Research Article
BibTex RIS Cite

ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ

Year 2022, Volume: 27 Issue: 2, 831 - 846, 31.08.2022
https://doi.org/10.17482/uumfd.1142197

Abstract

Bu çalışmada, çimento C3A miktarının 3B beton karışımlarının bazı taze hal özellikleri ve basınç dayanımına etkisi araştırılmıştır. Bu amaçla, farklı miktarda C3A içeren iki seri 3B beton karışımı hazırlanarak optimum karışım oranı belirlenmiştir. 3B betonların optimum karışım oranları ekstrüde edilebilirlik ve inşa edilebilirlik parametreleri dikkate alınarak tespit edilmiştir. Enjeksiyon tabancasından kolaylıkla pompalanabilen karışımların ekstrüde edilebilir olduğu kabul edilmiştir. Üç katman halinde basılabilen ve pürüzsüz yüzeye sahip olan karışımlar inşa edilebilir olarak seçilmiştir. Belirlenen 3B beton karışımlarının zamana bağlı yayılma davranışı, şekil kararlılığı, reolojik özellikleri ve basınç dayanımı incelenmiştir. Karışımların reolojik özellikleri, statik eşik kayma gerilmesi, dinamik eşik kayma gerilmesi, viskozitesi ve yapısal toparlanma hızı olmak üzere dört farklı açıdan incelenmiştir. Elde edilen sonuçlara göre, çimento C3A içeriğindeki artış ile karışımların zamana bağlı kıvam kaybı, şekil koruma kapasitesi ve yapısal toparlanma hızının arttığı gözlemlenmiştir. Ancak, çimento C3A içeriğindeki artış ile 3B beton karışımlarının statik ve dinamik eşik kayma gerilmesi ile basınç dayanımı azalmıştır. Viskozite değerlerinde ise önemli bir değişikliğin olmadığı tespit edilmiştir.

Supporting Institution

Bursa Uludağ Üniversitesi

Project Number

FAY-2021-579

Thanks

Yazarlar, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK) ve Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri’ne (BAP) (Proje No: 219M425, FAY-2021-579) katkılarından dolayı teşekkür eder.

