Research Article
BibTex RIS Cite

Çapraz Lamine Ahşap (CLT) Malzemeli Çok Katlı Konut Binasının 6 Şubat 2023 Kahramanmaraş Depremleri Altındaki Sismik Tepkisinin Değerlendirilmesi

Year 2024, Volume: 9 Issue: Special Issue, 41 - 63, 06.02.2024
https://doi.org/10.30785/mbud.1338909

Abstract

6 Şubat 2023 Kahramanmaraş depremleri, mevcut betonarme yapıların hassasiyetini ortaya çıkarmış, özellikle depremden en çok etkilenen illerde binlerce binanın yıkılmasına veya ağır hasar görmesine neden olmuştur. Endüstriyel ahşap malzemelerden biri olan çapraz lamine ahşap (CLT), betonarme malzemeye alternatif olarak hafifliği ve birçok olumlu özelliğinden dolayı dünya genelinde deprem bölgelerindeki yapılarda kullanılmaktadır. Çalışmanın amacı ülkemizde uygulama örneği az olan CLT perde duvar sistemiyle inşa edilmiş çok katlı konut yapılarının deprem yükleri altındaki dinamik davranışının incelenmesi ve depreme dayanıklı binaların yapı elemanlarında kullanılacak malzeme seçimine ve boyutlandırmaya dikkat çekmektir. Çalışmada, tüm iç ve dış duvarları CLT’den yapılmış beş katlı örnek bir konut binasının dinamik performansı TimberTech (2022) yazılımı ile analiz edilmiştir. Çalışma sonucunda incelenen modelin Eurocode'a göre C tipi zemin çözümü için tüm doğrulamaları sağladığı ancak Kahramanmaraş depreminin sismik verileri altında yetersiz kaldığı elde edilmiştir.

