Research Article
BibTex RIS Cite

Geomorphological deformation examples induced by the February 06, 2023, Pazarcık earthquake (Kahramanmaraş, Türkiye)

Year 2023, Issue: 83, 23 - 34, 31.12.2023
https://doi.org/10.17211/tcd.1313551

Abstract

The left-laterally strike-slip Pazarcık fault is one of the East Anatolian Fault Zone (EAFZ) segments. On February 6, 2023, the ±85 km long Pazarcık fault generated a highly destructive Mw=7.7 earthquake. This study aims to explain the geomorphological deformations caused by the February 6, 2023, Pazarcık earthquake with typical examples. The surface rupture of the earthquake between Türkoğlu and Gölbaşı was followed precisely, and the changes in the earth's surface due to the left lateral strike-slip were determined, measured, and recorded. A DJI Phantom 4 and a DJI Mini Drone were used for aerial measurements and recordings during the fieldwork. Garmin e-Trex 10 handheld GPS and tape measure were used for terrestrial measurements.
During the field studies, the surface rupture of the earthquake was investigated from a geomorphological perspective and mapped by taking location data. It was determined by the measurements that the left lateral offset distances in the surface fracture vary between 4.0-6.5m. One of the geomorphological deformations of the February 6, 2023 earthquake is transpressional ridges and/or transtensional depressions. Transpressional shortening and/or transtensional extension deformations due to a single surface rupture are the natural consequences of the curvilinear slip plane of the left-laterally strike-slip Pazarcık fault. Liquefaction samples with different characteristics were observed in the Sakarkaya alluvial fill area within the Gölbaşı depression. Rockfalls occurred on sandstone, mudstone, and limestone rock slopes weakened by the discontinuity due to the density of cracks outcropping in the valley where the surface rupture passes in the Kartal, Sakarkaya section. During field studies, slides and spreading were also observed. Typical examples of slide occurred on the unconsolidated fill ground on the south coast of Gölbaşı Lake with a slight slope towards the lake as a result of the vibration effect of the earthquake. In addition, the vibration effect of the earthquake caused lateral spreading deformations in the artificial fillings of road and road junction structures.