References

  • 1. Altun, M. G., Şahin, H. G. ve Mardani Aghabaglou, A. (2021) Effect of Main and Side Chain Lengths Change of Water Reducing Admixture on Setting Time and Compressive Strength of Cementitious Systems, 6th International Conference on Engineering and Natural Science, Belgrade, 13.
  • 2. Bentz, D. P., Snyder, K. A., Peltz, M. A., Obla, K. ve Kim, H. (2013) Viscosity modifiers to enhance concrete performance. ACI Materials Journal, 110(5), 495.
  • 3. Chen, Y., Jansen, K., Zhang, H., Rodriguez, C. R., Gan, Y., Çopuroğlu, O. Ve Schlangen, E. (2020) Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study, Construction and Building Materials, 262, 120094. doi: 10.1016/j.conbuildmat.2020.120094
  • 4. Han, N., Xiao, J., Zhang, L. ve Peng, Y. (2022) A microscale-based numerical model for investigating hygro-thermo-mechanical behaviour of 3D printed concrete at elevated temperatures, Construction and Building Materials, 344, 128231. doi: 10.1016/j.conbuildmat.2022.128231
  • 5. Hao, L., Xiao, J., Sun, J., Xia, B. ve Cao, W. (2022) Thermal conductivity of 3D printed concrete with recycled fine aggregate composite phase change materials, Journal of Cleaner Production, 132598. doi:10.1016/j.jclepro.2022.132598
  • 6. Jeong, H., Han, S. J., Choi, S. H., Lee, Y. J., Yi, S. T. ve Kim, K. S. (2019) Rheological property criteria for buildable 3D printing concrete, Materials, 12(4), 657. doi:10.3390/ma12040657
  • 7. Kazemian, A., Yuan, X., Cochran, E. ve Khoshnevis, B. (2017) Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture, Construction and Building Materials, 145, 639-647. doi:10.1016/j.conbuildmat.2017.04.015
  • 8. Kim, M. J., Kim, K. B. ve Ann, K. Y. (2016) The influence of C3A content in cement on the chloride transport, Advances in Materials Science and Engineering. doi:10.1155/2016/5962821
  • 9. Kobya, V., Kaya, Y. ve Mardani-Aghabaglou, A. (2022) Effect of amine and glycol-based grinding aids utilization rate on grinding efficiency and rheological properties of cementitious systems, Journal of Building Engineering, 47, 103917. doi:10.1016/j.jobe.2021.103917
  • 10. Lloret, E., Shahab, A. R., Linus, M., Flatt, R. J., Gramazio, F., Kohler, M. ve Langenberg, S. (2015) Complex concrete structures: Merging existing casting techniques with digital fabrication. Computer-Aided Design, 60, 40-49. doi:10.1016/j.cad.2014.02.011
  • 11. Ma, G. ve Wang, L. (2018) A critical review of preparation design and workability measurement of concrete material for largescale 3D printing, Frontiers of Structural and Civil Engineering, 12(3), 382-400. doi:10.1007/s11709-017-0430-x
  • 12. Mardani-Aghabaglou, A. (2016) Portland çimentosu ve süper akışkanlaştırıcı katkı uyumunun incelenmesi (Doctoral dissertation, Doktora Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir).
  • 13. Mardani-Aghabaglou, A., Felekoğlu, B. ve Ramyar, K. (2017b) Effect of cement C3A content on properties of cementitious systems containing high-range water-reducing admixture, Journal of Materials in Civil Engineering, 29(8), 04017066. doi: 10.1061/(ASCE)MT.1943-5533.0001925
  • 14. Mardani-Aghabaglou, A., Son, A. E., Felekoglu, B. ve Ramyar, K. (2017a) Effect of cement fineness on properties of cementitious materials containing high range water reducing admixture, Journal of Green Building, 12(1), 142-167. doi:10.3992/1552-6100.12.1.142
  • 15. Moeini, M. A., Hosseinpoor, M. ve Yahia, A. (2020) Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing, Construction and Building Materials, 257, 119551. doi:10.1016/j.conbuildmat.2020.119551
  • 16. Moelich, G. M., Kruger, J. ve Combrinck, R. (2021) Modelling the interlayer bond strength of 3D printed concrete with surface moisture, Cement and Concrete Research, 150, 106559. doi: 10.1016/j.cemconres.2021.106559
  • 17. Mohan, M. K., Rahul, A. V., De Schutter, G. ve Van Tittelboom, K. (2022) Salt Scaling Resistance of 3D Printed Concrete, In RILEM International Conference on Concrete and Digital Fabrication, Springer, Cham, 188-193.
  • 18. Özalp, F., Yılmaz, H. D. ve Yaşar, Ş. (2018) 3D YAZICI TEKNOLOJİSİNE UYGUN SÜRDÜRÜLEBİLİR VE YENİLİKÇİ BETONLARIN GELİŞTİRİLMESİ, Hazır Beton, 62-70.
  • 19. Özen, S., Altun, M. G., Mardani-Aghabaglou, A. ve Ramyar, K. (2022) Multi-effect of superplasticisers main and side-chain length on cementitious systems with fly ash, Magazine of Concrete Research, 1-13. doi:10.1680/jmacr.21.00134
  • 20. Pan, T., Jiang, Y., He, H., Wang, Y. ve Yin, K. (2021) Effect of Structural Build-Up on Interlayer Bond Strength of 3D Printed Cement Mortars, Materials, 14(2), 236. doi:10.3390/ma14020236
  • 21. Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D. ve Tan, M. J. (2018) Measurement of tensile bond strength of 3D printed geopolymer mortar, Measurement, 113, 108-116. doi:10.1016/j.measurement.2017.08.051
  • 22. Pasupathy, K., Ramakrishnan, S. ve Sanjayan, J. (2022) Fresh and Hardened Properties of 3D Printable Foam Concrete Containing Porous Aggregates, In RILEM International Conference on Concrete and Digital Fabrication, Springer, Cham, pp. 65-70.
