Research Article
BibTex RIS Cite

A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES

Year 2024, Volume: 29 Issue: 1, 139 - 154, 22.04.2024
https://doi.org/10.17482/uumfd.1269483

Abstract

Wireless power transfer (WPT) presents numerous possibilities for recharging electronic devices in challenging environments. Charging of biomedical devices within the body is among the available opportunities. Inductively coupled WPT is a dependable and effective solution for powering these devices. Energy is transferred from the transmitter to the receiver in the inductively coupled WPT system through the use of coils and magnetic coupling. A WPT system was designed for this study, with dimensions of 4 cm by 4 cm, power output of 1 mW, and a frequency of 13.56 MHz. Series Series (SS) topology was selected for its ease of handling and simple architecture. A square coil was selected as the receiver and transmitter coil structure due to its higher coupling factor than circular coils. ANSYS® Maxwell 3D was used to design the coils and perform magnetic analysis. In the ANSYS® HFSS program, the WPT system was placed inside the male human model and the electromagnetic exposure of the WPT on humans was examined. The magnetic scattering of the WPT system was within the safe values specified by IEEE and ICNIRP standards.

References

  • 1. Agarwal, K., Jegadeesan, R., Guo, Y. X., and Thakor, N. V. (2017) Wireless power transfer strategies for implantable bioelectronics, IEEE reviews in biomedical engineering, 10, 136-161. doi: 10.1109/RBME.2017.2683520
  • 2. Ağçal, A., Doğan, T. H., and Aksu, G. (2022) The Effects of Operating Frequency on Wireless Power Transfer System Design and Human Health in Electric Vehicles, Electrica, 22(2), 188-197. doi: 10.54614/electrica.2022.22020
  • 3. Brown, W.C. (1969) Experiments involving a microwave beam to power and position a helicopter, IEEE Transactions on Aerospace and Electronic Systems, 5(1), 692-702. doi: 10.1109/TAES.1969.309867
  • 4. Campi, T., Cruciani, S., Palandrani, E., De Santis, V., Hirata, A., and Feliziani, M. (2016) Wireless Power Transfer Charging System for AIMDs and Pacemakers, IEEE Transactions on Microwave Theory and Techniques, 64(2), 633-642. doi: 10.1109/TMTT.2015.2511011
  • 5. Dai, J., and Ludois, D. C. (2015) A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications, IEEE Transactions on Power Electronics, 30(11), 6017-6029. doi: 10.1109/TPEL.2015.2415253
  • 6. Demirci, Y.E. (2020). Kalp Pili Uygulamaları için kablosuz enerji transferi devre tasarımı, Master thesis, Pamukkale Üniversitesi, Türkiye.
  • 7. Hong, S., Jeong, S., Lee, S., Sim, B., Kim, H., and Kim, J., (2020) Low EMF design of cochlear implant wireless power transfer system using a shielding coil”, In 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Reno, 623-625. doi: 10.1109/EMCSI38923.2020.9191460
  • 8. IEEE, (2019) Standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields (0 Hz to 100 kHz), Std, Vol. C95, no. 1™-2019,.
  • 9. Imura, T., and Hori, Y. (2011) Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula, IEEE Transactions on industrial electronics, 58(10), 4746-4752. doi: 10.1109/TIE.2011.2112317
  • 10. International Commission on Non-Ionizing Radiation Protection (ICNIRP), (2010) Guidelines for limiting exposure to time-varying electric and magnetic fields for low frequencies (1 Hz–100 kHz),” Health Physics, 99(6), 818–836. doi: 10.1097/HP.0b013e3181f06c86
  • 11. Jegadeesan, R., Nag, S., Agarwal, K., Thakor, N., and Guo, Y.-X. (2015) Enabling wireless powering and telemetry for peripheral nerve implants, IEEE J. Biomed. Health Informat., 19(3), 958–970. doi: 10.1109/JBHI.2015.2424985
  • 12. Karakaya, U., (2007) Motor control via wireless energy and information transfer”, Master thesis, İstanbul Teknik Üniversitesi, Türkiye.
  • 13. Laird, (2023). Flexible Magnetic Sheet MULL6060-300. Erişim Adresi: http:// https://www.laird.com/products/inductive-components-emc-components-and-ferrite-cores/ferrite-sheets/mull- series/mull6060-300 (Erişim Tarihi: 09.11.2023)
  • 14. Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., and Lee, T. H. (1999) Simple accurate expressions for planar spiral inductances, IEEE Journal of solid-state circuits, 34(10), 1419-1424. doi: 10.1109/4.792620
  • 15. RamRakhyani, A. K., Mirabbasi, S., and Chiao, M. (2010) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants, IEEE transactions on biomedical circuits and systems, 5(1), 48-63. doi: 10.1109/TBCAS.2010.2072782
  • 16. Sahai, A. and Graham, D. (2001) Optical wireless power transmission at long wavelengths, IEEE International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, 164- 170. doi: 10.1109/ICSOS.2011.5783662
  • 17. Sample, A. P., Meyer, D. T., and Smith, J. R. (2010) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Transactions on industrial electronics, 58(2), 544-554. doi: 10.1109/TIE.2010.2046002
  • 18. Shuvo, M. M. H., Titirsha, T., Amin, N., and Islam, S. K. (2022) Energy harvesting in implantable and wearable medical devices for enduring precision healthcare. Energies, 15(20), 7495. doi: 10.3390/en15207495
  • 19. Tesla, N. (1905) Art of Transmitting Electrical Energy through Natural Mediums, U.S. Patent No. 787,412.