References

  • AFAD (2023). 06 Şubat 2023 Kahramanmaraş (Pazarcık ve Elbistan) Depremleri Saha Çalışmaları Ön Değerlendirme Rapor. https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022 023_surum1_revize.pdf
  • Armijo, R., Meyer, B., Hubert, A., & Barka, A. (1999). Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics. Geology, 27(3), 267-270. https://doi.org/10.1130/0091- 7613(1999)027<0267:WPOTNA>2.3.CO;2
  • Aydan, Ö. (2016). Large Rock Slope Failures Induced by Recent Earthquakes. Rock Mechanics and Rock Engineering, 49, 2503– 2524. https://doi.org/10.1007/s00603-016-0975-3
  • BDTİM (2023). Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi.http://www.koeri.boun.edu.tr/sismo/2/tr/
  • Burbank, D.W. & Anderson, R.S. (2008). Tectonic geomorphology. Blackwell Science Ltd. ISBN 978-0-632-04386-6.
  • Chen, X-li., Liu, C-guo., Wang, M-ming. & Zhou, Q. (2018). Causes of unusual distribution of coseismic landslides triggered by the Mw 6.1 2014 Ludian, Yunnan, China earthquake. Journal of Asian Earth Sciences, 159, 17-23. https://doi.org/10.1016/j.jseaes.2018.03.010
  • Christie-Blick, N, & Biddle, K. T. (1985). Deformation and basin formation along strike-slip faults. In K. T. Biddle & N. Christie- Blick (Eds.), Strike-slip deformation, basin formation and sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication, 37, 1–34. Doi:10.2110/pec.85.37.0001
  • Cunningham, W.D. & Mann, P. (2007). Tectonics of strike-slip restraining and releasing bends. İçinde: Cunningham, W. D. & Mann, P. (eds) Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290, 1–12. https://www.lyellcollection.org/doi/10.1144/SP290.1
  • Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Şaroğlu, F. & Şengör, A.M.C., (1986). Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone, Geological Society Special Publication, 19(1), 1–36.
  • Dewey, J.E., Holdsworth, R.E. & Strachan, R.A. (1998). Transpression and transtension zones. In: Holdsworth, R.E., Strachan, R.A., Dewey, J. E (eds) 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 1-14. https://www.lyellcollection.org/doi/pdf/10.1144/gsl.sp.199 8.135.01.01
  • Eitzenberger, A. (2012). Wave Propagation in Rock and the Influence of Discontinuities. Doctorial Thesis, Division of Mining and Geotechnical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, SWEDEN. https://www.diva- portal.org/smash/get/diva2:990707/FULLTEXT01.pdf
  • Güvercin, S.E., Karabulut, H., Konca, A.Ö., Doğan, U. & Ergintav, S. (2022). Active seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230, 50–69. https://doi.org/10.1093/gji/ggac045
  • Hack, R., Alkema, D., Kruse, G.A.M., Leenders, N. & Luzi, L. (2007). Influence of earthquakes on the stability of slopes. Engineering Geology, 91(1), 4–15. https://doi.org/10.1016/j.enggeo.2006.12.016
  • Hempton, M.R. (1987). Constraints on Arabian Plate motion and extensional history of the Red Sea. Tectonics, 6, 687–705.
  • Huang, L. & Liu, C.-y. (2017). Three types of flower structures in a divergent-wrench fault zone. Journal of Geophysical Research: Solid Earth, 122, 10478–10497. https://doi.org/10.1002/2017JB014675
  • Karabacak, V., Özkaymak, Ç., Sözbilir, H., Tatar, O., Aktuğ, B., Özdağ, Ö.C., Çakır, R., Aksoy, E., Koçbulut, F., Softa, M., Akgün, E., Demir, A. & Arslan, G. (2023). The 2023 Pazarcık (Kahramanmaraş, Türkiye) Earthquake (Mw: 7.7): Implications for surface rupture dynamics along the East Anatolian Fault Zone. Journal of the Geological Society, 180 (3) https://doi.org/10.1144/jgs2023-020