  • 23. Pavoine, A., Brunetaud, X. ve Divet, L. (2012) The impact of cement parameters on Delayed Ettringite Formation, Cement and Concrete Composites, 34(4), 521-528. doi:10.1016/j.cemconcomp.2011.11.012
  • 24. Perrot, A., Rangeard, D. ve Pierre, A. (2016) Structural built-up of cement-based materials used for 3D-printing extrusion techniques, Materials and Structures, 49(4), 1213-1220. doi: 10.1617/s11527- 015-0571-0
  • 25. Quanji, Z. (2010) Thixotropic behavior of cement-based materials: effect of clay and cement types. Iowa State University.
  • 26. Rahul, A. V., Santhanam, M., Meena, H. ve Ghani, Z. (2019) 3D printable concrete: Mixture design and test methods, Cement and Concrete Composites, 97, 13-23. doi:10.1016/j.cemconcomp.2018.12.014
  • 27. Rajasekaran, G. (2005) Sulphate attack and ettringite formation in the lime and cement stabilized marine clays, Ocean engineering, 32(8-9), 1133-1159. doi:10.1016/j.oceaneng.2004.08.012
  • 28. Reiter, L., Wangler, T., Roussel, N. ve Flatt, R. J. (2018). The role of early age structural build-up in digital fabrication with concrete, Cement and Concrete Research, 112, 86-95. doi:10.1016/j.cemconres.2018.05.011
  • 29. Roussel, N. (2006) A thixotropy model for fresh fluid concretes: theory, validation and applications, Cement and concrete research, 36(10), 1797-1806. doi:10.1016/j.cemconres.2006.05.025
  • 30. Sahin, H. G. ve Mardani, A. (2022c) SUSTAINABLE 3D PRINTING CONCRETE MIXTURES, Journal of Modern Technology and Engineering, 7(1), 20-29.
  • 31. Sanjayan, J. G., Nematollahi, B., Xia, M. ve Marchment, T. (2018) Effect of surface moisture on inter-layer strength of 3D printed concrete, Construction and Building Materials, 172, 468-475. doi:10.1016/j.conbuildmat.2018.03.232
  • 32. Souza, M. T., Ferreira, I. M., de Moraes, E. G., Senff, L. ve de Oliveira, A. P. N. (2020) 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects, Journal of Building Engineering, 32, 101833. doi:10.1016/j.jobe.2020.101833
  • 33. Şahin, H. G. ve Mardani-Aghabaglou, A. (2022b) Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review, Construction and Building Materials, 316, 125865. doi:10.1016/j.conbuildmat.2021.125865
  • 34. Şahin, H. G., Biricik, Ö. ve Mardani-Aghabaglou, A. (2022a) Polycarboxylate-based water reducing admixture–clay compatibility; literature review, Journal of Polymer Research, 29(1), 1-19. doi:10.1007/s10965-021-02884-5
  • 35. Şahin, H., Biricik, Ö. Z. N. U. R. ve Mardanı Aghabaglou, A. L. I. (2021) The Enhancement Methods of Polycarboxylate-Based Water Reducing Admixture Performance in Systems Containing High Amount of Clay Literature Review, 6th International Conference on Engineering and Natural Science, Belgrade, 14.
  • 36. Van Der Putten, J., De Schutter, G. ve Van Tittelboom, K. (2019a) Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials, RILEM Technical Letters, 4, 33-38. doi:10.21809/rilemtechlett.2019.84
  • 37. Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G. ve Van Tittelboom, K. (2019b) Microstructural characterization of 3D printed cementitious materials, Materials, 12(18), 2993. doi: 10.3390/ma12182993
  • 38. Wi, K., Wang, K., Taylor, P. C., Laflamme, S., Sritharan, S. ve Qin, H. (2021) Properties and microstructure of extrusion-based 3D printing mortar containing a highly flowable, rapid set grout, Cement and Concrete Composites, 124, 104243. doi: 10.1016/j.cemconcomp.2021.104243
  • 39. Wolfs, R. J. M., Bos, F. P. ve Salet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion, Cement and Concrete Research, 119, 132-140. doi: 10.1016/j.cemconres.2019.02.017
  • 40. Yalçınkaya, Ç. (2022) Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber Reinforcement, Buildings, 12(3), 360. doi.org: 10.3390/buildings12030360
  • 41. Yao, H., Xie, Z., Li, Z., Huang, C., Yuan, Q. ve Zheng, X. (2022) The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite, Construction and Building Materials, 316, 125809. doi:10.1016/j.conbuildmat.2021.125809
  • 42. Yuan, Q., Zhou, D., Huang, H., Peng, J. ve Yao, H. (2020) Structural build-up, hydration and strength development of cement-based materials with accelerators, Construction and Building Materials, 259, 119775. doi.org: 10.1016/j.conbuildmat.2020.119775
  • 43. Zhang, C., Hou, Z., Chen, C., Zhang, Y., Mechtcherine, V. ve Sun, Z. (2019) Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content, Cement and Concrete Composites, 104, 103406. doi:10.1016/j.cemconcomp.2019.103406
  • 44. Zhang, C., Nerella, V. N., Krishna, A., Wang, S., Zhang, Y., Mechtcherine, V. ve Banthia, N. (2021) Mix design concepts for 3D printable concrete: A review, Cement and Concrete Composites, 122, 104155. doi:10.1016/j.cemconcomp.2021.104155
  • 45. Zhang, D. W., Wang, D. M., Lin, X. Q. ve Zhang, T. (2018) The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes, Construction and Building Materials, 184, 575-580. doi:10.1016/j.conbuildmat.2018.06.233

