Research Article
BibTex RIS Cite

Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material

Year 2023, Volume: 26 Issue: 4, 1421 - 1429, 01.12.2023
https://doi.org/10.2339/politeknik.1120778

Abstract

The aim of this study was to determine some physical and mechanical properties of spruce (Picea orientalis) wood, which was impregnated with aqueous solutions of valonia (valex) (the extract of Quercus ithaburensis), pine bark powder (pinex) (Pinus brutia Ten.) and gallnut powder (galex) (Quercus infectoria Oliver) as a pre-treatment and then heat treated. Test specimens were prepared from sapwood of spruce wood and impregnated with 10% tannin solutions before heat treatment base on ASTM D 1413-76. After pre-impregnation processs, specimens subjected to heat treatment at 150 °C, 175 °C and 200 °C for 2 h. The effect of impregnation process and heat treatment temperature on the air-dried density, compressive strength paralell to the grain (CS), bending strength (MOR) and modulus of elasticity in bending (MOE) were analyzed. As results, impregnation solutions showed positive effects on mechanical strength in unheat-treated samples and determined that mecnaical strength loses due to heat treatment slightly limited at low temperatures. However, strength loses increased with increasing temperature. The highest strength loses were also determined in impregnated samples with galex extract and heat-treated samples at 200 °C.  