  • Damage and site effects. Conference: Proceedings 11th International & 2nd North American Symposium on Landslides. https://www.researchgate.net/publication/260981734_Earth quake- triggered_rock_slope_failures_Damage_and_site_effects
  • NRC (1985). Liquefaction of soil during earthquakes. PB86-163110 Final Report. National Research Council, Commission on Engineering and Technical System. National Science Foundation, National Academy Press, Washington. https://nehrpsearch.nist.gov/static/files/NSF/PB86163110.pdf
  • Rauch, A.F. (1997). Soil liquefaction in earthquakes 2.1. Definition of Soil Liquefaction Chapter 2, 7-18. https://vtechworks.lib.vt.edu/bitstream/handle/10919/30346 /Chp02.pdf?sequence=7
  • Roy, N. & Sarkar, R. (2015). Effect of mechanical properties of discontinuity on the seismic stability of tunnel in jointed rock mass. 50th Indian Geotechnical Conference 17th – 19th December 2015, Pune, Maharashtra, India. https://www.researchgate.net/publication/287330896_EFFEC T_OF_MECHANICAL_PROPERTIES_OF_DISCONTINUITY_ON_T HE_SEISMIC_STABILITY_OF_TUNNEL_IN_JOINTED_ROCK_MAS S
  • Khalifa, A., Çakır, Z., Owen, L.A. & Kaya, Ş. (2018). Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27, 110-126. doi:10.3906/yer-1707-16
  • KRDAE (2023). B.Ü. 06 Şubat 2023 Ekinözü Kahramanmaraş Depremi Basın Bülteni. Kandilli Rasathanesi ve DAE, Bölgesel Deprem- Tsunami İzleme Ve Değerlendirme Merkezi. http://www.koeri.boun.edu.tr/sismo/2/wp- content/uploads/2023/02/20230206_1024_KAHRAMANMAR AS.pdf
  • Kürçer, A., Elmacı, H., Özdemir, E., Güven, C., Güler, T., Avcu, İ. & Özalp, S. (2023a). 06 Şubat 2023 Pazarcık (Kahramanmaraş) Depremi (Mw 7,7) Saha Gözlem Raporları Serisi 1- Amanos Segmenti. https://www.mta.gov.tr/files/img/popup/06022023_pazarc% C4%B1k_depremi_saha_gozlem_raporu_1_amanos_segmenti .pdf
  • Kürçer, A., Elmacı, H., Özdemir, E., Güven, C. & Özalp, S. (2023b). 06 Şubat 2023 Kahramanmaraş Depremleri Genişletilmiş Bilgi Notu. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi Başkanlığı. https://www.mta.gov.tr/v3.0/sayfalar/bilgi- merkezi/deprem/pdf/Genisletilmis_Bilgi_Notu_06_Subat_202 3%20KMaras_Depremleri.pdf
  • Massey, C. I., Olsen, M. J., Wartman, J., Senogles, A., Lukovic, B., Leshchinsky, B. A., Archibald, G., Litchfield, N., Van Dissen, R., de Vilder, S. & Holden, C. (2022). Rockfall Activity Rates Before, During and After the 2010/2011 Canterbury Earthquake Sequence. Journal of Geophysical Research: Earth Surface, 127(3): e2021JF006400. https://doi.org/10.1029/2021JF006400
  • McClay, K. & Bonora, M. (2001). Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin, 85(2), 233–260. http://activetectonics.asu.edu/ActiveFaultingSeminar/Papers/ McClay_Bonora_2001.pdf
  • Moore, j.R., Gischig, V., Amann, F., Hunziker, M., Hunzşker, M. & Burjanek, J. (2012). Earthquake-triggered rock slope failures: Damage and site effects. Conference: Proceedings 11th International & 2nd North American Symposium on Landslides. https://www.researchgate.net/publication/260981734_Earth quake- triggered_rock_slope_failures_Damage_and_site_effects
  • NRC (1985). Liquefaction of soil during earthquakes. PB86-163110 Final Report. National Research Council, Commission on Engineering and Technical System. National Science Foundation, National Academy Press, Washington. https://nehrpsearch.nist.gov/static/files/NSF/PB86163110.pdf
  • Rauch, A.F. (1997). Soil liquefaction in earthquakes 2.1. Definition of Soil Liquefaction Chapter 2, 7-18. https://vtechworks.lib.vt.edu/bitstream/handle/10919/30346 /Chp02.pdf?sequence=7