Effect of Cement C3A Content on Some Fresh State Properties and Compressive Strength of 3D Printing Concrete Mixtures

Year 2022, Volume: 27 Issue: 2, 831 - 846, 31.08.2022
https://doi.org/10.17482/uumfd.1142197

Abstract

In this study, the effect of cement C3A content on some fresh state properties and compressive strength of 3D Printing Concrete (3DPC) was investigated. For this purpose, two series of 3DPC having different amounts of C3A were prepared and the optimum mix design was determined. The optimum mix design of 3DPC was determined according to extrudability and buildability parameters. Mixtures that can be easily pumped from an injection gun are considered to be extrudable. Mixtures that can be printed in three layers and have a smooth surface are chosen as buildable. Time-dependent flow behavior, shapestability, rheological properties and compressive strength of selected 3DPC mixtures were investigated. The rheological properties of the mixtures were determined by monitoring four different viewpoints: static/dynamic yield stress, viscosity and structural build-up. According to the results, it was observed that time-dependent loss of consistency, shape-stability capacity and structural build-up of the mixtures increased by increment in C3A content. However, static and dynamic yield stress and compressive strength of 3DPC decreased. There was no significant change in viscosity values.

Project Number

FAY-2021-579

References

  • 1. Altun, M. G., Şahin, H. G. ve Mardani Aghabaglou, A. (2021) Effect of Main and Side Chain Lengths Change of Water Reducing Admixture on Setting Time and Compressive Strength of Cementitious Systems, 6th International Conference on Engineering and Natural Science, Belgrade, 13.
  • 2. Bentz, D. P., Snyder, K. A., Peltz, M. A., Obla, K. ve Kim, H. (2013) Viscosity modifiers to enhance concrete performance. ACI Materials Journal, 110(5), 495.
  • 3. Chen, Y., Jansen, K., Zhang, H., Rodriguez, C. R., Gan, Y., Çopuroğlu, O. Ve Schlangen, E. (2020) Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study, Construction and Building Materials, 262, 120094. doi: 10.1016/j.conbuildmat.2020.120094
  • 4. Han, N., Xiao, J., Zhang, L. ve Peng, Y. (2022) A microscale-based numerical model for investigating hygro-thermo-mechanical behaviour of 3D printed concrete at elevated temperatures, Construction and Building Materials, 344, 128231. doi: 10.1016/j.conbuildmat.2022.128231
  • 5. Hao, L., Xiao, J., Sun, J., Xia, B. ve Cao, W. (2022) Thermal conductivity of 3D printed concrete with recycled fine aggregate composite phase change materials, Journal of Cleaner Production, 132598. doi:10.1016/j.jclepro.2022.132598
  • 6. Jeong, H., Han, S. J., Choi, S. H., Lee, Y. J., Yi, S. T. ve Kim, K. S. (2019) Rheological property criteria for buildable 3D printing concrete, Materials, 12(4), 657. doi:10.3390/ma12040657
  • 7. Kazemian, A., Yuan, X., Cochran, E. ve Khoshnevis, B. (2017) Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture, Construction and Building Materials, 145, 639-647. doi:10.1016/j.conbuildmat.2017.04.015
  • 8. Kim, M. J., Kim, K. B. ve Ann, K. Y. (2016) The influence of C3A content in cement on the chloride transport, Advances in Materials Science and Engineering. doi:10.1155/2016/5962821
  • 9. Kobya, V., Kaya, Y. ve Mardani-Aghabaglou, A. (2022) Effect of amine and glycol-based grinding aids utilization rate on grinding efficiency and rheological properties of cementitious systems, Journal of Building Engineering, 47, 103917. doi:10.1016/j.jobe.2021.103917
  • 10. Lloret, E., Shahab, A. R., Linus, M., Flatt, R. J., Gramazio, F., Kohler, M. ve Langenberg, S. (2015) Complex concrete structures: Merging existing casting techniques with digital fabrication. Computer-Aided Design, 60, 40-49. doi:10.1016/j.cad.2014.02.011
