Research Article
BibTex RIS Cite

A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS

Year 2020, Volume: 6 Issue: 1, 16 - 27, 06.01.2020
https://doi.org/10.18186/thermal.670986

Abstract

In 1940’s, Schultz- Grunow proposed that time-average value of friction factor, λ_u,ta was similar to its corresponding steady state value, λ for the presence of gradual and slow oscillations in pulsatile flows. A recent approach was available for low frequency pulsatile flows through narrow channels in transitional and turbulent regimes by Zhuang et al, in 2016 and 2017. In this analysis; extensive experimental data of λ_u,ta in fully laminar and turbulent sinusoidal flow are processed in the measured time-average Reynolds number range of 1390 ≤ Re_ta ≤ 60000 disregarding the transitional regime. The ranges of dimensionless frequency-Womersley number, √(ω') and oscillation amplitude, A_1 are 2.72 ≤ √(ω') ≤ 28 and 0.05 ≤ A_1≤ 0.96 respectively. A multiplication element is defined as Mel = Re_ta×√(ω^'). A modified friction multiplier, λ_(Mel ) which is similar to the conceptual parameter of Zhuang et al’s friction factor ratio C ( λ_Mel = λ_(u,ta)/λ ) is also referred. The correlation of λ_Mel = λ_Mel (Mel) is dependent on flow regime and the magnitude of Re_ta for the range of √(ω^') > 1.32. The proposal of Schultz-Grunow is verified irrespective of the oscillations in turbulent regime since the magnitude of λ_Mel = 1 is observed for turbulent flow cases with Re_(ta ) ≥ 35000. In laminar regime the magnitude of Re_(ta ) is governing the fact. The magnitude of λ_Mel varies in 0.589 ≤ λ_Mel ≤ 28.125 for Re_(ta ) ≤ 5000 while λ_Mel = 1 is obtained for Re_(ta ) > 5000. The graphical representation of λ_Mel = λ_Mel (Mel) can be considered as a counterpart of Moody Diagram in pulsatile fields for a significant practice.