  • Roy, N. & Sarkar, R. (2015). Effect of mechanical properties of discontinuity on the seismic stability of tunnel in jointed rock mass. 50th Indian Geotechnical Conference 17th – 19th December 2015, Pune, Maharashtra, India. https://www.researchgate.net/publication/287330896_EFFEC T_OF_MECHANICAL_PROPERTIES_OF_DISCONTINUITY_ON_THE_SEISMIC_STABILITY_OF_TUNNEL_IN_JOINTED_ROCK_MAS S
  • Sciarra, A., Cantucci, B., Buttinelli, M., Galli, G., Nazzari, M., Pizzino, L. & Quattrocchi, L. (2012). Soil-gas survey of liquefaction and collapsed caves during the Emilia seismic sequence. Annals of Geophysics, 55(4), 803-809. doi: 10.4401/ag-6122. https://www.annalsofgeophysics.eu/index.php/annals/article /view/6122
  • SBB (2023). 2023 Kahramanmaraş ve Hatay Depremleri Raporu. Türkiye Cumhuriyeti Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı. https://www.sbb.gov.tr/wp- content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay- Depremleri-Raporu.pdf
  • Shao, Z-Fu, Zhong,J-Hua, Howell, J., Hao, B., Luan, X-Wu, Liu, Z-Xuan, Ran, W-Min, Zhang, Y-Feng, Yuan, H-Qi, Liu, J-Jing, Ni, L-Tian, Song, G-Xian, Liu, J-Lin, Zhang, W-Xin. & Zhao, B. (2020). Liquefaction structures induced by the M5.7 earthquake on May 28, 2018 in Songyuan, Jilin Province, NE China and research implication. Journal of Palaeogeography, 9, 3. https://doi.org/10.1186/s42501-019-0053-3
  • Singeisen, C., Massey, C., Wolter, A., Kellett, R., Bloom, C., Stahl, T., Gasston, C. & Jones, K. (2022). Mechanisms of rock slope failures triggered by the 2016 Mw 7.8 Kaikōura earthquake and implications for landslide susceptibility. Geomorphology, 415, 108386, https://doi.org/10.1016/j.geomorph.2022.108386 Sylvester, A.G. (1988). Strike-Slip Faults. Geological Society of America Bulletin, 100(11), 1666-1703. DOI:10.1130/0016- 7606(1988)100<1666:ssf>2.3.co;2
  • Şengor, A.M.C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241.
  • Tang, H., Wu, Z., Che, A., Yuan, C. & Deng, Q. (2012). Failure Mechanism of Rock Slopes under Different Seismic Excitation. Hindawi, Advances in Materials Science and Engineering, 2021, Article ID 8866119, 16 pages. https://doi.org/10.1155/2021/8866119
  • Turoğlu, H., & Sarıgül, O. (2023, March 27). DAF Pazarcık segmenti, 06 Şubat 2023 depremi jeomorfolojik deformasyon örnekleri [Video]. YouTube. https://www.youtube.com/watch?v=JvGLSwJ5J6U&t=357s
  • Tuttle, M.P., Hartleb, R., Wolf, L. & Mayne, P.W. (2019). Paleoliquefaction Studies and the Evaluation of Seismic Hazard. Geosciences, 9(7), 311. https://doi.org/10.3390/geosciences9070311
  • Utkucu, M., Uzunca, F., Durmuş, H., Nalbant, S., Sert, S. (2023). The 2023 Pazarcık (Mw=7.8) And Elbistan (Mw=7.6), Kahramanmaraş Earthquakes in The Southeast Türkiye. Sakarya University, Disaster Management Application and Research Center and Department of Geophysic. http://www.aym.sakarya.edu.tr/2023/02/24/the-2023- pazarcik-mw7-8-and-elbistan-mw7-6-kahramanmaras- earthquakes-in-the-southeast-turkiye/
  • URL-1 http://yerbilimleri.mta.gov.tr/anasayfa.aspx
  • URL-2 https://atag.itu.edu.tr/v4/?p=135
  • Vallejo, L.E. (1992). Liquefaction zones predicted by the type of stresses induced by the ends of fault segments. Earthquake Engineering, Tenth World Conference-1992, Balkema, Rotterdam, ISBN 9054100605, 1355-1359. https://www.iitk.ac.in/nicee/wcee/article/10_vol3_1355.pdf
  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen, Bulletin of the Geological Society of America, 105, 251–271.
  • Zheng, L., Wu, Y., Zhu, Y., Ren, K., Wei, Q., Wu, W. & Zhang, H. (2022). Investigating the Role of Earthquakes on the Stability of Dangerous Rock Masses and Rockfall Dynamics. Frontiers in Earth Science, 9, 824889. https://doi.org/10.3389/feart.2021.8248