  • 11. Ma, G. ve Wang, L. (2018) A critical review of preparation design and workability measurement of concrete material for largescale 3D printing, Frontiers of Structural and Civil Engineering, 12(3), 382-400. doi:10.1007/s11709-017-0430-x
  • 12. Mardani-Aghabaglou, A. (2016) Portland çimentosu ve süper akışkanlaştırıcı katkı uyumunun incelenmesi (Doctoral dissertation, Doktora Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir).
  • 13. Mardani-Aghabaglou, A., Felekoğlu, B. ve Ramyar, K. (2017b) Effect of cement C3A content on properties of cementitious systems containing high-range water-reducing admixture, Journal of Materials in Civil Engineering, 29(8), 04017066. doi: 10.1061/(ASCE)MT.1943-5533.0001925
  • 14. Mardani-Aghabaglou, A., Son, A. E., Felekoglu, B. ve Ramyar, K. (2017a) Effect of cement fineness on properties of cementitious materials containing high range water reducing admixture, Journal of Green Building, 12(1), 142-167. doi:10.3992/1552-6100.12.1.142
  • 15. Moeini, M. A., Hosseinpoor, M. ve Yahia, A. (2020) Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing, Construction and Building Materials, 257, 119551. doi:10.1016/j.conbuildmat.2020.119551
  • 16. Moelich, G. M., Kruger, J. ve Combrinck, R. (2021) Modelling the interlayer bond strength of 3D printed concrete with surface moisture, Cement and Concrete Research, 150, 106559. doi: 10.1016/j.cemconres.2021.106559
  • 17. Mohan, M. K., Rahul, A. V., De Schutter, G. ve Van Tittelboom, K. (2022) Salt Scaling Resistance of 3D Printed Concrete, In RILEM International Conference on Concrete and Digital Fabrication, Springer, Cham, 188-193.
  • 18. Özalp, F., Yılmaz, H. D. ve Yaşar, Ş. (2018) 3D YAZICI TEKNOLOJİSİNE UYGUN SÜRDÜRÜLEBİLİR VE YENİLİKÇİ BETONLARIN GELİŞTİRİLMESİ, Hazır Beton, 62-70.
  • 19. Özen, S., Altun, M. G., Mardani-Aghabaglou, A. ve Ramyar, K. (2022) Multi-effect of superplasticisers main and side-chain length on cementitious systems with fly ash, Magazine of Concrete Research, 1-13. doi:10.1680/jmacr.21.00134
  • 20. Pan, T., Jiang, Y., He, H., Wang, Y. ve Yin, K. (2021) Effect of Structural Build-Up on Interlayer Bond Strength of 3D Printed Cement Mortars, Materials, 14(2), 236. doi:10.3390/ma14020236
  • 21. Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D. ve Tan, M. J. (2018) Measurement of tensile bond strength of 3D printed geopolymer mortar, Measurement, 113, 108-116. doi:10.1016/j.measurement.2017.08.051
  • 22. Pasupathy, K., Ramakrishnan, S. ve Sanjayan, J. (2022) Fresh and Hardened Properties of 3D Printable Foam Concrete Containing Porous Aggregates, In RILEM International Conference on Concrete and Digital Fabrication, Springer, Cham, pp. 65-70.
  • 23. Pavoine, A., Brunetaud, X. ve Divet, L. (2012) The impact of cement parameters on Delayed Ettringite Formation, Cement and Concrete Composites, 34(4), 521-528. doi:10.1016/j.cemconcomp.2011.11.012
  • 24. Perrot, A., Rangeard, D. ve Pierre, A. (2016) Structural built-up of cement-based materials used for 3D-printing extrusion techniques, Materials and Structures, 49(4), 1213-1220. doi: 10.1617/s11527- 015-0571-0
  • 25. Quanji, Z. (2010) Thixotropic behavior of cement-based materials: effect of clay and cement types. Iowa State University.
  • 26. Rahul, A. V., Santhanam, M., Meena, H. ve Ghani, Z. (2019) 3D printable concrete: Mixture design and test methods, Cement and Concrete Composites, 97, 13-23. doi:10.1016/j.cemconcomp.2018.12.014
  • 27. Rajasekaran, G. (2005) Sulphate attack and ettringite formation in the lime and cement stabilized marine clays, Ocean engineering, 32(8-9), 1133-1159. doi:10.1016/j.oceaneng.2004.08.012
  • 28. Reiter, L., Wangler, T., Roussel, N. ve Flatt, R. J. (2018). The role of early age structural build-up in digital fabrication with concrete, Cement and Concrete Research, 112, 86-95. doi:10.1016/j.cemconres.2018.05.011
