Research Article
BibTex RIS Cite

Lazer tabanlı sensörler kullanılarak rüzgâr hızı ve yönü ölçüm cihazı tasarımı

Year 2023, Volume: 12 Issue: 3, 752 - 761, 15.07.2023
https://doi.org/10.28948/ngumuh.1276016

Abstract

Rüzgâr hızı ve yönü ölçümlerinde çeşitli anemometreler ve yön belirleme cihazları kullanılmaktadır. Rüzgâr enerjisinden elektrik üretimi ve tahminleri için uygun maliyetli, hassas ölçüm aletlerine ihtiyaç duyulmaktadır. Bu çalışmada, lazer mesafe sensörleri, mikrodenetleyiciler ve bütünleşmiş elektronik devreler kullanarak bir anemometre tasarlanmıştır. Tasarım, ölçüm merkezinden sapan mesafeye göre rüzgâr hızı ve yönü ölçmektedir. Bu mesafe sayısal olarak hesaplanarak rüzgâr verileri elde edilmiştir. Mevcut tekniklerden farklı olarak tasarlanan bu yöntem, gerçek bir anemometre ile karşılaştırılmış ve hata analizi yapılmıştır. Hata analizi sonucu bağıl hata değeri 0.01685 olarak bulunmuştur. Bu çalışmada kullanılan yöntem, düşük maliyetli ve hassas bir anemometre tasarlama açısından önemli sonuçlar vermektedir.

Supporting Institution

TÜBİTAK

Project Number

1919B012206539

Thanks

TÜBİTAK 2209-A Programı kapsamında destek almış olmanızdan dolayı TUBİTAK kurumuna teşekkür ederiz. Bu program, ülkemizdeki bilimsel araştırmaların ve teknolojik gelişmelerin desteklenmesi amacıyla hayata geçirilmiş önemli bir girişimdir.