06 Şubat 2023, Pazarcık (Kahramanmaraş, Türkiye) depreminin neden olduğu jeomorfolojik deformasyon örnekleri

Year 2023, Issue: 83, 23 - 34, 31.12.2023
https://doi.org/10.17211/tcd.1313551

Abstract

Sol yanal atımlı Pazarcık fayı; Doğu Anadolu Fay Zonu (DAFZ) nun segmentlerinden biridir. ±85 km uzunluğundaki Pazarcık fayı 06 Şubat 2023 tarihinde Mw=7.7 büyüklüğünde bir deprem üretmiştir. Bu çalışmada, 06 Şubat 2023 Pazarcık depreminin neden olduğu jeomorfolojik deformasyonların, tipik örneklemeler ile açıklanması amaçlanmıştır. Depremin, Türkoğlu-Gölbaşı arasındaki yüzey kırığı birebir takip edilerek, sol yanal atım nedeniyle yeryüzünde meydana gelen değişimler tespit edilmiş, ölçümlenmiş ve kayıt edilmiştir. Saha çalışması sırasında havadan yapılan ölçüm ve kayıtlarda DJI Phantom 4 ve DJI Mini Drone kullanılmıştır. Yersel ölçümlerde ise Garmin el GPS ve şerit metre kullanılmıştır.
Arazi çalışmaları sırasında depremin yüzey kırığı jeomorfolojik perspektifte araştırılmış, lokasyon verisi alınarak, haritalanmıştır. Yüzey kırığındaki sol yanal atım mesafeleri 4-6.5m arasında değişiklik gösterdiği yapılan ölçümlerle tespit edilmiştir. 06 Şubat 2023 depreminin jeomorfolojik deformasyonlarından biri sıkışma sırtları ve açılma çöküntüleridir. Bu morfolojik deformasyonlar; sol yanal atımlı Pazarcık fayının eğrisel kayma düzleminin ortaya çıkardığı doğal sonuçlardır. Farklı özelliklere sahip sıvılaşma örnekleri Gölbaşı depresyonunun Sakarkaya mevki alüviyal dolgu sahasında gözlenmiştir. Kaya düşmeleri Kartal-Sakarkaya bölümünde yüzey kırığının içinden geçtiği vadide yüzeylenen çatlak yoğunluğu nedeniyle süreksizliğin zayıflattığı kumtaşı, çamurtaşı, kireçtaşı yamaçlarında meydana gelmiştir. Saha çalışmaları sırasında kayma ve yayılmalar da gözlenmiştir. Kaymaların tipik örnekleri Gölbaşı Gölü’nün güney kıyısında göle doğru az eğimli konsolide olmamış dolgu zeminde depremin vibrasyon etkisi ile meydana gelmiştir. Yine depremin vibrasyon etkisi yol ve kavşak inşaatlarına ait yapay dolgularda yanal yayılma deformasyonlarına
neden olmuştur.