Vücut İçi İmplant Cihazların Şarjı için Kablosuz Enerji Transfer Sistemi Tasarımı

Year 2024, Volume: 29 Issue: 1, 139 - 154, 22.04.2024
https://doi.org/10.17482/uumfd.1269483

Abstract

Kablosuz enerji transferi (KET), zorlu ortamlarda elektronik cihazları şarj etmek için çok sayıda olanak sunar. Biyomedikal cihazların vücuttan şarj edilmesi de mevcut imkanlar arasındadır. Endüktif bağlantı ile birleştirilmiş kablosuz güç aktarımının kullanılması, bu cihazlara güç sağlamak için güvenilir ve etkili bir çözümdür. Endüktif olarak bağlanmış KET sisteminde vericiden alıcıya enerji, bobinler ve manyetik bağlantı kullanılarak aktarılır. Bu çalışma için 4 cm'ye 4 cm boyutlarında, 1 mW güç çıkışı ve 13,56 MHz frekansta bir WPT sistemi tasarlanmıştır. Seri-Seri (SS) topoloji, kullanım kolaylığı ve basit mimarisi nedeniyle seçilmiştir. Dairesel bobinlere kıyasla daha yüksek kuplaj faktörü nedeniyle alıcı ve verici bobin yapısı olarak kare bir bobin seçilmiştir. Bobinleri tasarlamak ve manyetik analizleri yapmak için ANSYS® Maxwell 3D kullanıldı. ANSYS® HFSS programında KET sistemi erkek insan modelinin içine yerleştirilmiş ve KET'in insanlar üzerindeki elektromanyetik maruziyeti incelenmiştir. KET sisteminin manyetik saçılımının IEEE ve ICNIRP standartlarında belirtilen güvenli değerler içerisinde olduğu görülmüştür.

