnerre S, Greuter L, Guyon R, Haddad NS, Haerty W, Harris RM, Hofmann HA, Hourlier T, Hulata G, Jaffe DB, Lara M, Lee AP, MacCallum I, Mwaiko S, Nikaido M, Nishihara H, Ozouf-Costaz C, Penman DJ, Przybylski D, Rakotomanga M, Renn SCP, Ribeiro FJ, Ron M, Salzburger W, Sanchez-Pulido L, Santos ME, Searle S, Sharpe T, Swofford R, Tan FJ, Williams L, Young S, Yin S, Okada N, Kocher TD, Miska EA, Lander ES, Venkatesh B, Fernald RD, Meyer A, Ponting CP, Streelman JT, Lindblad-Toh K, Seehausen O, Di Palma F. 2014 The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375–381. doi: 10.1038/nature13726
  • Campbell NR, LaPatra SE, Overturf K, Towner R, Narum SR. 2014. Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing. G3 (Bethesda). 4(12):2473–2481. doi: 10.1534/g3.114.014621
  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. 2011. Stacks: building and genotyping loci de novo from short-read sequences. G3 (Genes, Genomes, Genetics), 1(3):171–82. doi: 10.1534/g3.111.000240
  • Catchen J, Bassham S, Wilson T, Currey M, O’Brien C, Yeates Q, Cresko WA. 2013. The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol Ecol. 22(11):2864-83. doi: 10.1111/mec.12330
  • Chen X, Zhong L, Bian C, Xu P, Qiu Y, You X, Zhang S, Huang Y, Li J, Wang M, Qin Q, Zhu X, Peng C, Wong A, Zhu Z, Wang M, Gu R, Xu J, Shi Q, Bian W. 2016. High-quality genome assembly of channel catfish, Ictalurus punctatus. Gigascience. 5:39. doi: 10.1186/s13742-016-0142-5
  • Davey JW, Blaxter ML. 2010. RADseq: next generation population gentics. Brief Funct Genomics. 9(5-6):416-23. doi: 10.1093/bfgp/elq031
  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 12(7):499–510. doi: 10.1038/nrg3012
  • Eaton DAR. 2014. PyRAD: assembly of denovo RADseq loci for phylogenetic analysis. Bioinformatics. 30(13):1844–1849. doi: 10.1093/bioinformatics/btu121
  • Etter PD, Preston JL, Bassham S, Cresko WA, Johnson EA. 2011. Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS One 6(4):e18561. doi: 10.1371/journal.pone.0018561
  • Figueras A, Robledo D, Corvelo A, Hermida M, Pereiro P, Rubiolo JA, Gómez-Garrido J, Carreté L, Bello X, Gut M, Gut IG, Marcet-Houben M, Forn-Cuní G, Galán B, García JL, Abal-Fabeiro JL, Pardo BG, Taboada X, Fernández C, Vlasova A, Hermoso-Pulido A, Guigó R, Álvarez-Dios JA, Gómez-Tato A, Viñas A, Maside X, GabaldónT, Novoa B, Bouza C, Alioto T, Martínez P. 2016. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life. DNA Res. 23(3):181-192.doi: 10.1093/dnares/dsw007
  • Guzvic M. 2013. The history of DNA sequencing. J Med Biochem. 32(4):301–12. doi:10.2478/jomb-2014-0004
  • Heather JM, Chain B. 2016. The sequence of sequencers: The history of sequencing DNA. Genomics. 107(1):(1-8). doi: 10.1016/j.ygeno.2015.11.003
  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. 2010. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6(2):e1000862. doi: 10.1371/journal.pgen.1000862
  • Hou J, Wang G, Zhang X, Sun Z, Si F, Jiang X, Liu H. 2016. Production and verification of a 2nd generation clonal group of Japanese flounder, Paralichthys olivaceus. Scientific Reports. 6, 35776. doi:10.1038/srep35776
  • Houston RD, Taggart JB, Cezard T, Bekaert M, Lowe NR, Downing A. 2014. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics. 15: 90. doi: 10.1186/1471-2164-15-90
  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496:498–503. doi: 10.1038/nature12111