References

  • AFAD (2023). 06 Şubat 2023 Kahramanmaraş (Pazarcık ve Elbistan) Depremleri Saha Çalışmaları Ön Değerlendirme Rapor. https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022 023_surum1_revize.pdf
  • Armijo, R., Meyer, B., Hubert, A., & Barka, A. (1999). Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics. Geology, 27(3), 267-270. https://doi.org/10.1130/0091- 7613(1999)027<0267:WPOTNA>2.3.CO;2
  • Aydan, Ö. (2016). Large Rock Slope Failures Induced by Recent Earthquakes. Rock Mechanics and Rock Engineering, 49, 2503– 2524. https://doi.org/10.1007/s00603-016-0975-3
  • BDTİM (2023). Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi.http://www.koeri.boun.edu.tr/sismo/2/tr/
  • Burbank, D.W. & Anderson, R.S. (2008). Tectonic geomorphology. Blackwell Science Ltd. ISBN 978-0-632-04386-6.
  • Chen, X-li., Liu, C-guo., Wang, M-ming. & Zhou, Q. (2018). Causes of unusual distribution of coseismic landslides triggered by the Mw 6.1 2014 Ludian, Yunnan, China earthquake. Journal of Asian Earth Sciences, 159, 17-23. https://doi.org/10.1016/j.jseaes.2018.03.010
  • Christie-Blick, N, & Biddle, K. T. (1985). Deformation and basin formation along strike-slip faults. In K. T. Biddle & N. Christie- Blick (Eds.), Strike-slip deformation, basin formation and sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication, 37, 1–34. Doi:10.2110/pec.85.37.0001
  • Cunningham, W.D. & Mann, P. (2007). Tectonics of strike-slip restraining and releasing bends. İçinde: Cunningham, W. D. & Mann, P. (eds) Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290, 1–12. https://www.lyellcollection.org/doi/10.1144/SP290.1
  • Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Şaroğlu, F. & Şengör, A.M.C., (1986). Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone, Geological Society Special Publication, 19(1), 1–36.
  • Dewey, J.E., Holdsworth, R.E. & Strachan, R.A. (1998). Transpression and transtension zones. In: Holdsworth, R.E., Strachan, R.A., Dewey, J. E (eds) 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 1-14. https://www.lyellcollection.org/doi/pdf/10.1144/gsl.sp.199 8.135.01.01
  • Eitzenberger, A. (2012). Wave Propagation in Rock and the Influence of Discontinuities. Doctorial Thesis, Division of Mining and Geotechnical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, SWEDEN. https://www.diva- portal.org/smash/get/diva2:990707/FULLTEXT01.pdf
  • Güvercin, S.E., Karabulut, H., Konca, A.Ö., Doğan, U. & Ergintav, S. (2022). Active seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230, 50–69. https://doi.org/10.1093/gji/ggac045
  • Hack, R., Alkema, D., Kruse, G.A.M., Leenders, N. & Luzi, L. (2007). Influence of earthquakes on the stability of slopes. Engineering Geology, 91(1), 4–15. https://doi.org/10.1016/j.enggeo.2006.12.016
  • Hempton, M.R. (1987). Constraints on Arabian Plate motion and extensional history of the Red Sea. Tectonics, 6, 687–705.
  • Huang, L. & Liu, C.-y. (2017). Three types of flower structures in a divergent-wrench fault zone. Journal of Geophysical Research: Solid Earth, 122, 10478–10497. https://doi.org/10.1002/2017JB014675
  • Karabacak, V., Özkaymak, Ç., Sözbilir, H., Tatar, O., Aktuğ, B., Özdağ, Ö.C., Çakır, R., Aksoy, E., Koçbulut, F., Softa, M., Akgün, E., Demir, A. & Arslan, G. (2023). The 2023 Pazarcık (Kahramanmaraş, Türkiye) Earthquake (Mw: 7.7): Implications for surface rupture dynamics along the East Anatolian Fault Zone. Journal of the Geological Society, 180 (3) https://doi.org/10.1144/jgs2023-020
  • Damage and site effects. Conference: Proceedings 11th International & 2nd North American Symposium on Landslides. https://www.researchgate.net/publication/260981734_Earth quake- triggered_rock_slope_failures_Damage_and_site_effects