References

  • D.Y. Leung, Y. Yang, "Wind energy development and its environmental impact: a review," Renewable and Sustainable Energy Reviews, 16(1), 1031–1039, 2012. https://doi.org/10.1016/j.rser.2011.09.024
  • C. Emeksiz, T. Cetin, "In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics," Sustainable Energy Technologies and Assessments,35,148–159,2019. https://doi.org/10.101 6/j.seta.2019.07.004
  • J. Li, X. Yu, "Model and procedures for reliable near term wind energy production forecast," Wind Engineering,39(6),595–607,2015. https://doi.org/10.1260/0309-524X.39.6.595
  • P. Tavner, C. Edwards, A. Brinkman, F. Spinato, "Influence of wind speed on wind turbine reliability," Wind Engineering, 30(1), 55–72, 2006. https://doi.org /10.1260/030952406777641441
  • M.Z. Jacobson, "Fundamentals of Atmospheric Modeling," Cambridge University Press, 2005.
  • S. Rehman, M.A. Mohandes, L.M. Alhems, "Wind speed and power characteristics using LiDAR anemometer-based measurements," Sustainable Energy Technologies and Assessments, 27, 46–62, 2018. https://doi.org/10.1016/j.seta.2018.03.009
  • M.A. Mohamed, A.M. Eltamaly, A.I. Alolah, "PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems," PLoS One, 11(8),e0159702,2016. https://doi.org/10.1371/journal. pone.0159702
  • T.A. Burdett, K.W. Van Treuren, "Small-Scale Wind Turbines Optimized for Class 2 Wind: A Wind Siting Survey and Annual Energy Production Analysis," in Turbo Expo: Power for Land, Sea, and Air, 45660, American Society of Mechanical Engineers, 2014. https://doi.org/10.1115/GT2014-26243
  • J.S. Gutarra, J.A. Gastelo-Roque, J. Sulluchuco, "A cup anemometer using 3D additive manufacturing," in 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4,IEEE,2020. https://doi.org/10.1109/INTERCON5 0315.2020.922 0193
  • F. Daniel, J. Peyrefitte, A.D. Radadia, "Towards a completely 3D printed hot wire anemometer," Sensors and Actuators A: Physical, 309, 111963, 2020. https:// doi.org/10.1016/j.sna.2020.111963
  • M.P. del Valle, J.A. Castelan, Y. Matsumoto, R.C. Mateos, "Low-cost ultrasonic anemometer," in 2007 4th International Conference on Electrical and Electronics Engineering, 213–216, IEEE, 2007. https:// doi.org/10.1109/ICEEE.2007.4345008
  • R.M. Hardesty, J.M. Intrieri, "Doppler lidar measurements of wind and turbulence in the marine boundary layer," in Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, 148–150, IEEE, 1995. https://doi.org/10.1109/COMEAS.1995.472381
  • C.Y. Huang, P.W. Chan, H.Y. Chang, W.F. Liu, "A fiber Bragg grating-based anemometer," Sensors, 18(7), 2213, 2018. https://doi.org/10.3390/s18072213
  • C. Cui, W. Cai, H. Chen, "Airflow measurements using averaging Pitot tube under restricted conditions," Building and Environment, 139, 17–26, 2018. https:// doi.org/10.1016/j.buildenv.2018.05.014
  • M. Güçyetmez, S. Keser, Ş.E. Hayber, "Wind speed measurement with a low-cost polymer optical fiber anemometer based on Fresnel reflection," Sensors and Actuators A: Physical, 339, 113509, 2022. https:// doi.org/10.1016/j.sna.2022.113509
  • M. Ogueta-Gutiérrez, S. Pindado, "Performance analysis of present cup anemometers," Journal of Energy Systems, 3(4), 129–138. https://doi.org/10.30 521/jes.614212
  • A. Ramos-Cenzano, M. Ogueta-Gutiérrez, S. Pindado, "Cup anemometer measurement errors due to problems in the output signal generator system," Flow Measurement and Instrumentation, 69, 101621, 2019. https://doi.org/10.1016/j.flowmeasinst.2019.101621
  • M. Parrilla, J.J. Anaya, C. Fritsch, "Digital signal processing techniques for high accuracy ultrasonic range measurements," IEEE Transactions on Instrumentation and Measurement, 40(4), 759–763, 1991. https://doi.org/10.1109/19.85348
  • S.F. Benjamin, C.A. Roberts, "Measuring flow velocity at elevated temperature with a hot wire anemometer calibrated in cold flow," International Journal of Heat and Mass Transfer, 45(4), 703–706, 2002. https:// doi.org/10.1016/S0017-9310(01)00194-6
  • U. Karakaya, "Rüzgar hız ve yön algılayıcılarının tasarım ve geliştirilmesi" (Rüzgâr's thesis, Enerji Enstitüsü).
  • L. Zhang, Q. Yang, "A method for yaw error alignment of wind turbine based on LiDAR," IEEE Access, 8, 25052–25059, 2020. https://doi.org/10.1109/ACCESS. 2020.2969477
  • M. Lang, E.J. McKeogh, "Anemometry: A review of current practice," Progress in Energy and Combustion Science, 37(2), 215–237, 2011.
  • D. Vickers, E. Hilder, "LIDAR anemometry for wind turbine wake measurements," Measurement Science and Technology, 24(8), 084007, 2013.
  • M. Lang, E.J. McKeogh, "Anemometry: A review of current practice," Progress in Energy and Combustion Science, 37(2), 215–237, 2011.
  • G. Schwemmer, R.J. Barthelmie, "LIDAR and SODAR Comparison for Wind Speed Measurement in the Atmospheric Boundary Layer," Journal of Atmospheric and Oceanic Technology, 30(3), 463–474, 2013.
  • J. Li, X.B. Yu, "LiDAR technology for wind energy potential assessment: Demonstration and validation at a site around Lake Erie," Energy Conversion and Management, 144, 252–261, 2017. https://doi.org/10 .1016/j.enconman.2017.04.061
  • H.-E. Albrecht, "Laser Doppler and phase Doppler measurement techniques," Springer, 2003. https:// doi.org/10.1016/S0011-2275(03)00094-8
  • F. Durst, A. Melling, J. Whitelaw, "Principles and Practices of Laser Doppler Anemometry," Academic Press, 1981. https://doi.org/10.1007/BF02325705
  • Z. Zhang, "LDA Application Methods: Laser Doppler Anemometry for Fluid Dynamics, Experimental Fluid Mechanics," Springer, 2010.

Design of wind speed and direction measurement device using laser-based sensors

Year 2023, Volume: 12 Issue: 3, 752 - 761, 15.07.2023
https://doi.org/10.28948/ngumuh.1276016

Abstract

Different types of anemometers and direction determining devices are used in measuring wind speed and direction. Especially, low-cost and accurate measuring devices are required for the production and estimates of electricity generated from wind energy. Therefore, a design for an anemometer has been carried out using appropriate low-cost laser distance sensors, microcontrollers, and integrated electronic circuit equipment. The resulting anemometer from the design works based on the distance from the measurement center that changes according to wind speed and direction. The wind speed and direction data are obtained by digitally calculating this distance. By following a different approach than the existing techniques in measuring wind speed and direction, the data obtained in this method was compared with a real anemometer and an error analysis was performed. The relative error value was found to be 0.01685 as a result of the error analysis.