  • IHGSC, International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. 2001. Nature. 409:860−921. PMID: 1123701. doi: 10.1038/35057062
  • Kai W, Nomura K, Fujiwara A, Nakamura Y, Yasuike M, Ojima N. 2014. A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication. BMC Genomics. 15:233. doi: 10.1186/1471-2164-15-233
  • Kumar G, Kocour M. 2017. Applications of next-generation sequencing in fisheries research: a review. Fish Res. 186:11–22. doi: 10.1016/j.fishres.2016.07.021
  • Larson WA, McKinney GJ, Limborg MT, Everett MV, Seeb LW, Seeb JE. 2016. Identification of multiple QTL hotspots in sockeye salmon (Oncorhynchus nerka) using genotyping by-sequencing and a dense linkage map. J Hered. 107(2):122–133. doi: 10.1093/jhered/esv099
  • Lepais O, Weir JT. 2014. SimRAD: an R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Mol Ecol Resour. 14(6):1314–1321. doi: 10.1111/1755-0998.12273
  • Li YH, Wang HP. 2017. Advances of genotyping-by-sequencing in fisheries and aquaculture. Rev Fish Biol Fisheries. 27(3):535–559. doi: 10.1007/s11160-017-9473-2
  • Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Våge DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, Davidson WS. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature. 533:200–205. doi: 10.1038/nature17164
  • Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H, Liu Z. 2014. Development of the catfish 250K SNP array for genome-wide association studies. BMC Research Notes. 7:135. doi: 10.1186/1756-0500-7-135
  • Liu ZJ. 2011. Next Generation Sequencing and Whole Genome Selection in Aquaculture. Iowa, USA: Wiley-Blackwell 237 s.
  • Liu ZJ. 2017. Bioinformatics in Aquaculture. Oxford, UK: Wiley-Blackwell 591 s.
  • Mandoiu I, Zelikovsky A. 2016. Computational Methods For Next Generation Sequencing Data Analysis. New Jersey, USA: John Wiley & Sons. 464 s.
  • Mardis ER. 2011. A decade’s perspective on DNA sequencing technology. Nature. 470:198–203. doi: 10.1038/nature09796
  • Mardis ER. 2017. DNA sequencing sechnologies: 2006-2016. Nat Protoc. 12(2):213-218. doi: 10.1038/nprot.2016.182
  • Maxam AM, Gilbert W. 1977. A new method for sequencing DNA, Proc Natl Acad Sci. U.S.A. 74, 560–564.
  • McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66(2):526-538. doi: 10.1016/j.ympev.2011.12.007
  • Mertzker ML. 2010. Sequencing technologies - The next generation. Nat Rev Genet 11:31–46. doi: 10.1038/nrg2626
  • Morey M, Fernandez AM, Castineiras D, Fraga JM, Couce ML, Cocho JA. 2013. A glimpse into past, present, and future DNA sequencing. Mol Genet Metab. 110 (1-2):3-24. doi: 10.1016/j.ymgme.2013.04.024
  • Muir P, Li S, Lou S. vd. 2016. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biology, 17(53). doi: 10.1186/s13059-016-0917-0
  • Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C. 2016. A first insight into the genome of the filter-feeder mussel Mytilus galloprovincialis. PLoS One 11: e0151561. doi: 10.1371/journal.pone.0151561
  • Ogden R, Gharbi K, Mugue N, Martinsohn J, Senn H, Davey JW, Pourkazemi M, McEwing R, Eland C, Vidotto M, Sergeev A, Congiu L. 2013. Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Mol Ecol. 22:3112–3123. doi: 10.1111/mec.12234
  • Oral M. 2016. Insights into isogenic clonal fish line development using high-throughput sequencing technologies. [PhD thesis] University of Stirling, Scotland, UK, available online.