  • 29. Roussel, N. (2006) A thixotropy model for fresh fluid concretes: theory, validation and applications, Cement and concrete research, 36(10), 1797-1806. doi:10.1016/j.cemconres.2006.05.025
  • 30. Sahin, H. G. ve Mardani, A. (2022c) SUSTAINABLE 3D PRINTING CONCRETE MIXTURES, Journal of Modern Technology and Engineering, 7(1), 20-29.
  • 31. Sanjayan, J. G., Nematollahi, B., Xia, M. ve Marchment, T. (2018) Effect of surface moisture on inter-layer strength of 3D printed concrete, Construction and Building Materials, 172, 468-475. doi:10.1016/j.conbuildmat.2018.03.232
  • 32. Souza, M. T., Ferreira, I. M., de Moraes, E. G., Senff, L. ve de Oliveira, A. P. N. (2020) 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects, Journal of Building Engineering, 32, 101833. doi:10.1016/j.jobe.2020.101833
  • 33. Şahin, H. G. ve Mardani-Aghabaglou, A. (2022b) Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review, Construction and Building Materials, 316, 125865. doi:10.1016/j.conbuildmat.2021.125865
  • 34. Şahin, H. G., Biricik, Ö. ve Mardani-Aghabaglou, A. (2022a) Polycarboxylate-based water reducing admixture–clay compatibility; literature review, Journal of Polymer Research, 29(1), 1-19. doi:10.1007/s10965-021-02884-5
  • 35. Şahin, H., Biricik, Ö. Z. N. U. R. ve Mardanı Aghabaglou, A. L. I. (2021) The Enhancement Methods of Polycarboxylate-Based Water Reducing Admixture Performance in Systems Containing High Amount of Clay Literature Review, 6th International Conference on Engineering and Natural Science, Belgrade, 14.
  • 36. Van Der Putten, J., De Schutter, G. ve Van Tittelboom, K. (2019a) Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials, RILEM Technical Letters, 4, 33-38. doi:10.21809/rilemtechlett.2019.84
  • 37. Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G. ve Van Tittelboom, K. (2019b) Microstructural characterization of 3D printed cementitious materials, Materials, 12(18), 2993. doi: 10.3390/ma12182993
  • 38. Wi, K., Wang, K., Taylor, P. C., Laflamme, S., Sritharan, S. ve Qin, H. (2021) Properties and microstructure of extrusion-based 3D printing mortar containing a highly flowable, rapid set grout, Cement and Concrete Composites, 124, 104243. doi: 10.1016/j.cemconcomp.2021.104243
  • 39. Wolfs, R. J. M., Bos, F. P. ve Salet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion, Cement and Concrete Research, 119, 132-140. doi: 10.1016/j.cemconres.2019.02.017
  • 40. Yalçınkaya, Ç. (2022) Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber Reinforcement, Buildings, 12(3), 360. doi.org: 10.3390/buildings12030360
  • 41. Yao, H., Xie, Z., Li, Z., Huang, C., Yuan, Q. ve Zheng, X. (2022) The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite, Construction and Building Materials, 316, 125809. doi:10.1016/j.conbuildmat.2021.125809
  • 42. Yuan, Q., Zhou, D., Huang, H., Peng, J. ve Yao, H. (2020) Structural build-up, hydration and strength development of cement-based materials with accelerators, Construction and Building Materials, 259, 119775. doi.org: 10.1016/j.conbuildmat.2020.119775
  • 43. Zhang, C., Hou, Z., Chen, C., Zhang, Y., Mechtcherine, V. ve Sun, Z. (2019) Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content, Cement and Concrete Composites, 104, 103406. doi:10.1016/j.cemconcomp.2019.103406
  • 44. Zhang, C., Nerella, V. N., Krishna, A., Wang, S., Zhang, Y., Mechtcherine, V. ve Banthia, N. (2021) Mix design concepts for 3D printable concrete: A review, Cement and Concrete Composites, 122, 104155. doi:10.1016/j.cemconcomp.2021.104155
  • 45. Zhang, D. W., Wang, D. M., Lin, X. Q. ve Zhang, T. (2018) The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes, Construction and Building Materials, 184, 575-580. doi:10.1016/j.conbuildmat.2018.06.233
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Hatice Gizem Şahin 0000-0002-8915-879X