References

  • [1] Usta İ . ''Depictions on wood: Acceptation and internalization of wood, which is an ıntercultural ınteraction tool, as ''a valuable objec'' (wood is valuable)'', Journal of Science and Technology, 2(2): 139-144, (2016).
  • [2] Kurtoğlu, A. ''Ağaç malzeme yüzey işlemleri'' 1. Cilt: Genel Bilgiler, İ.Ü. Orman Fakültesi, Orman Endüstri Mühendisliği Bölümü, Üniversite Yayın No: 4262, Fakülte Yayın No: 463, ISBN 975-404-590-9, İstanbul, 2000.
  • [3] Freeman M. H., Shupe T. F., Vlosky, R. P., and Barnes H. M., ''Past, present, and future of the wood preservation industry'', Forest Products Journal, 53(10): 8-15, (2003).
  • [4] Hill C. A. S. ''Wood modification - chemical, thermal and other processes'', Wiley Series in Renewable Resources, Wiley and Sons, Chichester, UK, (2006).
  • [5] Sandberg D., Kutnar A. and Mantanis G. ''Wood modification Technologies: a review'', Iforest-Biogeosciences and Forestry, 10(6): 895-908, (2017).
  • [6] Pelit H., ''The effects of densification and heat treatment on finishing process with some technological properties of eastern beech and scots pine'', Ph.D. Thesis, Gazi University, Institute of Science, Ankara (2014).
  • [7] Venmalar D. and Nagaveni, H. C., ''Evaluation of copperised cashew nut shell liquid and neem oil as wood preservatives'', Institute of Wood Science and Technology. Malleswaram. Bangalore, India. IRG/WP 05-05-0368368, (2005).
  • [8] Temiz A., Alfredsen, G., Yildiz U. C., Gezer E. D., Kose G., Akbas S. and Yildiz S. ''Leaching and decay resistance of alder and pine wood treated with copper based wood preservatives'', Maderas. Ciencia y tecnologia, 16(1): 63-76, (2014).
  • [9] Özdemir T., Temiz A. and Aydin, I. ''Effect of wood preservatives on surface properties of coated wood'', Advances in Materials Science and Engineering, 2015, Article ID 631835, 1-6. (2015).
  • [10] Şen S. and Yalçın M. ''Threats on human and environment health of impregnated wood material completed service life and their recycling processes'', Düzce University Faculty of Forestry Journal of Forestry, 5(1): 91-106, (2009).
  • [11] Yildiz U. C. Temiz A., Gezer E. D. and Yildiz, S. ''Effects of the wood preservatives on mechanical properties of yellow pine (Pinus sylvestris L.) wood'', Building and Environment, 39(9): 1071-1075, (2004).
  • [12] Aşçı T. and Keskin H. ''Strengthening the retention amount and leaching resistance of boron compounds used as impregnation material'', Journal of Polytechnic, 24(1): 103-112, (2021).
  • [13] Fidan M. S. and Adanur H., ''Physical and mechanical properties of wood impregnated with quebracho and boron compounds'', Forestist, 69(1): 68-80 (2019).
  • [14] Yalcin M., Pelit H., Akcay, C. and Cakicier, N. ''Surface properties of tannin‐impregnated and varnished beech wood after exposure to accelerated weathering'', Coloration Technology, 133(4): 334-340, (2017).
  • [15] Czajkowski Ł., Olek W. and Weres J. ''Effects of heat treatment on thermal properties of European beech wood'', European Journal of Wood and Wood Products, 78(3): 425-431, (2020).
  • [16] Poncsák S., Kocaefe D., Bouazara M. and Pichette A. ''Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera)'', Wood Science and Technology, 40(8): 647- 663, (2006).
  • [17] Shukla S. R. ''Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis'', Maderas. Ciencia y tecnología, 21(4): 433-446, (2019).
  • [18] Ali M., Abdullah U. H., Ashaari Z., Hamid N. H. and Hua L. S. ''Hydrothermal modification of wood: a review'', Polymers, 13(16): 2612, (2021).
  • [19] Hannouz S., Collet R., Buteaud J. C., Bléron L. and Candelier K. ''Mechanical characterization of heat treated ash wood in relation with structural timber standards'', Pro Ligno, 11: 3-10, (2015).
  • [20] Chen C., Tu D., Zhao X., Zhou Q., Cherdchim B. and Hu C. ''Influence of cooling rate on the physical properties, chemical composition, and mechanical properties of heat-treated rubberwood'', Holzforschung, 74(11): 1033-1042, (2020).
  • [21] Roszyk E., Stachowska E., Majka J., Mania P. and Broda M. ''Moisture-dependent strength properties of thermally-modified fraxinus excelsior wood in compression'', Materials, 13(7): 1647, (2020).
  • [22] Boonstra M. J., Rijsdijk J., Sander C., Kegel E., Tjeerdsma B., Militz H., Van Acker J. and Stevens M. ''Microstructural and physical aspects of heat treated wood: Part 2'', Maderas. Ciencia y tecnología, 8: 209-217, (2006).
  • [23] Kocaefe D., Poncsak S. and Boluk Y. ''Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen'', BioResources, 3(2): 517-537, (2008).
  • [24] Dilik T. and Hiziroglu S. ''Bonding strength of heat treated compressed Eastern red cedar wood'', Materials and Design, 42: 317-320, (2012).
  • [25] Kasap Okut, G. and Altınok, M. ''Investigation on the decay of some wood type modified with natural wood tannin'', Journal of Polytechnic, 23(2): 343-350, (2020).
  • [26] Yaşar M. and Altunok M. ''Some physical and mechanical properties of impregnated chestnut wood with natural and chemical agent exposed to outdoor conditions'', Journal of Polytechnic, 22(2): 399-406, (2019).