  • NRC (1985). Liquefaction of soil during earthquakes. PB86-163110 Final Report. National Research Council, Commission on Engineering and Technical System. National Science Foundation, National Academy Press, Washington. https://nehrpsearch.nist.gov/static/files/NSF/PB86163110.pdf
  • Rauch, A.F. (1997). Soil liquefaction in earthquakes 2.1. Definition of Soil Liquefaction Chapter 2, 7-18. https://vtechworks.lib.vt.edu/bitstream/handle/10919/30346 /Chp02.pdf?sequence=7
  • Roy, N. & Sarkar, R. (2015). Effect of mechanical properties of discontinuity on the seismic stability of tunnel in jointed rock mass. 50th Indian Geotechnical Conference 17th – 19th December 2015, Pune, Maharashtra, India. https://www.researchgate.net/publication/287330896_EFFEC T_OF_MECHANICAL_PROPERTIES_OF_DISCONTINUITY_ON_T HE_SEISMIC_STABILITY_OF_TUNNEL_IN_JOINTED_ROCK_MAS S
  • Khalifa, A., Çakır, Z., Owen, L.A. & Kaya, Ş. (2018). Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27, 110-126. doi:10.3906/yer-1707-16
  • KRDAE (2023). B.Ü. 06 Şubat 2023 Ekinözü Kahramanmaraş Depremi Basın Bülteni. Kandilli Rasathanesi ve DAE, Bölgesel Deprem- Tsunami İzleme Ve Değerlendirme Merkezi. http://www.koeri.boun.edu.tr/sismo/2/wp- content/uploads/2023/02/20230206_1024_KAHRAMANMAR AS.pdf
  • Kürçer, A., Elmacı, H., Özdemir, E., Güven, C., Güler, T., Avcu, İ. & Özalp, S. (2023a). 06 Şubat 2023 Pazarcık (Kahramanmaraş) Depremi (Mw 7,7) Saha Gözlem Raporları Serisi 1- Amanos Segmenti. https://www.mta.gov.tr/files/img/popup/06022023_pazarc% C4%B1k_depremi_saha_gozlem_raporu_1_amanos_segmenti .pdf
  • Kürçer, A., Elmacı, H., Özdemir, E., Güven, C. & Özalp, S. (2023b). 06 Şubat 2023 Kahramanmaraş Depremleri Genişletilmiş Bilgi Notu. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi Başkanlığı. https://www.mta.gov.tr/v3.0/sayfalar/bilgi- merkezi/deprem/pdf/Genisletilmis_Bilgi_Notu_06_Subat_202 3%20KMaras_Depremleri.pdf
  • Massey, C. I., Olsen, M. J., Wartman, J., Senogles, A., Lukovic, B., Leshchinsky, B. A., Archibald, G., Litchfield, N., Van Dissen, R., de Vilder, S. & Holden, C. (2022). Rockfall Activity Rates Before, During and After the 2010/2011 Canterbury Earthquake Sequence. Journal of Geophysical Research: Earth Surface, 127(3): e2021JF006400. https://doi.org/10.1029/2021JF006400
  • McClay, K. & Bonora, M. (2001). Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin, 85(2), 233–260. http://activetectonics.asu.edu/ActiveFaultingSeminar/Papers/ McClay_Bonora_2001.pdf
  • Moore, j.R., Gischig, V., Amann, F., Hunziker, M., Hunzşker, M. & Burjanek, J. (2012). Earthquake-triggered rock slope failures: Damage and site effects. Conference: Proceedings 11th International & 2nd North American Symposium on Landslides. https://www.researchgate.net/publication/260981734_Earth quake- triggered_rock_slope_failures_Damage_and_site_effects
  • NRC (1985). Liquefaction of soil during earthquakes. PB86-163110 Final Report. National Research Council, Commission on Engineering and Technical System. National Science Foundation, National Academy Press, Washington. https://nehrpsearch.nist.gov/static/files/NSF/PB86163110.pdf
  • Rauch, A.F. (1997). Soil liquefaction in earthquakes 2.1. Definition of Soil Liquefaction Chapter 2, 7-18. https://vtechworks.lib.vt.edu/bitstream/handle/10919/30346 /Chp02.pdf?sequence=7
  • Roy, N. & Sarkar, R. (2015). Effect of mechanical properties of discontinuity on the seismic stability of tunnel in jointed rock mass. 50th Indian Geotechnical Conference 17th – 19th December 2015, Pune, Maharashtra, India. https://www.researchgate.net/publication/287330896_EFFEC T_OF_MECHANICAL_PROPERTIES_OF_DISCONTINUITY_ON_THE_SEISMIC_STABILITY_OF_TUNNEL_IN_JOINTED_ROCK_MAS S
  • Sciarra, A., Cantucci, B., Buttinelli, M., Galli, G., Nazzari, M., Pizzino, L. & Quattrocchi, L. (2012). Soil-gas survey of liquefaction and collapsed caves during the Emilia seismic sequence. Annals of Geophysics, 55(4), 803-809. doi: 10.4401/ag-6122. https://www.annalsofgeophysics.eu/index.php/annals/article /view/6122