  • Oral M, Colléter J, Bekaert M, Taggart JB, Palaiokostas C, McAndrew BJ, Vandeputte M, Chatain B, Kuhl H, Reinhardt R, Peruzzi S, Penman DJ. 2017. Gene-centromere mapping in meiotic gynogenetic European seabass. BMC Genomics, 18:449. doi: 10.1186/s12864-017-3826-z
  • Palaiokostas C, Bekaert M, Davie A, Cowan ME, Oral M, Taggart JB, Gharbi K, McAndrew BJ, Penman DJ, Migaud H. 2013. Mapping the sex determination locus in Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing. BMC Genomics 14:566. doi: 10.1186/1471-2164-14-566
  • Palaiokostas C, Bekaert M, Taggart JB, Gharbi K, McAndrew BJ, Chatain B, Penman DJ, Vandeputte M. 2015. A new SNP-based vision of the genetics of sex determination in European seabass (Dicentrarchus labrax). Genet Sel Evol 47: 68. doi: 10.1186/s12711-015-0148-y
  • Palaiokostas C, Ferraresso S, Franch R, Houston RD, Bargelloni L. 2016. Genomic prediction of resistance to pasteurellosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. G3 (Bethesda) 6: 3693–3700. doi: 10.1534/g3.116.035220
  • Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, Rexroad CE, Moen T. 2015. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour. 15: 662–672. doi: 10.1111/1755-0998.12337
  • Peterson BK, Weber J, Kay EH, Fisher HS, Hoekstra HE. 2012. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. Plos One, 7:(5), e37135. doi:10.1371/journal.pone.0037135
  • Puritz JB, Hollenbeck CM, Gold JR. 2014. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. Peer J 2: e431. doi: 10.7717/peerj.431
  • Reitzel AM, Herrera S, Layden MJ, Martindale MQ, Shank TM. 2013. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol. (11): 2953–2970. doi: 10.1111/mec.12228
  • Robledo D, Palaiokostas C, Bargelloni L, Martinez P, Houston R. 2017. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev in Aquacult. 1–13. doi: 10.1111/raq.12193
  • Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, Von Schalburg KR, Lemon C, Bird NH, Koop BF. 2014. The genome and linkage map of the Northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One 9: e102089. doi: 10.1371/journal.pone.0102089
  • Sanger F. Coulson AR. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 94, 441–448.
  • Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzén A, Winer R, Knight J, Vogel J-H, Aken B, Andersen Ø, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjøen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS. 2011. The genome sequence of Atlantic cod reveals a unique immune system. Nature 477: 207–210. doi: 10.1038/nature10342
  • Tine M, Kuhl H, Gagnaire PA, Louro B, Desmarais E, Martins RS, Hecht J, Knaust F, Belkhir K, Klages S, Dieterich R, Stueber K, Piferrer F, Guinand B, Bierne N, Volckaert FAM, Bargelloni L, Power DM, Bonhomme F, Canario AVM, Reinhardt R. 2014. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun. 5: 5770. doi: 10.1038/ncomms6770
  • Van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, Poel HVD, Oeveren JV, Verstegen H, Eijk MJTV. 2007. Complexity Reduction of Polymorphic Sequences (CRoPS™): A Novel Approach for Large-Scale Polymorphism Discovery in Complex Genomes. PLoS ONE 2(11): e1172. doi:10.1371/journal. pone.0001172
  • Van Tassel CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS. 2008. SNP discovery and allele frequency estimation by deep sequencing of reduced represantation libraries. Nat Methods, 5, 247-252. doi: 10.1038/nmeth.1185
  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG. vd. 2001. The sequence of the human genome. Science 291, 1304–1351.doi: 10.1126/science.1058040
  • Vij S, Kuhl H, Kuznetsova IS, Komissarov A, Yurchenko AA, Van Heusden P. vd. 2016. Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet. 12: e1005954. doi: 10.1371/journal.pgen.1005954
  • Wang S, Meyer E, McKay JK, Matz MV. 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods. 9: 808–810. doi:10.1038/nmeth.2023
  • Xu J, Zhao Z, Zhang X, Zheng X, Li J, Jiang Y. vd. 2014a. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genomics.15: 307. doi: 10.1186/1471-2164-15-307
  • Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y. vd. 2014b. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet. 46: 1212–1219. doi: 10.1038/ng.3098
  • Yanez JM, Naswa S, Lopez ME, Bassini L, Correa K, Gilbey J. vd. 2016. Genome-wide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations. Mol Ecol Resour. 16: 1002–1011. doi: 10.1111/1755-0998.12503
  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F. vd. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490: 49–54. doi: 10.1038/nature11413
  • URL 1. 2018. https://www.ncbi.nlm.nih.gov/genbank/statistics/ (Erişim tarihi: 16.01.2018).