  • [27] Tondi G., Wieland S., Wimmer T., Thevenon M. F., Pizzi, A. and Petutschnigg A. ''Tannin-boron preservatives for wood buildings: Mechanical and fire properties'', European Journal of Wood and Wood Products, 70(5): 689-696, (2012).
  • [28] Jirouš-Rajković, V. and Miklečić J. ''Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood'', Advances in Materials Science and Engineering, 2019, Article ID 8621486, 1-9, (2019).
  • [29] Kariz M., Kuzman M. K., Sernek M., Hughes M., Rautkari L., Kamke F.A. and Kutnar A. ''Influence of temperature of thermal treatment on surface densification of spruce'', European Journal of Wood and Wood Products, 75(1): 113-123, (2017).
  • [30] Živković V., Prša I., Turkulin H., Sinković, T. and Jirouš-Rajković V. ''Dimensional stability of heat treated wood floorings'', Drvna Industrija, 59(2): 69-73, (2008).
  • [31] Tomak E. D., Ustaomer D., Yildiz S. and Peşman E. ''Changes in surface and mechanical properties of heat treated wood during natural weathering'', Measurement, 53: 30-39, (2014).
  • [32] Chotikhun A., Kittijaruwattana J., Salca E. A. and Hiziroglu S. ''Selected physical and mechanical properties of microwave heat treated rubberwood (Hevea brasiliensis)'', Applied Sciences, 10(18): 6273, (2020).
  • [33] Garcia R. A., de Oliveira Lopes J., do Nascimento A. M., de Figueiredo Latorraca J. V. ''Color stability of weathered heat-treated teak wood'', Maderas. Ciencia y tecnología, 16(4): 453-462, (2014).
  • [34] Wang W., Cao J., Cui F. and Wang X. ''Effect of pH on chemical components and mechanical properties of thermally modified wood'', Wood and Fiber Science, 44(1): 46-53, (2012).
  • [35] Awoyemi L. and Westermark U. ''Effects of borate impregnation on the response of wood strength to heat treatment'', Wood Science and Technology, 39(6): 484-491, (2005).
  • [36] Winandy J. E. ''Effects of fire retardant retention, borate buffers, and redrying temperature after treatment on thermal-induced degradation'', Forest Products Journal, 47(6): 79-86, (1997).
  • [37] Gündüz G., Aydemir D., Onat S. M. and Akgün K. ''The effects of tannin and thermal treatment on physical and mechanical properties of laminated chestnut wood composites'', BioResources, 6(2), 1543-1555, (2011).
  • [38] Verly Lopes D. J., Barnes H. M. and dos Santos Bobadilha G. ''Influence of heat treatment and tannin impregnation on boron depletion and wood durability'', Forests, 11(2): 201, (2020).
  • [39] TS 2470. ''Wood - sampling methods and general requirements for physical and mechanical tests'', Turkish Standardization Institute, Ankara, Turkey, (1976).
  • [40] TS 2474. ''Wood determination of ultimate strength in static bending'', Turkish Standard Institute, Ankara: Turkey, 1976.
  • [41] TS 2478. ''Wood determination of modulus of elasticity in static bending'', Turkish Standard Institute, Ankara, Turkey, 1976.
  • [42] TS 2595. ''Wood testing in compression parallel to grain'', Turkish Standard Institute, Ankara, Turkey, 1977.
  • [43] TS 2472. ''Wood - determination of density for physical and mechanical tests'', Turkish Standard Institute, Ankara, Turkey, 1976.
  • [44] ASTM-D 1413-76. ''Standart test methods of testing wood preservatives by laboratory soilblock cultures'', Annual Book of Astm Standarts. USA, 452-460, (1976).
  • [45] Yıldız S. ''Physical, mechanical, technologic and chemical properties of Fagus orientalis and Picea orientalis wood treated by heating'', Ph.D. Thesis, Karadeniz Technical University, Institute of Science, Trabzon, (2002).
  • [46] Esteves B., Marques A. V., Domingos I. and Pereira H. ''Influence of steam heating on the properties of pine (Pinus Pinaster) and eucalypt (Eucalypus globulus) wood'', Wood Science and Technology, 41(3): 193-207, (2007).
  • [47] Alén A., Kotilainen R., and Zaman A. ''Thermochemical behavior of Norway spruce (Picea abies) at 180-225°C'', Wood Science and Technology, 36: 163-171, (2002).
  • [48] Dönmez I. E. and Dönmez S. ''Structure of tree bark and possibility of utilization'', SDU Faculty of Forestry Journal, 14: 156-162. 2013.
  • [49] Sen S. Tascıoglu, C. and Tırak K. ''Fixation, leachability, and decay resistance of wood treated with some commercial extracts and wood preservative salts'', International Biodeterioration and Biodegradation, 63(2): 135-143, (2009).
  • [50] Yildiz S., Gezer E. D. and Yildiz, U. C. ''Mechanical and chemical behaviour of spruce wood modified by heat'', Building and Environment, 41(12):1762-1766, (2006).
  • [51] Sweet M. S. and Winandy J. E. ''Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine'', Holzforschung, 53: 311-317, (1999).
  • [52] Grabner M., Muller U., Gierlinger N. and Wimmer R. ''Effects of heartwood extractives on mechanical properties of larch'', IAWA Journal, 26(2): 211-220, (2005).
  • [53] Silva M. R., Machado G. D. O., Brito J.O. and Calil Junior C. ''Strength and stiffness of thermally rectified eucalyptus wood under compression'', Materials Research, 16(5): 1077-1083, (2013).