References

  • [1] V. L. Streeter, E. B. Wylie, K. W. Bedford. Fluid Mechanics 9th edition McGraw Hill International Editions pp: 288-294; 1998.
  • [2] H. Blasius. Das AhnlichkeitsgesetzbeiReibungsvorgangen in Flüssigkeiten, Ver. Dtsch.Ing. Forschungsh, 131; 1913.
  • [3] L. F. Moody. Friction factors for pipe flow, Trans. ASME; 1944.
  • [4] J. Nikuradse Strömungsgesetze in rauhenRohren. Ver. Dtsch. Ing. Forschungsh, 361; 1933.
  • [5] F. Schultz-Grunow, PulsierenderDurchflussdurchRohre. Forschg. Ing.-Wes,11:170-187; 1940.
  • [6] H. Schlichting Boundary Layer Theory, McGraw Hill Inc.,7th Edition, New York; 1987.
  • [7] M. O. Carpinlioglu. An Experimental Investigation on Pulsatile Pipe Flows MF 97-04 Project Report, BAP, University of Gaziantep Turkey, No: 14, 2000.
  • [8] M. O. Carpinlioglu. An Experimental Investigation on Laminar to Turbulent Transition in Time Dependent Pipe Flows MF 09-09 Project Report, BAP, University of Gaziantep Turkey, No: 268, 2012.
  • [9] M. Y. Gundogdu, M. O. Carpinlioglu. Present State of Art on Pulsatile Flow Theory Part I: Laminar and Transitional Flow Regimes. JSME International Journal 1999;42(3):384-397.doi:10.1299/jsmeb.42.384
  • [10] M. Y. Gundogdu, M .O. Carpinlioglu. Present State of Art on Pulsatile Flow Theory. Part 2 Turbulent Flow Regime. JSME International Journal 1999;42(3):398-410.doi:10.1299/jsmeb.42-398
  • [11] M. O. Carpinlioglu, M. Y. Gundogdu. Presentation of a test system in terms of generated pulsatile flow characteristics. Flow Measurement and Instrumentation 2001;12(3):181-190.doi: 10.1016/S0955-5986(01) 00019-X
  • [12] M. O. Carpinlioglu, M. Y. Gundogdu. A Critical Review on Pulsatile Pipe Flow Studies Directing Towards Future Research Topics. Journal of Flow Measurement and Instrumentation 2001;12(3):163-174. doi:10.1016/S0955-5986(01)00020-6
  • [13] M. Y. Gundogdu. An Experimental Investigation on Pulsatile Pipe Flows. Ph.D Thesis, University of Gaziantep, Department of Mechanical Engineering, Gaziantep Turkey, 2000.
  • [14] E. Ozahi. Analysis of Laminar-to Turbulent Transition in Time Dependent Pipe Flows. Ph.D Thesis, University of Gaziantep, Department of Mechanical Engineering, Gaziantep Turkey, 2011.
  • [15] M. Ohmi, M. Iguchi, T. Usui. Flow Pattern and Frictional Losses in Pulsating Pipe Flow Part 5: Wall Shear Stress and Flow Pattern in a Laminar Flow Bulletin of JSME 1981;24(187 ),75.
  • [16] M. Ohmi, M. Iguchi. Flow Pattern and Frictional Losses in Pulsating Pipe Flow Part 6: Frictional Losses in a Laminar Flow Bulletin of JSME 1981;24(196),1756.
  • [17] M. O. Carpinlioglu, E. Ozahi. An experimental test system for the generation, control and analysis of sinusoidal pulsatile pipe flows (An application case for time dependent flow measurements). Journal of Flow Measurement and Instrumentation 2013;32:27-34.doi: 10.1016/j.flowmeasinst.2013.04.002
  • [18] F. Durst, U. Heim, B. Unsal, G. Kullik. Mass flow rate control system for time-dependent laminar and turbulent flow investigations. Measurement Science and Technology 2003;14:893-902.
  • [19] M. O. Carpinlioglu. An Approach for Transition Correlation of Laminar Pulsatile Pipe Flows via Frictional Field Characteristics. Journal of Flow Measurement and Instrumentation 2003;14(6):233-242.doi: 10.1016/ S0955-5986(03)00032-3
  • [20] M. O. Carpinlioglu, E. Ozahi. An Updated Portrait on Transition to Turbulence in Laminar Pipe Flows with Periodic Time-Dependence (A Correlation Study). Journal of Flow Turbulence and Combustion 2012;89(4):691-711. doi: 10.1007/s10494-012-9420-1
  • [21] E. Ozahi, M. O. Carpinlioglu. Definition of sub-classes in sinusoidal pulsatile air flow at onset of transition to turbulence in view of velocity and frictional field analyses. Measurement 2015; 64:94-104 .doi:10.1016/j.measurement.2014.12.034
  • [22] E. Ozahi, M. O. Carpinlioglu . Determination of Transition Onset in Laminar Pulsatile Pipe Flows. Journal of Thermal Science and Technology 2013;33(2):125-133.
  • [23] M. O. Carpinlioglu. An overview on pulsatile flow dynamics. Journal of Thermal Engineering 2015;1(3/6):496-504. doi:10.18186/jte.59285
  • [24] E. Ozahi, M. O. Carpinlioglu. Devised application of Labview for an automatic test system based on generation, control and processing of pulsatile pipe flows. Journal of Thermal Science and Technology 2015;35(2):75-88.
  • [25] M. Ohmi, M. Iguchi. Flow pattern and frictional losses in pulsating pipe flow Part 4: General representation of turbulent frictional losses. Bulletin of the JSME 1981;24(187):67-74.
  • [26] E. Ozahi, M. O. Carpinlioglu. A Non-dimensional Parameter Describing Interactive Influence of Oscillation Frequency and Velocity Amplitude Ratio for Use in Pulsatile Flows. Measurement 2017;99:36-43. doi:10.1016/j.measurement.2016.12.018
  • [27] N. Zhuang, S. Tan, H. Yuan. The friction characteristics of low frequency transitional pulsatile flows in narrow channel. Experimental Thermal and Fluid Science 2016;76:352-364. doi:10.1016/j.expthermflusci.2016.03.030
  • [28] N. Zhuang. S. Tan, H.Yuan B. Yang. Flow resistance of low-frequency pulsatile turbulent flow. International Journal of Heat and Fluid Flow 2017;65:21-32.doi:10.1016/j.ijheatfluidflow.2017.03.005
  • [29] M. O. Carpinlioglu. The status of art and possible future predictions on laminar-turbulent transition (transition control via sinusoidal oscillations). 22nd International Society of Air-Breathing Engines, ISABE 2015 Conference Phoenix Arizona, US: 25-30 October 2015.
  • [30] P. Qi, X. Li, S. Qiao, S. Tan, Y. Chen. Experimental study on the resistance characteristics of the rod bundle channel with spacer grid under low frequency pulsating flows. Annals of Nuclear Energy 2019;131:80-92.doi:10.1016/j.anucene.2019.03.027
Year 2020, Volume: 6 Issue: 1, 16 - 27, 06.01.2020
https://doi.org/10.18186/thermal.670986