References

  • Akça, C., Akarca, H., Erdoğmuş, E. & Demirel, A. (2014). Yapı Ahşabı ve Ahşap Yapı Sektörü, Ulusal Ahşap Birliği. Access Address (07.08.2023): http://www.ahsap.org/assets/pdfDocs/etkinlik-2/Ahsap-Yapi-Sektor-Raporu-2.pdf.
  • Amini, M. O., Van de Lindt, J. W., Rammer, D., Pei, S., Line, P., & Popovski, M. (2018). Systematic experimental investigation to support the development of seismic performance factors for cross laminated timber shear wall systems. Engineering Structures, 172, 392-404.
  • Ataman, O. & Tabban, A. (1977). Türkiye’de yerleşme alanlarının doğal afetler ile ilişkileri. Mimarlık Dergisi, 153, 25-27.
  • Ateş, Ş., Tonyali, Z., Soyluk, K. & Samberou, A. M. S. (2018). Effectiveness of soil–structure interaction and dynamic characteristics on cable-stayed bridges subjected to multiple support excitation. International Journal of Steel Structures, 18, 554-568.
  • Ayaz, C. (2011). Çok katlı sürdürülebilir yapı tasarımında ahşabın strüktürel olarak kullanım olanakları ve dünyadaki örnek uygulamalar (Unpublished master thesis). Fen bilimleri enstitüsü, Mimar Sinan Güzel Sanatlar Üniversitesi, İstanbul. Access Address (05.08.2023): https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster? key=EEdeQgIdFRxX5NbvVau-AiW-0KopYGKO5lcWsi8Ww6hbsHKXlASZ9q76_bEF3xeR
  • Ayyıldız Potur, A. & Metin, H. (2021). Mimarlık eğitiminde depremin yeri ve depremin eğitsel boyutu: Küresel gündem ve Türkiye bağlamı üzerine bir değerlendirme. Megaron, 16(2). Access Address (06.06.2023): https://jag.journalagent.com/megaron/pdfs/MEGARON-94210-ARTICLE-AYYILDIZ_POTUR.pdf
  • Bayülke, N. (1977). Türkiye’deki konut yapılarının depremlerde davranışları. Mimarlık Dergisi, 153, 40-48.
  • Birinci, A. U., Öztürk, H., Demirkir, C., & Çolakoğlu, G. (2020). Structural performance analysis of cross laminated timber (CLT) Produced from pine and spruce grown in Turkey. Journal of Anatolian Environmental and Animal Sciences, 5(5), 819-824.
  • Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., & Thiel, A. (2016). Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 74, 331-351.
  • Cabral, M. R. & Blanchet, P. (2021). A state of the art of the overall energy efficiency of wood buildings—An overview and future possibilities. Materials, 14(8), 1848. Access Address (12.05.2023): https://www.mdpi.com/1996-1944/14/8/1848
  • Casagrande, D., Grossi, P., & Tomasi, R. (2016). Shake table tests on a full-scale timber-frame building with gypsum fibre boards. European Journal of Wood and Wood Products, 74, 425-442.
  • Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C., & Kawai, N. (2013). SOFIE project–3D shaking table test on a seven‐storey full‐scale cross‐laminated timber building. Earthquake Engineering & Structural Dynamics, 42(13), 2003-2021.
  • Code, P. (2005). Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. J Brussels: European Committee for Standardization.
  • Demirci, C. (2019). Seismic response of multi-storey cross-laminated timber buildings. Department of Civil and Environmental Engineering, PhD Thesis, Imperial College London, UK.
  • Dujič, B., Pucelj, J., & Žarnić, R. (2004). Testing of racking behaviour of massive wooden wall panels. Cib-W18 Str. 1-10.
  • Durmuş, A. (2004). Deprem Mühendisliğine Giriş Ders Notları. Karadeniz Teknik Üniversitesi. İnşaat Mühendisliği Bölümü. 1(2).
  • Elyiğit, B. & Ekinci, C. E. (2023). Betonarme yapılarda yapısal ve yapısal olmayan hasarlar ve hasar tespiti üzerine bir araştırma. Engineering Sciences, 18(2):19-42, Access Address (06.06.2023): https://www.firatakademi.com/articleDetails.asp?lang=2&article=FIRAT-AKADEMI-5504-5595