Emprenye ve Isıl İşlemin Ahşap Malzemenin Bazı Fiziksel ve Mekanik Özelliklerine Etkileri

Year 2023, Volume: 26 Issue: 4, 1421 - 1429, 01.12.2023
https://doi.org/10.2339/politeknik.1120778

Abstract

Bu çalışmanın amacı, ön işlem olarak meşe palamudu (valex) (Quercus ithaburensis), kızılçam kabuğu (pinex) (Pinus brutia Ten.) ve meşe mazısı (galex) (Quercus infectoria Oliver) ekstraktlarının sulu çözeltileri ile emprenye edildikten sonra ısıl işleme tabi tutulan ladin (Picea orientalis) odunun bazı fiziksel ve mekanik özelliklerinin belirlenmesidir. Test örnekleri, ladin ağacının diri odun kısmından hazırlanmış ve ısıl işlemden önce ASTM D 1413-76'ya göre %10 tanen çözeltileri ile emprenye edilmiştir. Ön emprenye işlemlerinden sonra, test örnekleri 150 °C, 175 °C ve 200 °C'de 2 saat süreyle ısıl işleme tabi tutulmuştur. Emprenye ve ısıl işlemin hava kurusu yoğunluk, liflere paralel basınç direnci (CS), eğilme direnci (MOR) ve eğilmede elastikiyet modülüne (MOE) etkileri analiz edilmiştir. Sonuç olarak, emprenye çözeltilerinin ısıl işlem uygulanmamış örneklerinde mekanik özellikleri olumlu etkilediği ve düşük sıcaklıklarda ısıl işlemden kaynaklanan direnç kayıplarını bir miktar sınırladığı tespit edilmiştir. Ancak artan sıcaklıkla beraber direnç kayıpları da artmıştır. En yüksek direnç kayıpları, galex ile emprenye edilmiş ve 200 °C'de ısıl işlem uygulanmış örneklerde tespit edilmiştir.