Abstract

References

  • [1] V. L. Streeter, E. B. Wylie, K. W. Bedford. Fluid Mechanics 9th edition McGraw Hill International Editions pp: 288-294; 1998.
  • [2] H. Blasius. Das AhnlichkeitsgesetzbeiReibungsvorgangen in Flüssigkeiten, Ver. Dtsch.Ing. Forschungsh, 131; 1913.
  • [3] L. F. Moody. Friction factors for pipe flow, Trans. ASME; 1944.
  • [4] J. Nikuradse Strömungsgesetze in rauhenRohren. Ver. Dtsch. Ing. Forschungsh, 361; 1933.
  • [5] F. Schultz-Grunow, PulsierenderDurchflussdurchRohre. Forschg. Ing.-Wes,11:170-187; 1940.
  • [6] H. Schlichting Boundary Layer Theory, McGraw Hill Inc.,7th Edition, New York; 1987.
  • [7] M. O. Carpinlioglu. An Experimental Investigation on Pulsatile Pipe Flows MF 97-04 Project Report, BAP, University of Gaziantep Turkey, No: 14, 2000.
  • [8] M. O. Carpinlioglu. An Experimental Investigation on Laminar to Turbulent Transition in Time Dependent Pipe Flows MF 09-09 Project Report, BAP, University of Gaziantep Turkey, No: 268, 2012.
  • [9] M. Y. Gundogdu, M. O. Carpinlioglu. Present State of Art on Pulsatile Flow Theory Part I: Laminar and Transitional Flow Regimes. JSME International Journal 1999;42(3):384-397.doi:10.1299/jsmeb.42.384
  • [10] M. Y. Gundogdu, M .O. Carpinlioglu. Present State of Art on Pulsatile Flow Theory. Part 2 Turbulent Flow Regime. JSME International Journal 1999;42(3):398-410.doi:10.1299/jsmeb.42-398
  • [11] M. O. Carpinlioglu, M. Y. Gundogdu. Presentation of a test system in terms of generated pulsatile flow characteristics. Flow Measurement and Instrumentation 2001;12(3):181-190.doi: 10.1016/S0955-5986(01) 00019-X
  • [12] M. O. Carpinlioglu, M. Y. Gundogdu. A Critical Review on Pulsatile Pipe Flow Studies Directing Towards Future Research Topics. Journal of Flow Measurement and Instrumentation 2001;12(3):163-174. doi:10.1016/S0955-5986(01)00020-6
  • [13] M. Y. Gundogdu. An Experimental Investigation on Pulsatile Pipe Flows. Ph.D Thesis, University of Gaziantep, Department of Mechanical Engineering, Gaziantep Turkey, 2000.
  • [14] E. Ozahi. Analysis of Laminar-to Turbulent Transition in Time Dependent Pipe Flows. Ph.D Thesis, University of Gaziantep, Department of Mechanical Engineering, Gaziantep Turkey, 2011.
  • [15] M. Ohmi, M. Iguchi, T. Usui. Flow Pattern and Frictional Losses in Pulsating Pipe Flow Part 5: Wall Shear Stress and Flow Pattern in a Laminar Flow Bulletin of JSME 1981;24(187 ),75.
  • [16] M. Ohmi, M. Iguchi. Flow Pattern and Frictional Losses in Pulsating Pipe Flow Part 6: Frictional Losses in a Laminar Flow Bulletin of JSME 1981;24(196),1756.
  • [17] M. O. Carpinlioglu, E. Ozahi. An experimental test system for the generation, control and analysis of sinusoidal pulsatile pipe flows (An application case for time dependent flow measurements). Journal of Flow Measurement and Instrumentation 2013;32:27-34.doi: 10.1016/j.flowmeasinst.2013.04.002
  • [18] F. Durst, U. Heim, B. Unsal, G. Kullik. Mass flow rate control system for time-dependent laminar and turbulent flow investigations. Measurement Science and Technology 2003;14:893-902.
  • [19] M. O. Carpinlioglu. An Approach for Transition Correlation of Laminar Pulsatile Pipe Flows via Frictional Field Characteristics. Journal of Flow Measurement and Instrumentation 2003;14(6):233-242.doi: 10.1016/ S0955-5986(03)00032-3
  • [20] M. O. Carpinlioglu, E. Ozahi. An Updated Portrait on Transition to Turbulence in Laminar Pipe Flows with Periodic Time-Dependence (A Correlation Study). Journal of Flow Turbulence and Combustion 2012;89(4):691-711. doi: 10.1007/s10494-012-9420-1
  • [21] E. Ozahi, M. O. Carpinlioglu. Definition of sub-classes in sinusoidal pulsatile air flow at onset of transition to turbulence in view of velocity and frictional field analyses. Measurement 2015; 64:94-104 .doi:10.1016/j.measurement.2014.12.034
  • [22] E. Ozahi, M. O. Carpinlioglu . Determination of Transition Onset in Laminar Pulsatile Pipe Flows. Journal of Thermal Science and Technology 2013;33(2):125-133.
  • [23] M. O. Carpinlioglu. An overview on pulsatile flow dynamics. Journal of Thermal Engineering 2015;1(3/6):496-504. doi:10.18186/jte.59285
  • [24] E. Ozahi, M. O. Carpinlioglu. Devised application of Labview for an automatic test system based on generation, control and processing of pulsatile pipe flows. Journal of Thermal Science and Technology 2015;35(2):75-88.
  • [25] M. Ohmi, M. Iguchi. Flow pattern and frictional losses in pulsating pipe flow Part 4: General representation of turbulent frictional losses. Bulletin of the JSME 1981;24(187):67-74.
  • [26] E. Ozahi, M. O. Carpinlioglu. A Non-dimensional Parameter Describing Interactive Influence of Oscillation Frequency and Velocity Amplitude Ratio for Use in Pulsatile Flows. Measurement 2017;99:36-43. doi:10.1016/j.measurement.2016.12.018
  • [27] N. Zhuang, S. Tan, H. Yuan. The friction characteristics of low frequency transitional pulsatile flows in narrow channel. Experimental Thermal and Fluid Science 2016;76:352-364. doi:10.1016/j.expthermflusci.2016.03.030
  • [28] N. Zhuang. S. Tan, H.Yuan B. Yang. Flow resistance of low-frequency pulsatile turbulent flow. International Journal of Heat and Fluid Flow 2017;65:21-32.doi:10.1016/j.ijheatfluidflow.2017.03.005
  • [29] M. O. Carpinlioglu. The status of art and possible future predictions on laminar-turbulent transition (transition control via sinusoidal oscillations). 22nd International Society of Air-Breathing Engines, ISABE 2015 Conference Phoenix Arizona, US: 25-30 October 2015.
  • [30] P. Qi, X. Li, S. Qiao, S. Tan, Y. Chen. Experimental study on the resistance characteristics of the rod bundle channel with spacer grid under low frequency pulsating flows. Annals of Nuclear Energy 2019;131:80-92.doi:10.1016/j.anucene.2019.03.027
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Melda Carpinlioğlu