  • Erdik, M., Tümsa, M. B. D., Pınar, A., Altunel, E. & Zülfikar, A. C. (2023). Türkiye'de 6 Şubat 2023 depremleri üzerine bir ön rapor. Access Address (05.07.2023): http://doi.org/10.32858 /temblor.297
  • Eurocode8. (2005). Design of structures for earthquake resistance. 1, 1998-1991.
  • FEMA. (2010). An Introduction to the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures FEMA P-749 / December 2010. Access Address (18.05.2023): https://www.fema.gov/sites/default/files/2020-07/fema_earthquake-resistant-design-concepts_p-749.pdf
  • Filiatrault, A., Christovasilis, I. P., Wanitkorkul, A., & van de Lindt, J. W. (2010). Experimental seismic response of a full-scale light-frame wood building. Journal of structural engineering, 136(3), 246-254.
  • Follesa, M., Christovasilis, I. P., Vassallo, D., Fragiacomo, M., & Ceccotti, A. (2013). Seismic design of multi-storey cross laminated timber buildings according to Eurocode 8. Ingegneria Sismica, 4.
  • Garcia, B. (2000). Earthquake architecture: new construction techniques for earthquake disaster prevention. Spain: Loft Publications. Access Address (10.07.2023): https://cir.nii.ac.jp/crid/1130000795313126784
  • Gavric, I., Fragiacomo, M., & Ceccotti, A. (2015). Cyclic behavior of CLT wall systems: Experimental tests and analytical prediction models. Journal of structural engineering, 141(11), 04015034.
  • Genç, F. N. (2007). Türkiye’de kentleşme ve doğal afet riskleri ile ilişkisi. TMMOB Afet Sempozyumu Bildiriler Kitabı (s.349-358). ISBN: 978-9944-89-425-8. (Aralık 2007), Ankara: Mattek Matbaacılık Basın Yayın.
  • Gökdemir, H., Özbasaran, H., Dogan, M., Unluoğlu, E. & Albayrak, U. (2013). Effects of torsional irregularity to structures during earthquakes. J Engineering Failure Analysis, 35, 713-717. Access Adress (01.05.2023): https://www.sciencedirect.com/science/article/abs/pii/S1350630713002288?via%3Dihub
  • Gülhan, D. & Güney, İ. (2001). Marmara depremi hasar tespiti çalışmalarından izlenimler. Mimarlık Dergisi, 299, 43-45.
  • Gürel, Y. (2018). Çok katlı ahşap yapıların deprem yükü altında performanslarının incelenmesi (Unpublished master thesis). Fen bilimleri enstitüsü, Yıldız Teknik Üniversitesi, İstanbul. Access Address (06.07.2023): https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp? id=yGODf2Fm5gFFzW1p_J9Ng&no=siVOamXUnVITZelwUPOtDg
  • Güzel, N. & Yesügey, S. C. (2015). Çapraz lamine ahşap (CLT) malzeme ile çok katlı ahşap yapılar. Mimarlık Dergisi, 382. Access Address (23.04.2023): http://www.mimarlikdergisi.com/index.cfm? sayfa=mimarlik&DergiSayi=396&RecID=3627
  • Hegeir, O. A., Kvande, T., Stamatopoulos, H. & Bohne, R. A. (2022). Comparative life cycle analysis of timber, steel and reinforced concrete portal frames: A theoretical study on a norwegian ındustrial building. Buildings, 12(5), 573. Access Adress (23.06.2023): http://dx.doi.org/10.3390/buildings12050573
  • Hristovski, V., Mircevska, V., Dujic, B. & Garevski, M. (2018). Comparative dynamic investigation of cross- laminated wooden panel systems: Shaking-table tests and analysis. Advances in Structural Engineering, 21(10), 1421-1436.
  • İnan, T., Korkmaz, K. & Çağatay, İ. H. (2012). An investigation on plan geometries of RC buildings: with or without projections in plan. Computers and Concrete. 9(6), 439-435. Access Address (22.06.2023): file:///C:/Users/HP/Downloads/5511.pdf
  • Kahramanmaraş Earthquake Evaluation Report. (2023). Evaluation report including Kahramanmaraş earthquakes and their aftershocks, field observations, structural damages and suggestions for the future. Access Address (05.07.2023): https://ktu.edu.tr/apps/file/KahramanmarasDeprem.pdf