References

  • [1] Usta İ . ''Depictions on wood: Acceptation and internalization of wood, which is an ıntercultural ınteraction tool, as ''a valuable objec'' (wood is valuable)'', Journal of Science and Technology, 2(2): 139-144, (2016).
  • [2] Kurtoğlu, A. ''Ağaç malzeme yüzey işlemleri'' 1. Cilt: Genel Bilgiler, İ.Ü. Orman Fakültesi, Orman Endüstri Mühendisliği Bölümü, Üniversite Yayın No: 4262, Fakülte Yayın No: 463, ISBN 975-404-590-9, İstanbul, 2000.
  • [3] Freeman M. H., Shupe T. F., Vlosky, R. P., and Barnes H. M., ''Past, present, and future of the wood preservation industry'', Forest Products Journal, 53(10): 8-15, (2003).
  • [4] Hill C. A. S. ''Wood modification - chemical, thermal and other processes'', Wiley Series in Renewable Resources, Wiley and Sons, Chichester, UK, (2006).
  • [5] Sandberg D., Kutnar A. and Mantanis G. ''Wood modification Technologies: a review'', Iforest-Biogeosciences and Forestry, 10(6): 895-908, (2017).
  • [6] Pelit H., ''The effects of densification and heat treatment on finishing process with some technological properties of eastern beech and scots pine'', Ph.D. Thesis, Gazi University, Institute of Science, Ankara (2014).
  • [7] Venmalar D. and Nagaveni, H. C., ''Evaluation of copperised cashew nut shell liquid and neem oil as wood preservatives'', Institute of Wood Science and Technology. Malleswaram. Bangalore, India. IRG/WP 05-05-0368368, (2005).
  • [8] Temiz A., Alfredsen, G., Yildiz U. C., Gezer E. D., Kose G., Akbas S. and Yildiz S. ''Leaching and decay resistance of alder and pine wood treated with copper based wood preservatives'', Maderas. Ciencia y tecnologia, 16(1): 63-76, (2014).
  • [9] Özdemir T., Temiz A. and Aydin, I. ''Effect of wood preservatives on surface properties of coated wood'', Advances in Materials Science and Engineering, 2015, Article ID 631835, 1-6. (2015).
  • [10] Şen S. and Yalçın M. ''Threats on human and environment health of impregnated wood material completed service life and their recycling processes'', Düzce University Faculty of Forestry Journal of Forestry, 5(1): 91-106, (2009).
  • [11] Yildiz U. C. Temiz A., Gezer E. D. and Yildiz, S. ''Effects of the wood preservatives on mechanical properties of yellow pine (Pinus sylvestris L.) wood'', Building and Environment, 39(9): 1071-1075, (2004).
  • [12] Aşçı T. and Keskin H. ''Strengthening the retention amount and leaching resistance of boron compounds used as impregnation material'', Journal of Polytechnic, 24(1): 103-112, (2021).
  • [13] Fidan M. S. and Adanur H., ''Physical and mechanical properties of wood impregnated with quebracho and boron compounds'', Forestist, 69(1): 68-80 (2019).
  • [14] Yalcin M., Pelit H., Akcay, C. and Cakicier, N. ''Surface properties of tannin‐impregnated and varnished beech wood after exposure to accelerated weathering'', Coloration Technology, 133(4): 334-340, (2017).
  • [15] Czajkowski Ł., Olek W. and Weres J. ''Effects of heat treatment on thermal properties of European beech wood'', European Journal of Wood and Wood Products, 78(3): 425-431, (2020).
  • [16] Poncsák S., Kocaefe D., Bouazara M. and Pichette A. ''Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera)'', Wood Science and Technology, 40(8): 647- 663, (2006).
  • [17] Shukla S. R. ''Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis'', Maderas. Ciencia y tecnología, 21(4): 433-446, (2019).
  • [18] Ali M., Abdullah U. H., Ashaari Z., Hamid N. H. and Hua L. S. ''Hydrothermal modification of wood: a review'', Polymers, 13(16): 2612, (2021).
  • [19] Hannouz S., Collet R., Buteaud J. C., Bléron L. and Candelier K. ''Mechanical characterization of heat treated ash wood in relation with structural timber standards'', Pro Ligno, 11: 3-10, (2015).
  • [20] Chen C., Tu D., Zhao X., Zhou Q., Cherdchim B. and Hu C. ''Influence of cooling rate on the physical properties, chemical composition, and mechanical properties of heat-treated rubberwood'', Holzforschung, 74(11): 1033-1042, (2020).
  • [21] Roszyk E., Stachowska E., Majka J., Mania P. and Broda M. ''Moisture-dependent strength properties of thermally-modified fraxinus excelsior wood in compression'', Materials, 13(7): 1647, (2020).
  • [22] Boonstra M. J., Rijsdijk J., Sander C., Kegel E., Tjeerdsma B., Militz H., Van Acker J. and Stevens M. ''Microstructural and physical aspects of heat treated wood: Part 2'', Maderas. Ciencia y tecnología, 8: 209-217, (2006).
  • [23] Kocaefe D., Poncsak S. and Boluk Y. ''Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen'', BioResources, 3(2): 517-537, (2008).
  • [24] Dilik T. and Hiziroglu S. ''Bonding strength of heat treated compressed Eastern red cedar wood'', Materials and Design, 42: 317-320, (2012).
  • [25] Kasap Okut, G. and Altınok, M. ''Investigation on the decay of some wood type modified with natural wood tannin'', Journal of Polytechnic, 23(2): 343-350, (2020).
  • [26] Yaşar M. and Altunok M. ''Some physical and mechanical properties of impregnated chestnut wood with natural and chemical agent exposed to outdoor conditions'', Journal of Polytechnic, 22(2): 399-406, (2019).