Project Number

1919B012206539

References

  • D.Y. Leung, Y. Yang, "Wind energy development and its environmental impact: a review," Renewable and Sustainable Energy Reviews, 16(1), 1031–1039, 2012. https://doi.org/10.1016/j.rser.2011.09.024
  • C. Emeksiz, T. Cetin, "In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics," Sustainable Energy Technologies and Assessments,35,148–159,2019. https://doi.org/10.101 6/j.seta.2019.07.004
  • J. Li, X. Yu, "Model and procedures for reliable near term wind energy production forecast," Wind Engineering,39(6),595–607,2015. https://doi.org/10.1260/0309-524X.39.6.595
  • P. Tavner, C. Edwards, A. Brinkman, F. Spinato, "Influence of wind speed on wind turbine reliability," Wind Engineering, 30(1), 55–72, 2006. https://doi.org /10.1260/030952406777641441
  • M.Z. Jacobson, "Fundamentals of Atmospheric Modeling," Cambridge University Press, 2005.
  • S. Rehman, M.A. Mohandes, L.M. Alhems, "Wind speed and power characteristics using LiDAR anemometer-based measurements," Sustainable Energy Technologies and Assessments, 27, 46–62, 2018. https://doi.org/10.1016/j.seta.2018.03.009
  • M.A. Mohamed, A.M. Eltamaly, A.I. Alolah, "PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems," PLoS One, 11(8),e0159702,2016. https://doi.org/10.1371/journal. pone.0159702
  • T.A. Burdett, K.W. Van Treuren, "Small-Scale Wind Turbines Optimized for Class 2 Wind: A Wind Siting Survey and Annual Energy Production Analysis," in Turbo Expo: Power for Land, Sea, and Air, 45660, American Society of Mechanical Engineers, 2014. https://doi.org/10.1115/GT2014-26243
  • J.S. Gutarra, J.A. Gastelo-Roque, J. Sulluchuco, "A cup anemometer using 3D additive manufacturing," in 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4,IEEE,2020. https://doi.org/10.1109/INTERCON5 0315.2020.922 0193
  • F. Daniel, J. Peyrefitte, A.D. Radadia, "Towards a completely 3D printed hot wire anemometer," Sensors and Actuators A: Physical, 309, 111963, 2020. https:// doi.org/10.1016/j.sna.2020.111963
  • M.P. del Valle, J.A. Castelan, Y. Matsumoto, R.C. Mateos, "Low-cost ultrasonic anemometer," in 2007 4th International Conference on Electrical and Electronics Engineering, 213–216, IEEE, 2007. https:// doi.org/10.1109/ICEEE.2007.4345008
  • R.M. Hardesty, J.M. Intrieri, "Doppler lidar measurements of wind and turbulence in the marine boundary layer," in Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, 148–150, IEEE, 1995. https://doi.org/10.1109/COMEAS.1995.472381
  • C.Y. Huang, P.W. Chan, H.Y. Chang, W.F. Liu, "A fiber Bragg grating-based anemometer," Sensors, 18(7), 2213, 2018. https://doi.org/10.3390/s18072213
  • C. Cui, W. Cai, H. Chen, "Airflow measurements using averaging Pitot tube under restricted conditions," Building and Environment, 139, 17–26, 2018. https:// doi.org/10.1016/j.buildenv.2018.05.014
  • M. Güçyetmez, S. Keser, Ş.E. Hayber, "Wind speed measurement with a low-cost polymer optical fiber anemometer based on Fresnel reflection," Sensors and Actuators A: Physical, 339, 113509, 2022. https:// doi.org/10.1016/j.sna.2022.113509
  • M. Ogueta-Gutiérrez, S. Pindado, "Performance analysis of present cup anemometers," Journal of Energy Systems, 3(4), 129–138. https://doi.org/10.30 521/jes.614212
  • A. Ramos-Cenzano, M. Ogueta-Gutiérrez, S. Pindado, "Cup anemometer measurement errors due to problems in the output signal generator system," Flow Measurement and Instrumentation, 69, 101621, 2019. https://doi.org/10.1016/j.flowmeasinst.2019.101621
  • M. Parrilla, J.J. Anaya, C. Fritsch, "Digital signal processing techniques for high accuracy ultrasonic range measurements," IEEE Transactions on Instrumentation and Measurement, 40(4), 759–763, 1991. https://doi.org/10.1109/19.85348
  • S.F. Benjamin, C.A. Roberts, "Measuring flow velocity at elevated temperature with a hot wire anemometer calibrated in cold flow," International Journal of Heat and Mass Transfer, 45(4), 703–706, 2002. https:// doi.org/10.1016/S0017-9310(01)00194-6
  • U. Karakaya, "Rüzgar hız ve yön algılayıcılarının tasarım ve geliştirilmesi" (Rüzgâr's thesis, Enerji Enstitüsü).
  • L. Zhang, Q. Yang, "A method for yaw error alignment of wind turbine based on LiDAR," IEEE Access, 8, 25052–25059, 2020. https://doi.org/10.1109/ACCESS. 2020.2969477
  • M. Lang, E.J. McKeogh, "Anemometry: A review of current practice," Progress in Energy and Combustion Science, 37(2), 215–237, 2011.
  • D. Vickers, E. Hilder, "LIDAR anemometry for wind turbine wake measurements," Measurement Science and Technology, 24(8), 084007, 2013.
  • M. Lang, E.J. McKeogh, "Anemometry: A review of current practice," Progress in Energy and Combustion Science, 37(2), 215–237, 2011.
  • G. Schwemmer, R.J. Barthelmie, "LIDAR and SODAR Comparison for Wind Speed Measurement in the Atmospheric Boundary Layer," Journal of Atmospheric and Oceanic Technology, 30(3), 463–474, 2013.
  • J. Li, X.B. Yu, "LiDAR technology for wind energy potential assessment: Demonstration and validation at a site around Lake Erie," Energy Conversion and Management, 144, 252–261, 2017. https://doi.org/10 .1016/j.enconman.2017.04.061
  • H.-E. Albrecht, "Laser Doppler and phase Doppler measurement techniques," Springer, 2003. https:// doi.org/10.1016/S0011-2275(03)00094-8
  • F. Durst, A. Melling, J. Whitelaw, "Principles and Practices of Laser Doppler Anemometry," Academic Press, 1981. https://doi.org/10.1007/BF02325705
  • Z. Zhang, "LDA Application Methods: Laser Doppler Anemometry for Fluid Dynamics, Experimental Fluid Mechanics," Springer, 2010.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