  • Karacabeyli, E., & Gagnon, S. (2019). CLT handbook. US Edition, FPInnovations and Binational Softwood Lumber Council, Point-Claire, Quebec. Access Address (18.05.2023): https://web.fpinnovations.ca/wp- content/uploads/clt-handbook-complete-version-en-low.pdf
  • Kıral, A., & Tonyali, Z. (2023a). The February 6, 2023, Kahramanmaras-Turkiye Earthquakes: Seismo-Tectonic Evaluations and Effects on RC Buildings. Paper presented at the Ege 8th International Conference on Applied Sciences, 2-4 June, Izmir -Türkiye.
  • Kıral, A., & Tonyalı, Z. (2023b). Evaluating the Kahramanmaraş Earthquakes of February 6 2023 in Turkey Based on New Generation Attenuation Ground Motion (NGA) Models. 2nd International Congress of Health Engineering and Applied Sciences, 2-4 August, Belgrad-Serbia.
  • Kuncoro, T., Ichwanto, M. A. & Muhammad, D. F. (2023). VR-Based learning media of earthquake-resistant construction for civil engineering students. Sustainability, 15(5), 4282. Access Address (06.05.2023): https://www.mdpi.com/2071-1050/15/5/4282
  • Levy, M., & Salvadori, M. (1995). Why The Earth Quakes: The Story of Earthquakes and Volcanoes. New York: W W Norton & Company Inc.
  • Li, Z., & Konstantinos, D. T. (2023). Design for Seismic Resilient Cross Laminated Timber (CLT) Structures: A Review of Research, Novel Connections, Challenges and Opportunities. Buildings, 13(2), 505. Access Address (01.12.2023): https://doi.org/10.3390/buildings13020505
  • Mestek, P., Werther, N. & Winter, S. (2010). Building with Cross Laminated Timber-Load-bearing solid wood components for walls, ceilings and roofs. Studiengemeinschaft Holzleimbau eV, Wuppertal, 67-70. Access Address (01.04.2023): https://www.it.brettsperrholz.org/publish/binarydata/Brettsperrholz/downloads/stghb_brettsperrholz_e_150d pi_101207.pdf
  • Ministry of Environment and Urbanization. (2018). "Deprem Riskine Karşı Yapılacak Binalar Hakkında Yönetmelik". Ankara: T.C. Resmi Gazete. Access Address (01.07.2023): https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm
  • Mohammad, M., Douglas, B., Rammer, D. & Pryor, S. E. (2013). Connections in cross-laminated timber buildings. CLT handbook: Cross-laminated timber. ISBN 978-0-86488-554-8.Canada US: Issued also in electronic format.
  • Porcu, M. C. (2017). Ductile behavior of timber structures under strong dynamic loads, Wood in Civil Engineering, Rijeka: InTech Open, 173-196. Access Address (01.07.2023): https://www.researchgate.net/publication/314177636_Ductile_Behavior_of_Timber_Structures_under_Strong _Dynamic_Loads
  • Reynolds, T., Casagrande, D., & Tomasi, R. (2016). Comparison of multi-storey cross-laminated timber and timber frame buildings by in situ modal analysis. Construction and building materials, 102, 1009-1017.
  • Sandoli, A., D’Ambra, C., Ceraldi, C., Calderoni, B. & Prota, A. (2021). Sustainable cross-laminated timber structures in a seismic area: Overview and future trends. Applied Sciences, 11(5), 2078. Access Adress (22.05.2023): https://www.mdpi.com/2076-3417/11/5/2078
  • Stora Enso. (2017). CLT Technical Brochure. Access Address (10.06.2023): https://www. storaenso. com/-/media/documents/download-center/documents/product-brochures/wood-products/clt-by-stora- enso-technical-brochure-en. Pdf
  • Stora Enso. (2021). CLT by Stora Enso. Construction. The Renawable Meterıals Company AB. Access Address (07.08.2023): https://www.storaenso.com/-/media/documents/download-center/documents/product- specifications/wood-products/clt-technical/clt-by-stora-enso---technical-documentation---construction-- -2021.pdf
  • Şengör, A. C. & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3- 4). Access Address (05.06.2023): 181-241. https://web.itu.edu.tr/~okay/geology_turkey_notes/sengor%20&%20yilmaz,%201981,%20turkey%20geology,%20t ectonophysics.pdf