  • [27] Tondi G., Wieland S., Wimmer T., Thevenon M. F., Pizzi, A. and Petutschnigg A. ''Tannin-boron preservatives for wood buildings: Mechanical and fire properties'', European Journal of Wood and Wood Products, 70(5): 689-696, (2012).
  • [28] Jirouš-Rajković, V. and Miklečić J. ''Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood'', Advances in Materials Science and Engineering, 2019, Article ID 8621486, 1-9, (2019).
  • [29] Kariz M., Kuzman M. K., Sernek M., Hughes M., Rautkari L., Kamke F.A. and Kutnar A. ''Influence of temperature of thermal treatment on surface densification of spruce'', European Journal of Wood and Wood Products, 75(1): 113-123, (2017).
  • [30] Živković V., Prša I., Turkulin H., Sinković, T. and Jirouš-Rajković V. ''Dimensional stability of heat treated wood floorings'', Drvna Industrija, 59(2): 69-73, (2008).
  • [31] Tomak E. D., Ustaomer D., Yildiz S. and Peşman E. ''Changes in surface and mechanical properties of heat treated wood during natural weathering'', Measurement, 53: 30-39, (2014).
  • [32] Chotikhun A., Kittijaruwattana J., Salca E. A. and Hiziroglu S. ''Selected physical and mechanical properties of microwave heat treated rubberwood (Hevea brasiliensis)'', Applied Sciences, 10(18): 6273, (2020).
  • [33] Garcia R. A., de Oliveira Lopes J., do Nascimento A. M., de Figueiredo Latorraca J. V. ''Color stability of weathered heat-treated teak wood'', Maderas. Ciencia y tecnología, 16(4): 453-462, (2014).
  • [34] Wang W., Cao J., Cui F. and Wang X. ''Effect of pH on chemical components and mechanical properties of thermally modified wood'', Wood and Fiber Science, 44(1): 46-53, (2012).
  • [35] Awoyemi L. and Westermark U. ''Effects of borate impregnation on the response of wood strength to heat treatment'', Wood Science and Technology, 39(6): 484-491, (2005).
  • [36] Winandy J. E. ''Effects of fire retardant retention, borate buffers, and redrying temperature after treatment on thermal-induced degradation'', Forest Products Journal, 47(6): 79-86, (1997).
  • [37] Gündüz G., Aydemir D., Onat S. M. and Akgün K. ''The effects of tannin and thermal treatment on physical and mechanical properties of laminated chestnut wood composites'', BioResources, 6(2), 1543-1555, (2011).
  • [38] Verly Lopes D. J., Barnes H. M. and dos Santos Bobadilha G. ''Influence of heat treatment and tannin impregnation on boron depletion and wood durability'', Forests, 11(2): 201, (2020).
  • [39] TS 2470. ''Wood - sampling methods and general requirements for physical and mechanical tests'', Turkish Standardization Institute, Ankara, Turkey, (1976).
  • [40] TS 2474. ''Wood determination of ultimate strength in static bending'', Turkish Standard Institute, Ankara: Turkey, 1976.
  • [41] TS 2478. ''Wood determination of modulus of elasticity in static bending'', Turkish Standard Institute, Ankara, Turkey, 1976.
  • [42] TS 2595. ''Wood testing in compression parallel to grain'', Turkish Standard Institute, Ankara, Turkey, 1977.
  • [43] TS 2472. ''Wood - determination of density for physical and mechanical tests'', Turkish Standard Institute, Ankara, Turkey, 1976.
  • [44] ASTM-D 1413-76. ''Standart test methods of testing wood preservatives by laboratory soilblock cultures'', Annual Book of Astm Standarts. USA, 452-460, (1976).
  • [45] Yıldız S. ''Physical, mechanical, technologic and chemical properties of Fagus orientalis and Picea orientalis wood treated by heating'', Ph.D. Thesis, Karadeniz Technical University, Institute of Science, Trabzon, (2002).
  • [46] Esteves B., Marques A. V., Domingos I. and Pereira H. ''Influence of steam heating on the properties of pine (Pinus Pinaster) and eucalypt (Eucalypus globulus) wood'', Wood Science and Technology, 41(3): 193-207, (2007).
  • [47] Alén A., Kotilainen R., and Zaman A. ''Thermochemical behavior of Norway spruce (Picea abies) at 180-225°C'', Wood Science and Technology, 36: 163-171, (2002).
  • [48] Dönmez I. E. and Dönmez S. ''Structure of tree bark and possibility of utilization'', SDU Faculty of Forestry Journal, 14: 156-162. 2013.
  • [49] Sen S. Tascıoglu, C. and Tırak K. ''Fixation, leachability, and decay resistance of wood treated with some commercial extracts and wood preservative salts'', International Biodeterioration and Biodegradation, 63(2): 135-143, (2009).
  • [50] Yildiz S., Gezer E. D. and Yildiz, U. C. ''Mechanical and chemical behaviour of spruce wood modified by heat'', Building and Environment, 41(12):1762-1766, (2006).
  • [51] Sweet M. S. and Winandy J. E. ''Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine'', Holzforschung, 53: 311-317, (1999).
  • [52] Grabner M., Muller U., Gierlinger N. and Wimmer R. ''Effects of heartwood extractives on mechanical properties of larch'', IAWA Journal, 26(2): 211-220, (2005).
  • [53] Silva M. R., Machado G. D. O., Brito J.O. and Calil Junior C. ''Strength and stiffness of thermally rectified eucalyptus wood under compression'', Materials Research, 16(5): 1077-1083, (2013).
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Osman Perçin 0000-0003-0033-0918