References

  • 1. Agarwal, K., Jegadeesan, R., Guo, Y. X., and Thakor, N. V. (2017) Wireless power transfer strategies for implantable bioelectronics, IEEE reviews in biomedical engineering, 10, 136-161. doi: 10.1109/RBME.2017.2683520
  • 2. Ağçal, A., Doğan, T. H., and Aksu, G. (2022) The Effects of Operating Frequency on Wireless Power Transfer System Design and Human Health in Electric Vehicles, Electrica, 22(2), 188-197. doi: 10.54614/electrica.2022.22020
  • 3. Brown, W.C. (1969) Experiments involving a microwave beam to power and position a helicopter, IEEE Transactions on Aerospace and Electronic Systems, 5(1), 692-702. doi: 10.1109/TAES.1969.309867
  • 4. Campi, T., Cruciani, S., Palandrani, E., De Santis, V., Hirata, A., and Feliziani, M. (2016) Wireless Power Transfer Charging System for AIMDs and Pacemakers, IEEE Transactions on Microwave Theory and Techniques, 64(2), 633-642. doi: 10.1109/TMTT.2015.2511011
  • 5. Dai, J., and Ludois, D. C. (2015) A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications, IEEE Transactions on Power Electronics, 30(11), 6017-6029. doi: 10.1109/TPEL.2015.2415253
  • 6. Demirci, Y.E. (2020). Kalp Pili Uygulamaları için kablosuz enerji transferi devre tasarımı, Master thesis, Pamukkale Üniversitesi, Türkiye.
  • 7. Hong, S., Jeong, S., Lee, S., Sim, B., Kim, H., and Kim, J., (2020) Low EMF design of cochlear implant wireless power transfer system using a shielding coil”, In 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Reno, 623-625. doi: 10.1109/EMCSI38923.2020.9191460
  • 8. IEEE, (2019) Standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields (0 Hz to 100 kHz), Std, Vol. C95, no. 1™-2019,.
  • 9. Imura, T., and Hori, Y. (2011) Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula, IEEE Transactions on industrial electronics, 58(10), 4746-4752. doi: 10.1109/TIE.2011.2112317
  • 10. International Commission on Non-Ionizing Radiation Protection (ICNIRP), (2010) Guidelines for limiting exposure to time-varying electric and magnetic fields for low frequencies (1 Hz–100 kHz),” Health Physics, 99(6), 818–836. doi: 10.1097/HP.0b013e3181f06c86
  • 11. Jegadeesan, R., Nag, S., Agarwal, K., Thakor, N., and Guo, Y.-X. (2015) Enabling wireless powering and telemetry for peripheral nerve implants, IEEE J. Biomed. Health Informat., 19(3), 958–970. doi: 10.1109/JBHI.2015.2424985
  • 12. Karakaya, U., (2007) Motor control via wireless energy and information transfer”, Master thesis, İstanbul Teknik Üniversitesi, Türkiye.
  • 13. Laird, (2023). Flexible Magnetic Sheet MULL6060-300. Erişim Adresi: http:// https://www.laird.com/products/inductive-components-emc-components-and-ferrite-cores/ferrite-sheets/mull- series/mull6060-300 (Erişim Tarihi: 09.11.2023)
  • 14. Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., and Lee, T. H. (1999) Simple accurate expressions for planar spiral inductances, IEEE Journal of solid-state circuits, 34(10), 1419-1424. doi: 10.1109/4.792620
  • 15. RamRakhyani, A. K., Mirabbasi, S., and Chiao, M. (2010) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants, IEEE transactions on biomedical circuits and systems, 5(1), 48-63. doi: 10.1109/TBCAS.2010.2072782
  • 16. Sahai, A. and Graham, D. (2001) Optical wireless power transmission at long wavelengths, IEEE International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, 164- 170. doi: 10.1109/ICSOS.2011.5783662
  • 17. Sample, A. P., Meyer, D. T., and Smith, J. R. (2010) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Transactions on industrial electronics, 58(2), 544-554. doi: 10.1109/TIE.2010.2046002
  • 18. Shuvo, M. M. H., Titirsha, T., Amin, N., and Islam, S. K. (2022) Energy harvesting in implantable and wearable medical devices for enduring precision healthcare. Energies, 15(20), 7495. doi: 10.3390/en15207495
  • 19. Tesla, N. (1905) Art of Transmitting Electrical Energy through Natural Mediums, U.S. Patent No. 787,412.
There are 19 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Edanur Büyüktuna This is me 0009-0005-9512-9345

Elif Dilek This is me 0009-0002-8826-9786

Fatma Nur Yorgancılar This is me 0009-0008-2402-9672

Ramazan Çetin This is me 0000-0001-5846-8667

Ali Ağçal 0000-0003-0965-4038

Early Pub Date March 28, 2024
Publication Date April 22, 2024
Submission Date March 22, 2023
Acceptance Date January 9, 2024
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA Büyüktuna, E., Dilek, E., Yorgancılar, F. N., Çetin, R., et al. (2024). A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(1), 139-154. https://doi.org/10.17482/uumfd.1269483
AMA Büyüktuna E, Dilek E, Yorgancılar FN, Çetin R, Ağçal A. A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES. UUJFE. April 2024;29(1):139-154. doi:10.17482/uumfd.1269483
Chicago Büyüktuna, Edanur, Elif Dilek, Fatma Nur Yorgancılar, Ramazan Çetin, and Ali Ağçal. “A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 1 (April 2024): 139-54. https://doi.org/10.17482/uumfd.1269483.
EndNote Büyüktuna E, Dilek E, Yorgancılar FN, Çetin R, Ağçal A (April 1, 2024) A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 1 139–154.
IEEE E. Büyüktuna, E. Dilek, F. N. Yorgancılar, R. Çetin, and A. Ağçal, “A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES”, UUJFE, vol. 29, no. 1, pp. 139–154, 2024, doi: 10.17482/uumfd.1269483.
ISNAD Büyüktuna, Edanur et al. “A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/1 (April 2024), 139-154. https://doi.org/10.17482/uumfd.1269483.
JAMA Büyüktuna E, Dilek E, Yorgancılar FN, Çetin R, Ağçal A. A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES. UUJFE. 2024;29:139–154.
MLA Büyüktuna, Edanur et al. “A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 1, 2024, pp. 139-54, doi:10.17482/uumfd.1269483.
Vancouver Büyüktuna E, Dilek E, Yorgancılar FN, Çetin R, Ağçal A. A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES. UUJFE. 2024;29(1):139-54.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.