  • Tandoğan Kibar, G. & Lakot Alemdağ, E. (2023). Strength of connection profiles used in cross-laminated timber walls under seismic load. Journal of Structural Engineering & Applied Mechanics (Online), 6(1). Access Address (22.05.2023): https://search.trdizin.gov.tr/tr/yayin/detay/1161449
  • Taş, N. (2003). Yerleşim alanlarında olası deprem zararlarının azaltılması. Uludağ Üniversitesi Mühendislik- Mimarlık Fakültesi Dergisi, 8 (1), 225-231. Access Adress (12.05.2023): https://dergipark.org.tr/tr/download/article-file/202888
  • Thiers-Moggia, R. & Málaga-Chuquitaype, C. (2021). Performance-based seismic design and assessment of rocking timber buildings equipped with inerters. Engineering Structures, 248, 113164.
  • TimberTech. (2022). Timber Tech Buildings Version 100, Timber Tech srl Via della Villa, 22/A -38123 – Villazzano – Trento (TN) – Italy.
  • Tobriner, S. (2000). Wooden architecture and earthquakes in Turkey: a reconnaissance report and commentary on the performance of wooden structures in the Turkish earthquakes of 17 August and 12 November 1999. 1.Proceedings, Earthquake-Safe: Lessons To Be Learned From Traditional Construction. (07.08.2023) https://www.academia.edu/51795214/Wooden_architecture_and_earthquakes_in_Turkey_a_reconnaissanc e_report_and_commentary_on_the_performance_of_wooden_structures_in_the_Turkish_earthquakes_
  • Tomasi, R., Sartori, T., Casagrande, D. & Piazza, M. (2015). Shaking table testing of a full-scale prefabricated three-story timber-frame building. Journal of Earthquake Engineering, 19(3), 505-534.
  • Trutalli, D., Marchi, L., Scotta, R. & Pozza, L. (2019). Capacity design of traditional and innovative ductile connections for earthquake-resistant CLT structures. Bulletin of Earthquake Engineering, 17, 2115-2136. Access Address (10.05.2023): https://link.springer.com/article/10.1007/s10518-018-00536-6
  • TS EN. (1995). Ahşap yapıların projelendirilmesi-Bölüm 1-1: Genel kurallar ve bina kuralları, Türk Standardları Enstitüsü, Ankara.
  • TS EN. (1998). Depreme dayanıklı yapı tasarımı - Bölüm 1: Genel kurallar, sismik etkiler ve binalar için kurallar (Eurocode 8), Türk Standardları Enstitüsü, Ankara.
  • Ussher, E., Arjomandi, K. & Smith, I. (2022). Status of vibration serviceability design methods for lightweight timber floors. Journal of Building Engineering, 50, 104111.
  • Van de Lindt, J. W., Pei, S., Pryor, S. E., Shimizu, H. & Isoda, H. (2010). Experimental seismic response of a full-scale six-story light-frame wood building. Journal of Structural Engineering, 136(10), 1262-1272.
  • Weckendorf, J., Ussher, E. & Smith, I. (2016). Dynamic response of CLT plate systems in the context of timber and hybrid construction. Composite Structures, 157, 412-423.
  • Wieruszewski, M. & Mazela, B. (2017). Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Wood Industry/Drvna Industrija, 68(4). Access Address (05.04.2023): https://www.researchgate.net/publication/322349301_Cross_Laminated_Timber_CLT_as_an_Alternative_Fo rm_of_Construction_Wood
  • Wood, S. (2019). The CLT Handbook-CLT Structures-Facts and Planning. Föreningen Sveriges Skogsindustrier: Skellefteå, Sweden. Access Address (22.05.2023): https://www.swedishwood.com/publications/list_of_swedish_woods_publications/the-clt-handbook/
  • Yön, B., Onat, O., Öncü, M. E. & Karaşi̇n, A. (2020). Failures of masonry dwelling triggered by East Anatolian Fault earthquakes in Turkey. Soil Dynamics and Earthquake Engineering, 133, 106126. Access Address (22.06.2023): https://www.sciencedirect.com/science/article/abs/pii/S0267726119311388?via%3Dihub
  • Zafer, K. & Tonyali, Z. (2020). Performance analysis of a reinforced concrete frame system according‎ to TBEC- 2018‎. Sciennovation, 1(2), 6-22.

