Review
BibTex RIS Cite

A REVIEW ON IMPACT BEHAVIORS OF PARTICLE REINFORCED METAL MATRIX COMPOSITES

Year 2019, Volume: 8 Issue: 1, 384 - 393, 28.01.2019
https://doi.org/10.28948/ngumuh.517147

Abstract

   Composite materials can be subject to
dynamic effects such as sudden loading, impact, drop and strike in industrial
applications. Such effects cause visible damage or invisible internal defects
in materials used in a design. Literature surveys show that the studies on the
impact behavior of particle-reinforced metal matrix composites are limited.
In this study, it was requested to draw attention to
the current situation and the general information was given about the subject,
and finally the studies carried out were summarized the literature review.
Accordingly, the effects of production parameters such
as temperature, reinforcement particle type, volume fraction and size, heat
treatment and secondary mechanical processes on the impact strength of
particulate reinforced composite materials were generally investigated in the
studies carried out. It has been determined that the studies performed have not
yet reached sufficient level in terms of the literature. Therefore, it has been
concluded that it should be done more studies on the impact behaviors of
particle-reinforced metal matrix composites used in many fields and in very
important applications under the dynamic loading conditions.

References

  • [1] CHAWLA, K.K., Composite Materials-Science and Engineering-2nd ed. Springer, New York, 483, 1997.
  • [2] CHAWLA, N., CHAWLA, K. K., Metal Matrix Composites, Springer, New York, 401, 2006.
  • [3] LLOYD, D.J., “Particle reinforced aluminium and magnesium matrix composites”, International Materials Reviews, 39 (1), 1-21, 1994.
  • [4] IBRAHIM, I.A., MOHAMMED, F.A., LAVERNIA, E.J., “Particulate reinforced metal matrix composites-A review”, Journal of Materials Science, 26 (5), 1137-1156, 1991.
  • [5] ARSENAULT, R. J., “The strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide”, Material Science Engineering, 64, 171-181, 1984.
  • [6] CLYNE, T.W., WITHERS, P.J., An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993.
  • [7] MCDANEALS, D.L., “Analysis of stress, strain, fracture and ductility behavior of Al matrix composite containing discontinuous SiC reinforcement”, Metallurgical and Materials Transactions A, 16A, 1105-1115, 1985.
  • [8] SRIVATSAN, T.S., IBRAHIM, I.A., MOHAMMED, F.A., JAVERNIA, E.J., “Processing techniques for particulate-reinforced metal aluminium matrix composites”, Journal of Materials Science, 26 (22), 5965-5978, 1991.
  • [9] BHANUPRASAD, V.V., BHAT, R.B.V., KURUVILLA, A.K., PRASAD, K.S., PANDEY, A.B., MAHAJAN, Y.R., P/M “Processing of Al-SiC composites, The International Journal of Powder Metallurgy”, 27 (3), 227-235, 1991.
  • [10] LI, M., GHOSH, S., RICHMOND, O., WEILAND, H., ROUNS, T.N., “Three dimensional characterization and modeling of particle reinforced metal matrix composites: part I: Quantitative description of microstructural morphology”, Materials Science and Engineering A, 265 (1-2), 153-173, 1999.
  • [11] LI, M., GHOSH, S., RICHMOND, O., WEILAND, H., ROUNS, T.N., “Three dimensional characterization and modelling of particle reinforced metal matrix composites: part II: Damage characterization”, Materials Science and Engineering A, 266 (1-2), 221-240, 1999.
  • [12] AYYAR, A., CHAWLA, N., “Microstructure-based modeling of crack growth in particle reinforced composites”, Composites Science and Technology, 66 (13), 1980-1994, 2006.
  • [13] CHAWLA, N., CHAWLA, K.K., “Microstructure-based modeling of the deformation behavior of Particle reinforced metal matrix composites”, Journal of Materials Science, 41 (3), 913-925, 2006.
  • [14] EKİCİ, R., Alüminyum esaslı SiC partikül takviyeli metal matrisli kompozit malzemelerin darbe davranışlarının incelenmesi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 2004.
  • [15] KOSEDAG, E., Pomza Takviyeli Magnezyum matrisli kompozitlerin üretimi ve karakterizasyonu, Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, 2017.
  • [16] TIRTOM, I., GUDEN, M., YILDIZ, H., “Simulation of the strain rate sensitive flow behavior of SiC-particulate reinforced aluminum metal matrix composites”, Computational Materials Science, 42, 570-578, 2008.
  • [17] SAKTHIVEL, A., PALANINATHAN, R., VELMURUGANB, R., RAO, P.R., “The effect of silicon carbide particulates on tensile, fatigue, impact and final fracture behaviour of 2618 aluminium alloy matrix composites”, International Journal of Aerospace Innovations, 3, 193-205, 2011.
  • [18] SJOBLEM, P.O., HARTNESS, J.T., CORDELL, T. M., “On low velocity impact testing of composite materials”, Journal of Composite Materials, 22 (1), 30-52, 1988.
  • [19] VLOT, A. “Impact properties of fiber-metal laminates, Composites Engineering”, 3, 911-927, 1993.
  • [20] VLOT, A., Low velocity impact loading on fiber reinforced aluminium laminates (Arall and Glare) and other aircraft sheet materials. Rept. LR-718. Delft, The Netherlands: Delft Univ. of Technology, 1993.
  • [21] SRIVATSAN, T.S., IBRAHIM, I.A., MOHAMED, F.J., LAVERNIA, E.J., “Processing Techniques for Particulate Reinforced Metal Matrix Composites”, Journal of Materials Science, 26, 5965-5978, 1991.
  • [22] ATAS, E., GÜR, H., “Determination of properties of SiC reinforced aluminium metal matrix composites by ultrasonic Techniques”, 15th World Conferance on Nondestructive Testing, 15-21, Roma, Italy, 2000.
  • [23] CEYHUN, V., TURAN, M., “Tabakalı Kompozit Malzemelerin Darbe Davranışı”, Mühendis ve Makina Dergisi, 44 (516), 35-41, 2003.
  • [24] LUZ, F.S., JUNIOR, E.P.L., LOURO, L.H.L., MONTEIRO, S.N., “Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric”, Materials Research, 18 (2), 170-177, 2015.
  • [25] STRASSBURGER, E., HUNZINGER, M., PATEL, P., MCCAULEY, J.W., “Analysis of the fragmentation of AION and spinel under ballistic impact”, Journal of Applied Mechanics- -Transactions of the ASME, 80 (3), 031807, 2013.
  • [26] RAY, S., “Rewiev synthesis of Cast Metal Matrix Prticulate Composites”, Journal of Materials Sciance, 28, 5397-5413, 1993.
  • [27] SURAPPA, M.K., SIVAKUMAR, P., “Fracture toughness evaluation of 2024-Al/Al2O3 particulate composites by instrumented impact”, Composites Science and Technology, 46 (3), 287-292, 1993.
  • [28] BONOLLO, F., CESCHINI, L., GARAGNANI, G.L., “Mechanical and impact behaviour of (Al2O3)p/2014 and (Al2O3)p/6061 Al metal matrix composites in the 25-200 °C range”, Applied Composite Materials, 4, 173-185, 1997.
  • [29] OZDEN, S., EKICI, R., NAIR, F., “Investigation of Impact Behaviour of Aluminium Based SiC Particle Reinforced Metal–Matrix Composites”, Composites: Part A, 38 (2), 484–494, 2007.
  • [30] WANG, F., MA, N., LI, Y., LI, X., WANG, H., “Impact behavior of in situ TiB2/Al composite at various temperatures”, Journal of Materials Science, 46, 5192-5196, 2011.
  • [31] KURZAWA, A., KACMAR, J.W., “Impact strength of composite materials based on EN AC-44200 matrix reinforced with Al2O3 particles”, Archives of Foundry Engineering, 17, 73-78, 2017.
  • [32] KIM, H.J., KOBAYASHI, T., YOON, H.S., “Micromechanical fracture process of SiC particulate reinforced Al alloy 6061-T6 MMCs”, Materials Science and Engineering A, 154, 35-41, 1992.
  • [33] AHLATCI, H., CANDAN, E., ÇIMENOĞLU, H., “Effect of particle size on the mechanical properties of 60 vol. % SiCp reinforced Al matrix composites”, Zeitschrift fur Metallkunde, 93 (4), 330-333, 2002.
  • [34] ZAHEDI, A.M., REZAIE, H.R., JAVADPOUR, J., MAZAHERI, M., HAGHIGHI M.G., “Processing and impact behavior of Al/SiCp composites fabricated by the pressureless melt infiltration method, Ceramics International”, 35 (5), 1919-1926, 2009.
  • [35] TOPCU, I., GULSOY, H.O., KADIOGLU, N., GULLUOGLU, A.N., “Processing and mechanical properties of B4C reinforced Al matrix composites”, Journal of Alloys and Compounds, 482(1), 516-521, 2009.
  • [36] ŞAHİN, E., AlMg3/SiCp Kompozit malzemelerinin darbe davranışının takviye oranı ile değişiminin incelenmesi, Yüksek Lisans Tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Edirne, 2011.
  • [37] CERIT, A.A., “Investigation of the low-speed impact behavior of dual particle size metal matrix composites”, Materials & Design, 57, 330-335, 2014.
  • [38] EKICI, R., KABURCUK, M., “Low-velocity impact behavior of Al 6061/SiC particulate metal matrix composites”, Journal of Composite Materials, 49(7), 853-871, 2015.
  • [39] EKICI, R., “Repeated low-velocity impact behavior of particle-reinforced metal matrix composites”, 2nd International Conference on Engineering and Natural Sciences (ICENS 2016), 1877-1882, Sarajevo, BOSNA HERSEK, 24-28 Mayıs, 2016.
  • [40] EKICI, R., KOSEDAG, E., “Comparison of the low-velocity impact behaviors of SiC and Pumice particle-reinforced metal matrix composites”, International Journal of Mechanical and Production Engineering, 5 (10), 101-105, 2017.
  • [41] HASSON, D.F., HOOVER, S.M., CROWE, C.R., “Effect of Thermal Treatment on the Mechanical and Toughness Properties of Extruded SiCw/Aluminium 6061 Metal Matrix Composites”, Journal of Materials Science, 20 (11), 4147-4154, 1985.
  • [42] UNSWORTH, J.P., BANDYOPADHYAY, S., “Effect of thermal ageing on hardness, tensile and impact properties of an alumina microsphere-reinforced aluminium metal-matrix composite”, Journal of Materials Science, 29 (17), 4645-4650, 1994.
  • [43] PREWO, K.M., “The impact of fibre and particulate reinforced MMCs”, In: Proceedings conference on mechanical behavior of metal matrix composites, 111th AIME Annual Meeting, 181-194. Dallas, TX, USA, 1982.
  • [44] ELLIS, Y.L., LEWANDOWSKI, J.J., “Effects of layer thickness on impact toughness of Al/Al-SiCp laminates”, Materials Science and Engineering A, 183 (1-2), 59-67, 1994.
  • [45] CELAYA, F.O., PECH, M.I.C., LOPEZ, J.C., “Rendon J.C.A, Pech M.A.C., Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp”, Journal of Materials Processing Technology, 183 (2), 368-373, 2007.
  • [46] JIANG, J.H., MA, A., WU, Y., SONG, D., AN, S., ZHANG, W., YANG, D., CHEN, J., “Enhanced low-temperature impact toughness of ultra-fine grained SiCp/ZL108 composites”, Materials Science Forum, 706, 1793-1798, 2012.
  • [47] LAPIN, J., KLIMOVA, A., GABALCOVA, Z., PELACHOVA, T., BAJANA, O., STAMBORSKA, M., “Microstructure and mechanical properties of cast in-situ TiAl matrix composites reinforced with (Ti,Nb)2AlC particles”, Materials & Design, 133, 404-415, 2017.
  • [48] NARAYAN, S., RAJESHKANNAN, A., “Hardness, tensile and impact behaviour of hot forged aluminium metal matrix composites”, Journal of Materials Research and Technology, 6, 213-219, 2017.

PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME

Year 2019, Volume: 8 Issue: 1, 384 - 393, 28.01.2019
https://doi.org/10.28948/ngumuh.517147

Abstract

   Kompozit malzemeler endüstriyel
uygulamalarda ani yüklenme, darbe, düşme ve çarpma gibi dinamik etkilere maruz
kalabilmektedir. Bu tür etkiler tasarımda kullanılan malzemelerde gözle görülen
hasara ya da görülemeyen iç hatalara sebep olmaktadır. Yapılan literatür
taramaları, partikül takviyeli metal matrisli kompozitlerin darbe davranışının
incelendiği çalışmaların sınırlı sayıda olduğunu göstermektedir.
Gerçekleştirilen bu çalışmada, mevcut duruma dikkat çekmek istenilmiş olup konu
hakkında genel bilgiler verilmiş ve son olarak da gerçekleştirilen çalışmalar
özetlenmiştir. Buna göre, yapılan çalışmalarda genel olarak sıcaklığın, takviye
partikül tipinin, hacim oranı ve boyutunun, ısıl işlemin ve ikincil mekanik
işlemler gibi üretim parametrelerinin partikül takviyeli kompozit malzemelerin
darbe dayanımına etkileri araştırılmıştır. Yapılan çalışmaların literatür
açısından henüz yeterli düzeyde olmadığı tespit edilmiştir. Dolayısıyla, birçok alanda ve çok önemli uygulamalarda dinamik
yükleme şartları altında kullanılan partikül takviyeli metal matrisli
kompozitlerin darbe davranışları üzerine daha fazla çalışma yapılması gerektiği
sonucuna varılmıştır.

References

  • [1] CHAWLA, K.K., Composite Materials-Science and Engineering-2nd ed. Springer, New York, 483, 1997.
  • [2] CHAWLA, N., CHAWLA, K. K., Metal Matrix Composites, Springer, New York, 401, 2006.
  • [3] LLOYD, D.J., “Particle reinforced aluminium and magnesium matrix composites”, International Materials Reviews, 39 (1), 1-21, 1994.
  • [4] IBRAHIM, I.A., MOHAMMED, F.A., LAVERNIA, E.J., “Particulate reinforced metal matrix composites-A review”, Journal of Materials Science, 26 (5), 1137-1156, 1991.
  • [5] ARSENAULT, R. J., “The strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide”, Material Science Engineering, 64, 171-181, 1984.
  • [6] CLYNE, T.W., WITHERS, P.J., An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993.
  • [7] MCDANEALS, D.L., “Analysis of stress, strain, fracture and ductility behavior of Al matrix composite containing discontinuous SiC reinforcement”, Metallurgical and Materials Transactions A, 16A, 1105-1115, 1985.
  • [8] SRIVATSAN, T.S., IBRAHIM, I.A., MOHAMMED, F.A., JAVERNIA, E.J., “Processing techniques for particulate-reinforced metal aluminium matrix composites”, Journal of Materials Science, 26 (22), 5965-5978, 1991.
  • [9] BHANUPRASAD, V.V., BHAT, R.B.V., KURUVILLA, A.K., PRASAD, K.S., PANDEY, A.B., MAHAJAN, Y.R., P/M “Processing of Al-SiC composites, The International Journal of Powder Metallurgy”, 27 (3), 227-235, 1991.
  • [10] LI, M., GHOSH, S., RICHMOND, O., WEILAND, H., ROUNS, T.N., “Three dimensional characterization and modeling of particle reinforced metal matrix composites: part I: Quantitative description of microstructural morphology”, Materials Science and Engineering A, 265 (1-2), 153-173, 1999.
  • [11] LI, M., GHOSH, S., RICHMOND, O., WEILAND, H., ROUNS, T.N., “Three dimensional characterization and modelling of particle reinforced metal matrix composites: part II: Damage characterization”, Materials Science and Engineering A, 266 (1-2), 221-240, 1999.
  • [12] AYYAR, A., CHAWLA, N., “Microstructure-based modeling of crack growth in particle reinforced composites”, Composites Science and Technology, 66 (13), 1980-1994, 2006.
  • [13] CHAWLA, N., CHAWLA, K.K., “Microstructure-based modeling of the deformation behavior of Particle reinforced metal matrix composites”, Journal of Materials Science, 41 (3), 913-925, 2006.
  • [14] EKİCİ, R., Alüminyum esaslı SiC partikül takviyeli metal matrisli kompozit malzemelerin darbe davranışlarının incelenmesi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 2004.
  • [15] KOSEDAG, E., Pomza Takviyeli Magnezyum matrisli kompozitlerin üretimi ve karakterizasyonu, Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, 2017.
  • [16] TIRTOM, I., GUDEN, M., YILDIZ, H., “Simulation of the strain rate sensitive flow behavior of SiC-particulate reinforced aluminum metal matrix composites”, Computational Materials Science, 42, 570-578, 2008.
  • [17] SAKTHIVEL, A., PALANINATHAN, R., VELMURUGANB, R., RAO, P.R., “The effect of silicon carbide particulates on tensile, fatigue, impact and final fracture behaviour of 2618 aluminium alloy matrix composites”, International Journal of Aerospace Innovations, 3, 193-205, 2011.
  • [18] SJOBLEM, P.O., HARTNESS, J.T., CORDELL, T. M., “On low velocity impact testing of composite materials”, Journal of Composite Materials, 22 (1), 30-52, 1988.
  • [19] VLOT, A. “Impact properties of fiber-metal laminates, Composites Engineering”, 3, 911-927, 1993.
  • [20] VLOT, A., Low velocity impact loading on fiber reinforced aluminium laminates (Arall and Glare) and other aircraft sheet materials. Rept. LR-718. Delft, The Netherlands: Delft Univ. of Technology, 1993.
  • [21] SRIVATSAN, T.S., IBRAHIM, I.A., MOHAMED, F.J., LAVERNIA, E.J., “Processing Techniques for Particulate Reinforced Metal Matrix Composites”, Journal of Materials Science, 26, 5965-5978, 1991.
  • [22] ATAS, E., GÜR, H., “Determination of properties of SiC reinforced aluminium metal matrix composites by ultrasonic Techniques”, 15th World Conferance on Nondestructive Testing, 15-21, Roma, Italy, 2000.
  • [23] CEYHUN, V., TURAN, M., “Tabakalı Kompozit Malzemelerin Darbe Davranışı”, Mühendis ve Makina Dergisi, 44 (516), 35-41, 2003.
  • [24] LUZ, F.S., JUNIOR, E.P.L., LOURO, L.H.L., MONTEIRO, S.N., “Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric”, Materials Research, 18 (2), 170-177, 2015.
  • [25] STRASSBURGER, E., HUNZINGER, M., PATEL, P., MCCAULEY, J.W., “Analysis of the fragmentation of AION and spinel under ballistic impact”, Journal of Applied Mechanics- -Transactions of the ASME, 80 (3), 031807, 2013.
  • [26] RAY, S., “Rewiev synthesis of Cast Metal Matrix Prticulate Composites”, Journal of Materials Sciance, 28, 5397-5413, 1993.
  • [27] SURAPPA, M.K., SIVAKUMAR, P., “Fracture toughness evaluation of 2024-Al/Al2O3 particulate composites by instrumented impact”, Composites Science and Technology, 46 (3), 287-292, 1993.
  • [28] BONOLLO, F., CESCHINI, L., GARAGNANI, G.L., “Mechanical and impact behaviour of (Al2O3)p/2014 and (Al2O3)p/6061 Al metal matrix composites in the 25-200 °C range”, Applied Composite Materials, 4, 173-185, 1997.
  • [29] OZDEN, S., EKICI, R., NAIR, F., “Investigation of Impact Behaviour of Aluminium Based SiC Particle Reinforced Metal–Matrix Composites”, Composites: Part A, 38 (2), 484–494, 2007.
  • [30] WANG, F., MA, N., LI, Y., LI, X., WANG, H., “Impact behavior of in situ TiB2/Al composite at various temperatures”, Journal of Materials Science, 46, 5192-5196, 2011.
  • [31] KURZAWA, A., KACMAR, J.W., “Impact strength of composite materials based on EN AC-44200 matrix reinforced with Al2O3 particles”, Archives of Foundry Engineering, 17, 73-78, 2017.
  • [32] KIM, H.J., KOBAYASHI, T., YOON, H.S., “Micromechanical fracture process of SiC particulate reinforced Al alloy 6061-T6 MMCs”, Materials Science and Engineering A, 154, 35-41, 1992.
  • [33] AHLATCI, H., CANDAN, E., ÇIMENOĞLU, H., “Effect of particle size on the mechanical properties of 60 vol. % SiCp reinforced Al matrix composites”, Zeitschrift fur Metallkunde, 93 (4), 330-333, 2002.
  • [34] ZAHEDI, A.M., REZAIE, H.R., JAVADPOUR, J., MAZAHERI, M., HAGHIGHI M.G., “Processing and impact behavior of Al/SiCp composites fabricated by the pressureless melt infiltration method, Ceramics International”, 35 (5), 1919-1926, 2009.
  • [35] TOPCU, I., GULSOY, H.O., KADIOGLU, N., GULLUOGLU, A.N., “Processing and mechanical properties of B4C reinforced Al matrix composites”, Journal of Alloys and Compounds, 482(1), 516-521, 2009.
  • [36] ŞAHİN, E., AlMg3/SiCp Kompozit malzemelerinin darbe davranışının takviye oranı ile değişiminin incelenmesi, Yüksek Lisans Tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Edirne, 2011.
  • [37] CERIT, A.A., “Investigation of the low-speed impact behavior of dual particle size metal matrix composites”, Materials & Design, 57, 330-335, 2014.
  • [38] EKICI, R., KABURCUK, M., “Low-velocity impact behavior of Al 6061/SiC particulate metal matrix composites”, Journal of Composite Materials, 49(7), 853-871, 2015.
  • [39] EKICI, R., “Repeated low-velocity impact behavior of particle-reinforced metal matrix composites”, 2nd International Conference on Engineering and Natural Sciences (ICENS 2016), 1877-1882, Sarajevo, BOSNA HERSEK, 24-28 Mayıs, 2016.
  • [40] EKICI, R., KOSEDAG, E., “Comparison of the low-velocity impact behaviors of SiC and Pumice particle-reinforced metal matrix composites”, International Journal of Mechanical and Production Engineering, 5 (10), 101-105, 2017.
  • [41] HASSON, D.F., HOOVER, S.M., CROWE, C.R., “Effect of Thermal Treatment on the Mechanical and Toughness Properties of Extruded SiCw/Aluminium 6061 Metal Matrix Composites”, Journal of Materials Science, 20 (11), 4147-4154, 1985.
  • [42] UNSWORTH, J.P., BANDYOPADHYAY, S., “Effect of thermal ageing on hardness, tensile and impact properties of an alumina microsphere-reinforced aluminium metal-matrix composite”, Journal of Materials Science, 29 (17), 4645-4650, 1994.
  • [43] PREWO, K.M., “The impact of fibre and particulate reinforced MMCs”, In: Proceedings conference on mechanical behavior of metal matrix composites, 111th AIME Annual Meeting, 181-194. Dallas, TX, USA, 1982.
  • [44] ELLIS, Y.L., LEWANDOWSKI, J.J., “Effects of layer thickness on impact toughness of Al/Al-SiCp laminates”, Materials Science and Engineering A, 183 (1-2), 59-67, 1994.
  • [45] CELAYA, F.O., PECH, M.I.C., LOPEZ, J.C., “Rendon J.C.A, Pech M.A.C., Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp”, Journal of Materials Processing Technology, 183 (2), 368-373, 2007.
  • [46] JIANG, J.H., MA, A., WU, Y., SONG, D., AN, S., ZHANG, W., YANG, D., CHEN, J., “Enhanced low-temperature impact toughness of ultra-fine grained SiCp/ZL108 composites”, Materials Science Forum, 706, 1793-1798, 2012.
  • [47] LAPIN, J., KLIMOVA, A., GABALCOVA, Z., PELACHOVA, T., BAJANA, O., STAMBORSKA, M., “Microstructure and mechanical properties of cast in-situ TiAl matrix composites reinforced with (Ti,Nb)2AlC particles”, Materials & Design, 133, 404-415, 2017.
  • [48] NARAYAN, S., RAJESHKANNAN, A., “Hardness, tensile and impact behaviour of hot forged aluminium metal matrix composites”, Journal of Materials Research and Technology, 6, 213-219, 2017.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Ertan Kösedağ 0000-0002-5580-0414

Recep Ekici This is me 0000-0002-4420-8431

Publication Date January 28, 2019
Submission Date January 3, 2018
Acceptance Date June 25, 2018
Published in Issue Year 2019 Volume: 8 Issue: 1

Cite

APA Kösedağ, E., & Ekici, R. (2019). PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 384-393. https://doi.org/10.28948/ngumuh.517147
AMA Kösedağ E, Ekici R. PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME. NOHU J. Eng. Sci. January 2019;8(1):384-393. doi:10.28948/ngumuh.517147
Chicago Kösedağ, Ertan, and Recep Ekici. “PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 1 (January 2019): 384-93. https://doi.org/10.28948/ngumuh.517147.
EndNote Kösedağ E, Ekici R (January 1, 2019) PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 1 384–393.
IEEE E. Kösedağ and R. Ekici, “PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME”, NOHU J. Eng. Sci., vol. 8, no. 1, pp. 384–393, 2019, doi: 10.28948/ngumuh.517147.
ISNAD Kösedağ, Ertan - Ekici, Recep. “PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/1 (January 2019), 384-393. https://doi.org/10.28948/ngumuh.517147.
JAMA Kösedağ E, Ekici R. PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME. NOHU J. Eng. Sci. 2019;8:384–393.
MLA Kösedağ, Ertan and Recep Ekici. “PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 1, 2019, pp. 384-93, doi:10.28948/ngumuh.517147.
Vancouver Kösedağ E, Ekici R. PARTİKÜL TAKVİYELİ METAL MATRİSLİ KOMPOZİTLERİN DARBE DAVRANIŞLARI ÜZERİNE BİR DERLEME. NOHU J. Eng. Sci. 2019;8(1):384-93.

23135