Ali Mardani 0000-0003-0326-5015

Project Number FAY-2021-579
Publication Date August 31, 2022
Submission Date July 7, 2022
Acceptance Date August 18, 2022
Published in Issue Year 2022 Volume: 27 Issue: 2

Cite

APA Şahin, H. G., & Mardani, A. (2022). ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(2), 831-846. https://doi.org/10.17482/uumfd.1142197
AMA Şahin HG, Mardani A. ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ. UUJFE. August 2022;27(2):831-846. doi:10.17482/uumfd.1142197
Chicago Şahin, Hatice Gizem, and Ali Mardani. “ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 2 (August 2022): 831-46. https://doi.org/10.17482/uumfd.1142197.
EndNote Şahin HG, Mardani A (August 1, 2022) ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 2 831–846.
IEEE H. G. Şahin and A. Mardani, “ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ”, UUJFE, vol. 27, no. 2, pp. 831–846, 2022, doi: 10.17482/uumfd.1142197.
ISNAD Şahin, Hatice Gizem - Mardani, Ali. “ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/2 (August 2022), 831-846. https://doi.org/10.17482/uumfd.1142197.
JAMA Şahin HG, Mardani A. ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ. UUJFE. 2022;27:831–846.
MLA Şahin, Hatice Gizem and Ali Mardani. “ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 2, 2022, pp. 831-46, doi:10.17482/uumfd.1142197.
Vancouver Şahin HG, Mardani A. ÇİMENTO C3A İÇERİĞİNİN 3B BETON KARIŞIMLARININ BAZI TAZE HAL ÖZELLİKLERİ VE BASINÇ DAYANIMINA ETKİSİ. UUJFE. 2022;27(2):831-46.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.