İbrahim Işıklı 0000-0002-0778-7163

Bayram Köse 0000-0003-0256-5921

Mehmet Sagbas 0000-0001-5776-3947

Project Number 1919B012206539
Early Pub Date June 15, 2023
Publication Date July 15, 2023
Submission Date April 3, 2023
Acceptance Date May 29, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Işıklı, İ., Köse, B., & Sagbas, M. (2023). Lazer tabanlı sensörler kullanılarak rüzgâr hızı ve yönü ölçüm cihazı tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 752-761. https://doi.org/10.28948/ngumuh.1276016
AMA Işıklı İ, Köse B, Sagbas M. Lazer tabanlı sensörler kullanılarak rüzgâr hızı ve yönü ölçüm cihazı tasarımı. NOHU J. Eng. Sci. July 2023;12(3):752-761. doi:10.28948/ngumuh.1276016
Chicago Işıklı, İbrahim, Bayram Köse, and Mehmet Sagbas. “Lazer Tabanlı sensörler kullanılarak rüzgâr hızı Ve yönü ölçüm Cihazı tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 752-61. https://doi.org/10.28948/ngumuh.1276016.
EndNote Işıklı İ, Köse B, Sagbas M (July 1, 2023) Lazer tabanlı sensörler kullanılarak rüzgâr hızı ve yönü ölçüm cihazı tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 752–761.
IEEE İ. Işıklı, B. Köse, and M. Sagbas, “Lazer tabanlı sensörler kullanılarak rüzgâr hızı ve yönü ölçüm cihazı tasarımı”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 752–761, 2023, doi: 10.28948/ngumuh.1276016.
ISNAD Işıklı, İbrahim et al. “Lazer Tabanlı sensörler kullanılarak rüzgâr hızı Ve yönü ölçüm Cihazı tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 752-761. https://doi.org/10.28948/ngumuh.1276016.
JAMA Işıklı İ, Köse B, Sagbas M. Lazer tabanlı sensörler kullanılarak rüzgâr hızı ve yönü ölçüm cihazı tasarımı. NOHU J. Eng. Sci. 2023;12:752–761.
MLA Işıklı, İbrahim et al. “Lazer Tabanlı sensörler kullanılarak rüzgâr hızı Ve yönü ölçüm Cihazı tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 752-61, doi:10.28948/ngumuh.1276016.
Vancouver Işıklı İ, Köse B, Sagbas M. Lazer tabanlı sensörler kullanılarak rüzgâr hızı ve yönü ölçüm cihazı tasarımı. NOHU J. Eng. Sci. 2023;12(3):752-61.

download