Şemsettin Doruk 0000-0002-9492-0881

Mustafa Altunok 0000-0002-2048-1994

Publication Date December 1, 2023
Submission Date May 24, 2022
Published in Issue Year 2023 Volume: 26 Issue: 4

Cite

APA Perçin, O., Doruk, Ş., & Altunok, M. (2023). Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material. Politeknik Dergisi, 26(4), 1421-1429. https://doi.org/10.2339/politeknik.1120778
AMA Perçin O, Doruk Ş, Altunok M. Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material. Politeknik Dergisi. December 2023;26(4):1421-1429. doi:10.2339/politeknik.1120778
Chicago Perçin, Osman, Şemsettin Doruk, and Mustafa Altunok. “Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material”. Politeknik Dergisi 26, no. 4 (December 2023): 1421-29. https://doi.org/10.2339/politeknik.1120778.
EndNote Perçin O, Doruk Ş, Altunok M (December 1, 2023) Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material. Politeknik Dergisi 26 4 1421–1429.
IEEE O. Perçin, Ş. Doruk, and M. Altunok, “Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material”, Politeknik Dergisi, vol. 26, no. 4, pp. 1421–1429, 2023, doi: 10.2339/politeknik.1120778.
ISNAD Perçin, Osman et al. “Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material”. Politeknik Dergisi 26/4 (December 2023), 1421-1429. https://doi.org/10.2339/politeknik.1120778.
JAMA Perçin O, Doruk Ş, Altunok M. Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material. Politeknik Dergisi. 2023;26:1421–1429.
MLA Perçin, Osman et al. “Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material”. Politeknik Dergisi, vol. 26, no. 4, 2023, pp. 1421-9, doi:10.2339/politeknik.1120778.
Vancouver Perçin O, Doruk Ş, Altunok M. Effects of Impregnation and Heat Treatment on Some Physical and Mechanical Properties of Wood Material. Politeknik Dergisi. 2023;26(4):1421-9.