Evaluation of Seismic Response of the Cross-Laminated Timber (CLT) Multi-Storey Residential Building Under the February 6, 2023, Kahramanmaraş Earthquakes

Year 2024, Volume: 9 Issue: Special Issue, 41 - 63, 06.02.2024
https://doi.org/10.30785/mbud.1338909

Abstract

The February 6, 2023 Kahramanmaraş earthquakes exposed the vulnerabilities of existing RC structures, causing thousands of buildings to collapse or sustain severe damage, especially in the hardest-hit provinces. Cross-laminated timber (CLT), one of the industrial wood materials, is used as an alternative to RC in buildings in earthquake zones around the world due to its lightness and many positive features. The aim of the study is to examine the dynamic behavior of multi-storey residential buildings built with the CLT shear wall system, with limited application in Turkey, under earthquake loads and to draw attention to the material selection and sizing to be used in the structural elements of earthquake-resistant buildings. Using TimberTech (2022) software, a five-story building with CLT walls was analyzed under linear dynamic conditions. The study shows while the model provides all the verifications in the solution according to Eurocode for soil type C, it is inadequate under the seismic data of the Kahramanmaraş earthquake.

Thanks

The article complies with national and international research and publication ethics. Ethics Committee approval was not required for the study.

References

  • Akça, C., Akarca, H., Erdoğmuş, E. & Demirel, A. (2014). Yapı Ahşabı ve Ahşap Yapı Sektörü, Ulusal Ahşap Birliği. Access Address (07.08.2023): http://www.ahsap.org/assets/pdfDocs/etkinlik-2/Ahsap-Yapi-Sektor-Raporu-2.pdf.
  • Amini, M. O., Van de Lindt, J. W., Rammer, D., Pei, S., Line, P., & Popovski, M. (2018). Systematic experimental investigation to support the development of seismic performance factors for cross laminated timber shear wall systems. Engineering Structures, 172, 392-404.
  • Ataman, O. & Tabban, A. (1977). Türkiye’de yerleşme alanlarının doğal afetler ile ilişkileri. Mimarlık Dergisi, 153, 25-27.
  • Ateş, Ş., Tonyali, Z., Soyluk, K. & Samberou, A. M. S. (2018). Effectiveness of soil–structure interaction and dynamic characteristics on cable-stayed bridges subjected to multiple support excitation. International Journal of Steel Structures, 18, 554-568.
  • Ayaz, C. (2011). Çok katlı sürdürülebilir yapı tasarımında ahşabın strüktürel olarak kullanım olanakları ve dünyadaki örnek uygulamalar (Unpublished master thesis). Fen bilimleri enstitüsü, Mimar Sinan Güzel Sanatlar Üniversitesi, İstanbul. Access Address (05.08.2023): https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster? key=EEdeQgIdFRxX5NbvVau-AiW-0KopYGKO5lcWsi8Ww6hbsHKXlASZ9q76_bEF3xeR
  • Ayyıldız Potur, A. & Metin, H. (2021). Mimarlık eğitiminde depremin yeri ve depremin eğitsel boyutu: Küresel gündem ve Türkiye bağlamı üzerine bir değerlendirme. Megaron, 16(2). Access Address (06.06.2023): https://jag.journalagent.com/megaron/pdfs/MEGARON-94210-ARTICLE-AYYILDIZ_POTUR.pdf
  • Bayülke, N. (1977). Türkiye’deki konut yapılarının depremlerde davranışları. Mimarlık Dergisi, 153, 40-48.
  • Birinci, A. U., Öztürk, H., Demirkir, C., & Çolakoğlu, G. (2020). Structural performance analysis of cross laminated timber (CLT) Produced from pine and spruce grown in Turkey. Journal of Anatolian Environmental and Animal Sciences, 5(5), 819-824.
  • Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., & Thiel, A. (2016). Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 74, 331-351.
  • Cabral, M. R. & Blanchet, P. (2021). A state of the art of the overall energy efficiency of wood buildings—An overview and future possibilities. Materials, 14(8), 1848. Access Address (12.05.2023): https://www.mdpi.com/1996-1944/14/8/1848