  • SBB (2023). 2023 Kahramanmaraş ve Hatay Depremleri Raporu. Türkiye Cumhuriyeti Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı. https://www.sbb.gov.tr/wp- content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay- Depremleri-Raporu.pdf
  • Shao, Z-Fu, Zhong,J-Hua, Howell, J., Hao, B., Luan, X-Wu, Liu, Z-Xuan, Ran, W-Min, Zhang, Y-Feng, Yuan, H-Qi, Liu, J-Jing, Ni, L-Tian, Song, G-Xian, Liu, J-Lin, Zhang, W-Xin. & Zhao, B. (2020). Liquefaction structures induced by the M5.7 earthquake on May 28, 2018 in Songyuan, Jilin Province, NE China and research implication. Journal of Palaeogeography, 9, 3. https://doi.org/10.1186/s42501-019-0053-3
  • Singeisen, C., Massey, C., Wolter, A., Kellett, R., Bloom, C., Stahl, T., Gasston, C. & Jones, K. (2022). Mechanisms of rock slope failures triggered by the 2016 Mw 7.8 Kaikōura earthquake and implications for landslide susceptibility. Geomorphology, 415, 108386, https://doi.org/10.1016/j.geomorph.2022.108386 Sylvester, A.G. (1988). Strike-Slip Faults. Geological Society of America Bulletin, 100(11), 1666-1703. DOI:10.1130/0016- 7606(1988)100<1666:ssf>2.3.co;2
  • Şengor, A.M.C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241.
  • Tang, H., Wu, Z., Che, A., Yuan, C. & Deng, Q. (2012). Failure Mechanism of Rock Slopes under Different Seismic Excitation. Hindawi, Advances in Materials Science and Engineering, 2021, Article ID 8866119, 16 pages. https://doi.org/10.1155/2021/8866119
  • Turoğlu, H., & Sarıgül, O. (2023, March 27). DAF Pazarcık segmenti, 06 Şubat 2023 depremi jeomorfolojik deformasyon örnekleri [Video]. YouTube. https://www.youtube.com/watch?v=JvGLSwJ5J6U&t=357s
  • Tuttle, M.P., Hartleb, R., Wolf, L. & Mayne, P.W. (2019). Paleoliquefaction Studies and the Evaluation of Seismic Hazard. Geosciences, 9(7), 311. https://doi.org/10.3390/geosciences9070311
  • Utkucu, M., Uzunca, F., Durmuş, H., Nalbant, S., Sert, S. (2023). The 2023 Pazarcık (Mw=7.8) And Elbistan (Mw=7.6), Kahramanmaraş Earthquakes in The Southeast Türkiye. Sakarya University, Disaster Management Application and Research Center and Department of Geophysic. http://www.aym.sakarya.edu.tr/2023/02/24/the-2023- pazarcik-mw7-8-and-elbistan-mw7-6-kahramanmaras- earthquakes-in-the-southeast-turkiye/
  • URL-1 http://yerbilimleri.mta.gov.tr/anasayfa.aspx
  • URL-2 https://atag.itu.edu.tr/v4/?p=135
  • Vallejo, L.E. (1992). Liquefaction zones predicted by the type of stresses induced by the ends of fault segments. Earthquake Engineering, Tenth World Conference-1992, Balkema, Rotterdam, ISBN 9054100605, 1355-1359. https://www.iitk.ac.in/nicee/wcee/article/10_vol3_1355.pdf
  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen, Bulletin of the Geological Society of America, 105, 251–271.
  • Zheng, L., Wu, Y., Zhu, Y., Ren, K., Wei, Q., Wu, W. & Zhang, H. (2022). Investigating the Role of Earthquakes on the Stability of Dangerous Rock Masses and Rockfall Dynamics. Frontiers in Earth Science, 9, 824889. https://doi.org/10.3389/feart.2021.8248
There are 44 citations in total.

Details

Primary Language English
Subjects Natural Hazards, Geomorphology and Earth Surface Processes
Journal Section Research Articles
Authors

Hüseyin Turoglu 0000-0003-0173-6995

Osman Sarıgül 0000-0002-4677-5157

Early Pub Date September 6, 2023
Publication Date December 31, 2023
Acceptance Date July 10, 2023
Published in Issue Year 2023 Issue: 83

Cite

APA Turoglu, H., & Sarıgül, O. (2023). Geomorphological deformation examples induced by the February 06, 2023, Pazarcık earthquake (Kahramanmaraş, Türkiye). Türk Coğrafya Dergisi(83), 23-34. https://doi.org/10.17211/tcd.1313551

Publisher: Turkish Geographical Society