  • URL 2. 2018. https://genomics.ed.ac.uk/ (Erişim tarihi: 17.01.2018).
  • URL 3. 2018. http://catchenlab.life.illinois.edu/stacks/ tarihi (Erişim tarihi: 16.01.2018), son güncelleme tarihi: 29 Aralık 2017.
  • URL 4. 2018. http://catchenlab.life.illinois.edu/stacks/manual/ (Erişim tarihi: 16.01.2018).
  • URL5. 2018. https://www.tubitak.gov.tr/tubitak_content_files/
  • vizyon2023/Vizyon2023_Strateji_Belgesi.pdf (Erişim tarihi:24.01.2018), sayfa 36.
Birincil Dil tr
Konular Fen
Yayımlanma Tarihi December 2018
Dergi Bölümü Derleme
Yazarlar

Orcid: 0000-0001-7318-6641
Yazar: Münevver ORAL (Sorumlu Yazar)
Kurum: Recep Tayyip Erdoğan Üniversitesi, Su Ürünleri Fakültesi,Rize, 53100, Türkiye
Ülke: Turkey


Bibtex @derleme { limnofish399545, journal = {Journal of Limnology and Freshwater Fisheries Research}, issn = {}, eissn = {2149-4428}, address = {Su Ürünleri Araştırma Enstitüsü}, year = {2018}, volume = {4}, pages = {192 - 204}, doi = {10.17216/limnofish.399545}, title = {Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri}, key = {cite}, author = {ORAL, Münevver} }
APA ORAL, M . (2018). Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri. Journal of Limnology and Freshwater Fisheries Research, 4 (3), 192-204. DOI: 10.17216/limnofish.399545
MLA ORAL, M . "Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri". Journal of Limnology and Freshwater Fisheries Research 4 (2018): 192-204 <http://www.limnofish.org/issue/41345/399545>
Chicago ORAL, M . "Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri". Journal of Limnology and Freshwater Fisheries Research 4 (2018): 192-204
RIS TY - JOUR T1 - Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri AU - Münevver ORAL Y1 - 2018 PY - 2018 N1 - doi: 10.17216/limnofish.399545 DO - 10.17216/limnofish.399545 T2 - Journal of Limnology and Freshwater Fisheries Research JF - Journal JO - JOR SP - 192 EP - 204 VL - 4 IS - 3 SN - -2149-4428 M3 - doi: 10.17216/limnofish.399545 UR - http://dx.doi.org/10.17216/limnofish.399545 Y2 - 2018 ER -
EndNote %0 Journal of Limnology and Freshwater Fisheries Research Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri %A Münevver ORAL %T Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri %D 2018 %J Journal of Limnology and Freshwater Fisheries Research %P -2149-4428 %V 4 %N 3 %R doi: 10.17216/limnofish.399545 %U 10.17216/limnofish.399545
ISNAD ORAL, Münevver . "Biyoteknolojinin Güncel Uygulamalarının Su Ürünleri Genetik Alanında Kullanılması: Yeni Nesil Dizileme Teknolojileri". Journal of Limnology and Freshwater Fisheries Research 4 / 3 (Aralık 2018): 192-204. http://dx.doi.org/10.17216/limnofish.399545