Publication Date January 6, 2020
Submission Date April 5, 2019
Published in Issue Year 2020 Volume: 6 Issue: 1

Cite

APA Carpinlioğlu, M. (2020). A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS. Journal of Thermal Engineering, 6(1), 16-27. https://doi.org/10.18186/thermal.670986
AMA Carpinlioğlu M. A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS. Journal of Thermal Engineering. January 2020;6(1):16-27. doi:10.18186/thermal.670986
Chicago Carpinlioğlu, Melda. “A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS”. Journal of Thermal Engineering 6, no. 1 (January 2020): 16-27. https://doi.org/10.18186/thermal.670986.
EndNote Carpinlioğlu M (January 1, 2020) A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS. Journal of Thermal Engineering 6 1 16–27.
IEEE M. Carpinlioğlu, “A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS”, Journal of Thermal Engineering, vol. 6, no. 1, pp. 16–27, 2020, doi: 10.18186/thermal.670986.
ISNAD Carpinlioğlu, Melda. “A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS”. Journal of Thermal Engineering 6/1 (January 2020), 16-27. https://doi.org/10.18186/thermal.670986.
JAMA Carpinlioğlu M. A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS. Journal of Thermal Engineering. 2020;6:16–27.
MLA Carpinlioğlu, Melda. “A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS”. Journal of Thermal Engineering, vol. 6, no. 1, 2020, pp. 16-27, doi:10.18186/thermal.670986.
Vancouver Carpinlioğlu M. A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS. Journal of Thermal Engineering. 2020;6(1):16-27.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering