Research Article
BibTex RIS Cite

DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ

Year 2017, Volume: 6 Issue: 2, 661 - 669, 31.07.2017
https://doi.org/10.28948/ngumuh.341831

Abstract

   Bu makale, kaya
saplamaları için geliştirilen dolgu malzemelerinin deneysel sonuçlarını
içermektedir.  Deneysel çalışmalar,
mineral katkıların kaya saplaması ve dolgu arasındaki aderans dayanımına
etkilerini kapsamaktadır. Literatürde mineral katkıların beton dayanımına
etkileri ile ilgili çok sayıda çalışma bulunmaktadır. Ancak, bu katkıların
saplamaların mekanik özelliklerine etkilerine dair çalışma sayısı oldukça azdır.
Saplama çekme kapasitesini geliştirmek amacıyla 10 farklı dolgu malzemesi ve 4
farklı kür süresi için toplam 120 adet çekme testi gerçekleştirilmiştir. Kontrol
dolgusu dışındaki dolgu karışımları, çimento ağırlığının ağırlıkça %15’i yerine
mineral katkı kullanılarak hazırlanmıştır. Metakaolin ve silis dumanlı dolguların
her yaşta daha yüksek dayanımlara sahip oldukları belirlenmiştir. Uçucu kül
kullanılan dolgunun 28 günlük kür süresine kadar tüm dayanımları düşük değerler
gösterirken sonrasında dikkate değer şekilde artmıştır. Çimentonun atık mineral
katkılar ile birlikte kullanılmasıyla yüksek dayanımlı dolgular elde edilebilir
ve bu dolgular tünelcilik uygulamalarında kullanılabilir. Böylece düşük
maliyetli ve yüksek dayanımlı çimento üretilebilecektir ve atık kullanımı ile
çevresel problemlerin çözümüne katkıda bulunulabilecektir.

References

  • [1] ALDORF, J., EXNER, K., “Mine Openings: Stability and Support”, Elsevier, Oxford, Amsterdam, Tokyo, 1986.
  • [2] BADOGIANNIS, E., KAKALI, G., DIMOPOULOU,G., CHANIOTAKIS, E., TSIVILIS, S., “Metakaolin as a Main Cement Constituent: Exploitation of Poor Greek Kaolins”, Cement and Concrete Composites, 27, 197-203, 2005.
  • [3] CYBULSKI, J. A., MAZZONI, R. A., “Roof Support Systems Continue to Evolve”, Proceedings of the 12th Annual Institute on Coal Mining Healthy, Safety and Research. 147-158. Blackburg, Virginia, 1989.
  • [4] FRANKLIN, J. A., DUSSEAULT, M. B., “Rock Engineering”, McGraw-Hill Publishing Company, New York, 1989.
  • [5] GONEN, T., YAZICIOĞLU, S., “The Influence of Mineral Admixtures on the Short and Long-Term Performance of Concrete”, Journal of Building and Environment, 42, 3080-3085, 2007.
  • [6] HOEK, E., WOOD, D.F., “Rock Support”, Min. Mag. 282-287, 1989.
  • [7] HYETT, A. J., BAWDEN, W. F., REICHERT, R. D., “The Effect of Rock Mass Confinement on the Bond Strength of Fully Grouted Cable Bolts”, International Journal of Rock Mechanics and Mining Sciences, Geomechanics Abstracts, 29, 503-524, 1992.
  • [8] ITO, F., NAKAHARA, F., KAWANO, R., KANG, S., OBARA, Y., “Visualisation of Failure in a Pull-Out Cable Bolts Using X-ray CT”, Construction and Building Materials, 15, 263-270, 2001.
  • [9] KAISER, P. K., YAZICI, S., NOSE, J., “Effect of Stress Change on the Bond Strength of Fully Grouted Cables”, International Journal of Rock Mechanics and Mining Sciences, Geomechanics Abstracts, 29, 293-305, 1992.
  • [10] KILIÇ, A., “Rock Mass Classification and Reinforcement Application of Tarsus-Adana-Gaziantep (TAG) Motorway Tunnels in Bahçe Region”, Ph.D. Thesis, Cukurova University, Department of Mining Engineering, 1997.
  • [11] KILIÇ, A., YAŞAR, E., ATIŞ, C. D., “Effect of Grout Properties on the Pull-Out Load Capacity of Fully Grouted Rock Bolt”, Tunneling and Underground Space Technology, 17, 355-362, 2002.
  • [12] LABIOUSE, V., “Ground Response Curves for Rock Excavations Supported by Ungrouted Tensioned Rockbolts”, Rock Mechanics and Rock Engineering, 29, 19-38, 1996.
  • [13] LAM, L., WONG, Y. L., POON, C. S., “Effects of Fly Ash and Silica Fume on Compressive and Fracture Behavior of Concrete”, Journal of Cement and Concrete Research, 28, 271-283, 1998.
  • [14] MAZLOOM, M., RAMEZANIANPOUR, A. A., BROOKS, J. J., “Effect of Silica Fume on Mechanical Properties of High Strength Concrete”, Journal of Cement and Concrete Composites, 26, 347-357, 2003.
  • [15] MOOSAVI, M., BAWDEN, W.F., “Shear Strength of Portland Cement Grout”, Cement and Concrete Composites. 25, 729-735, 2003.
  • [16] NASSIF, H. H., NAJM, H., SUKSAWANG, N., “Effect of Pozzolanic Materials and Curing Methods on the Elastic Modulus of HPC”, Journal of Cement and Concrete Composites, 27, 661-670, 2003.
  • [17] REICHERT, R.D., BAWDEN, W.F., HYETT, A.J., “Evaluation of Design Bolt Bond Strength for Fully Grouted Bolt”, Proceedings of the 93 Annual Meeting of rd CIM, Vancouver, 1991.
  • [18] SHANNAG, M. J., “High Strength Concrete Containing Natural Pozzolan and Silica Fume”, Journal of Cement and Concrete Composites, 22, 399-406, 2000.
  • [19] STILLBORG, B., “Experimental Investigation of Steel Cables for Rock Reinforcement in Hard Rock”, Doctoral Thesis, 33 D, Lulea University, Sweden, 1984.
  • [20] LARDNER, W. E., LITTLEJOHN, G. S., “Suggested Method for Rock Anchorage Testing”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 71-83,1985.
  • [21] TOUTANJI, H. A., EL-KORCHI, T., “Tensile and Compressive Strength of Silica-Fume Cement Pastes and Mortars”, Journal of Cement, Concrete and Aggregates, 18, 78-84, 1996.
  • [22] TÜRKMEN, İ., GAVGALI, M., GÜL, R., “Influence of Mineral Admixtures on the Mechanical Properties and Corrosion of Steel Embedded in High Strength Concrete”, Materials Letters, 57, 2037-2043, 2003.
  • [23] VIPULANANDAN, C., SUNDER, S., “Effects of Meta-Kaolin Clay on the Working and Strength Properties of Cement Grouts”, In Grouting and Deep Mixing, 1739-1747, ASCE, 2012.
  • [24] TS EN 197-1, Çimento-Bölüm 1: Genel Çimentolar-Bileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, Ankara, 2012.
  • [25] TS EN 934-2+A1, Kimyasal Katkılar-Beton, Harç ve Şerbet için-Bölüm 2: Beton Kimyasal Katkıları-Tarifler, Gerekler, Uygunluk, İşaretleme ve Etiketleme, Türk Standartları Enstitüsü, Ankara, 2013.
  • [26] ASTM, C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, 2001.
  • [27] TS EN 12390-3, Testing Hardened Concrete–Part 3: Compressive Strength of Test Specimens, Ankara: Turkish Standard Institution, 2010.

ESTIMATION OF THE SHEAR STRESS OF GROUT-BOLT INTERFACE BY COMPRESSIVE STRENGTH OF GROUT

Year 2017, Volume: 6 Issue: 2, 661 - 669, 31.07.2017
https://doi.org/10.28948/ngumuh.341831

Abstract

   This paper represents the experimental results
of the grout materials developed for rockbolts. Experimental studies cover the
effects of mineral admixtures on the bond characteristics between grout and
rockbolts.

There are many studies in the literature
about the effects of mineral admixtures on concrete strength.

However, the number of studies on the
effects of these admixtures on the mechanical properties of rockbolts are quite
limited. Totally 120 rockbolt pull-out tests were carried out using ten
different grout types in order to improve the load bearing capacity for four
different curing times. Grout mixtures outside the reference grout were
prepared using mineral admixtures instead of 15% by weight of the cement
weight. Metakaolin and silica fume additive grouts were found to have higher
strengths at all ages. The all strength test of fly ash grouts exhibited low
values till 28 days of curing time, but a sharp increase was observed after
this period. It is concluded that cement, in combination with waste mineral
admixtures, can be utilized in making high strength grout and such grout can be
used as grouting material at tunnelling applications. Thus, grout having low
cost and high-strength can be produced with waste materials and waste
utilization will be contributing to the solution of environmental problems.

References

  • [1] ALDORF, J., EXNER, K., “Mine Openings: Stability and Support”, Elsevier, Oxford, Amsterdam, Tokyo, 1986.
  • [2] BADOGIANNIS, E., KAKALI, G., DIMOPOULOU,G., CHANIOTAKIS, E., TSIVILIS, S., “Metakaolin as a Main Cement Constituent: Exploitation of Poor Greek Kaolins”, Cement and Concrete Composites, 27, 197-203, 2005.
  • [3] CYBULSKI, J. A., MAZZONI, R. A., “Roof Support Systems Continue to Evolve”, Proceedings of the 12th Annual Institute on Coal Mining Healthy, Safety and Research. 147-158. Blackburg, Virginia, 1989.
  • [4] FRANKLIN, J. A., DUSSEAULT, M. B., “Rock Engineering”, McGraw-Hill Publishing Company, New York, 1989.
  • [5] GONEN, T., YAZICIOĞLU, S., “The Influence of Mineral Admixtures on the Short and Long-Term Performance of Concrete”, Journal of Building and Environment, 42, 3080-3085, 2007.
  • [6] HOEK, E., WOOD, D.F., “Rock Support”, Min. Mag. 282-287, 1989.
  • [7] HYETT, A. J., BAWDEN, W. F., REICHERT, R. D., “The Effect of Rock Mass Confinement on the Bond Strength of Fully Grouted Cable Bolts”, International Journal of Rock Mechanics and Mining Sciences, Geomechanics Abstracts, 29, 503-524, 1992.
  • [8] ITO, F., NAKAHARA, F., KAWANO, R., KANG, S., OBARA, Y., “Visualisation of Failure in a Pull-Out Cable Bolts Using X-ray CT”, Construction and Building Materials, 15, 263-270, 2001.
  • [9] KAISER, P. K., YAZICI, S., NOSE, J., “Effect of Stress Change on the Bond Strength of Fully Grouted Cables”, International Journal of Rock Mechanics and Mining Sciences, Geomechanics Abstracts, 29, 293-305, 1992.
  • [10] KILIÇ, A., “Rock Mass Classification and Reinforcement Application of Tarsus-Adana-Gaziantep (TAG) Motorway Tunnels in Bahçe Region”, Ph.D. Thesis, Cukurova University, Department of Mining Engineering, 1997.
  • [11] KILIÇ, A., YAŞAR, E., ATIŞ, C. D., “Effect of Grout Properties on the Pull-Out Load Capacity of Fully Grouted Rock Bolt”, Tunneling and Underground Space Technology, 17, 355-362, 2002.
  • [12] LABIOUSE, V., “Ground Response Curves for Rock Excavations Supported by Ungrouted Tensioned Rockbolts”, Rock Mechanics and Rock Engineering, 29, 19-38, 1996.
  • [13] LAM, L., WONG, Y. L., POON, C. S., “Effects of Fly Ash and Silica Fume on Compressive and Fracture Behavior of Concrete”, Journal of Cement and Concrete Research, 28, 271-283, 1998.
  • [14] MAZLOOM, M., RAMEZANIANPOUR, A. A., BROOKS, J. J., “Effect of Silica Fume on Mechanical Properties of High Strength Concrete”, Journal of Cement and Concrete Composites, 26, 347-357, 2003.
  • [15] MOOSAVI, M., BAWDEN, W.F., “Shear Strength of Portland Cement Grout”, Cement and Concrete Composites. 25, 729-735, 2003.
  • [16] NASSIF, H. H., NAJM, H., SUKSAWANG, N., “Effect of Pozzolanic Materials and Curing Methods on the Elastic Modulus of HPC”, Journal of Cement and Concrete Composites, 27, 661-670, 2003.
  • [17] REICHERT, R.D., BAWDEN, W.F., HYETT, A.J., “Evaluation of Design Bolt Bond Strength for Fully Grouted Bolt”, Proceedings of the 93 Annual Meeting of rd CIM, Vancouver, 1991.
  • [18] SHANNAG, M. J., “High Strength Concrete Containing Natural Pozzolan and Silica Fume”, Journal of Cement and Concrete Composites, 22, 399-406, 2000.
  • [19] STILLBORG, B., “Experimental Investigation of Steel Cables for Rock Reinforcement in Hard Rock”, Doctoral Thesis, 33 D, Lulea University, Sweden, 1984.
  • [20] LARDNER, W. E., LITTLEJOHN, G. S., “Suggested Method for Rock Anchorage Testing”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 71-83,1985.
  • [21] TOUTANJI, H. A., EL-KORCHI, T., “Tensile and Compressive Strength of Silica-Fume Cement Pastes and Mortars”, Journal of Cement, Concrete and Aggregates, 18, 78-84, 1996.
  • [22] TÜRKMEN, İ., GAVGALI, M., GÜL, R., “Influence of Mineral Admixtures on the Mechanical Properties and Corrosion of Steel Embedded in High Strength Concrete”, Materials Letters, 57, 2037-2043, 2003.
  • [23] VIPULANANDAN, C., SUNDER, S., “Effects of Meta-Kaolin Clay on the Working and Strength Properties of Cement Grouts”, In Grouting and Deep Mixing, 1739-1747, ASCE, 2012.
  • [24] TS EN 197-1, Çimento-Bölüm 1: Genel Çimentolar-Bileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, Ankara, 2012.
  • [25] TS EN 934-2+A1, Kimyasal Katkılar-Beton, Harç ve Şerbet için-Bölüm 2: Beton Kimyasal Katkıları-Tarifler, Gerekler, Uygunluk, İşaretleme ve Etiketleme, Türk Standartları Enstitüsü, Ankara, 2013.
  • [26] ASTM, C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, 2001.
  • [27] TS EN 12390-3, Testing Hardened Concrete–Part 3: Compressive Strength of Test Specimens, Ankara: Turkish Standard Institution, 2010.
There are 27 citations in total.

Details

Journal Section Mining Engineering
Authors

Ahmet Teymen 0000-0001-7952-1025

Publication Date July 31, 2017
Submission Date December 25, 2016
Acceptance Date March 31, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Teymen, A. (2017). DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 661-669. https://doi.org/10.28948/ngumuh.341831
AMA Teymen A. DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ. NOHU J. Eng. Sci. July 2017;6(2):661-669. doi:10.28948/ngumuh.341831
Chicago Teymen, Ahmet. “DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6, no. 2 (July 2017): 661-69. https://doi.org/10.28948/ngumuh.341831.
EndNote Teymen A (July 1, 2017) DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6 2 661–669.
IEEE A. Teymen, “DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ”, NOHU J. Eng. Sci., vol. 6, no. 2, pp. 661–669, 2017, doi: 10.28948/ngumuh.341831.
ISNAD Teymen, Ahmet. “DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6/2 (July 2017), 661-669. https://doi.org/10.28948/ngumuh.341831.
JAMA Teymen A. DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ. NOHU J. Eng. Sci. 2017;6:661–669.
MLA Teymen, Ahmet. “DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 6, no. 2, 2017, pp. 661-9, doi:10.28948/ngumuh.341831.
Vancouver Teymen A. DOLGU-SAPLAMA ARAYÜZEYİ KESME DİRENCİNİN DOLGUNUN BASINÇ DAYANIMI İLE TAHMİNİ. NOHU J. Eng. Sci. 2017;6(2):661-9.

23135