  • Casagrande, D., Grossi, P., & Tomasi, R. (2016). Shake table tests on a full-scale timber-frame building with gypsum fibre boards. European Journal of Wood and Wood Products, 74, 425-442.
  • Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C., & Kawai, N. (2013). SOFIE project–3D shaking table test on a seven‐storey full‐scale cross‐laminated timber building. Earthquake Engineering & Structural Dynamics, 42(13), 2003-2021.
  • Code, P. (2005). Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. J Brussels: European Committee for Standardization.
  • Demirci, C. (2019). Seismic response of multi-storey cross-laminated timber buildings. Department of Civil and Environmental Engineering, PhD Thesis, Imperial College London, UK.
  • Dujič, B., Pucelj, J., & Žarnić, R. (2004). Testing of racking behaviour of massive wooden wall panels. Cib-W18 Str. 1-10.
  • Durmuş, A. (2004). Deprem Mühendisliğine Giriş Ders Notları. Karadeniz Teknik Üniversitesi. İnşaat Mühendisliği Bölümü. 1(2).
  • Elyiğit, B. & Ekinci, C. E. (2023). Betonarme yapılarda yapısal ve yapısal olmayan hasarlar ve hasar tespiti üzerine bir araştırma. Engineering Sciences, 18(2):19-42, Access Address (06.06.2023): https://www.firatakademi.com/articleDetails.asp?lang=2&article=FIRAT-AKADEMI-5504-5595
  • Erdik, M., Tümsa, M. B. D., Pınar, A., Altunel, E. & Zülfikar, A. C. (2023). Türkiye'de 6 Şubat 2023 depremleri üzerine bir ön rapor. Access Address (05.07.2023): http://doi.org/10.32858 /temblor.297
  • Eurocode8. (2005). Design of structures for earthquake resistance. 1, 1998-1991.
  • FEMA. (2010). An Introduction to the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures FEMA P-749 / December 2010. Access Address (18.05.2023): https://www.fema.gov/sites/default/files/2020-07/fema_earthquake-resistant-design-concepts_p-749.pdf
  • Filiatrault, A., Christovasilis, I. P., Wanitkorkul, A., & van de Lindt, J. W. (2010). Experimental seismic response of a full-scale light-frame wood building. Journal of structural engineering, 136(3), 246-254.
  • Follesa, M., Christovasilis, I. P., Vassallo, D., Fragiacomo, M., & Ceccotti, A. (2013). Seismic design of multi-storey cross laminated timber buildings according to Eurocode 8. Ingegneria Sismica, 4.
  • Garcia, B. (2000). Earthquake architecture: new construction techniques for earthquake disaster prevention. Spain: Loft Publications. Access Address (10.07.2023): https://cir.nii.ac.jp/crid/1130000795313126784
  • Gavric, I., Fragiacomo, M., & Ceccotti, A. (2015). Cyclic behavior of CLT wall systems: Experimental tests and analytical prediction models. Journal of structural engineering, 141(11), 04015034.
  • Genç, F. N. (2007). Türkiye’de kentleşme ve doğal afet riskleri ile ilişkisi. TMMOB Afet Sempozyumu Bildiriler Kitabı (s.349-358). ISBN: 978-9944-89-425-8. (Aralık 2007), Ankara: Mattek Matbaacılık Basın Yayın.
  • Gökdemir, H., Özbasaran, H., Dogan, M., Unluoğlu, E. & Albayrak, U. (2013). Effects of torsional irregularity to structures during earthquakes. J Engineering Failure Analysis, 35, 713-717. Access Adress (01.05.2023): https://www.sciencedirect.com/science/article/abs/pii/S1350630713002288?via%3Dihub
  • Gülhan, D. & Güney, İ. (2001). Marmara depremi hasar tespiti çalışmalarından izlenimler. Mimarlık Dergisi, 299, 43-45.
  • Gürel, Y. (2018). Çok katlı ahşap yapıların deprem yükü altında performanslarının incelenmesi (Unpublished master thesis). Fen bilimleri enstitüsü, Yıldız Teknik Üniversitesi, İstanbul. Access Address (06.07.2023): https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp? id=yGODf2Fm5gFFzW1p_J9Ng&no=siVOamXUnVITZelwUPOtDg
  • Güzel, N. & Yesügey, S. C. (2015). Çapraz lamine ahşap (CLT) malzeme ile çok katlı ahşap yapılar. Mimarlık Dergisi, 382. Access Address (23.04.2023): http://www.mimarlikdergisi.com/index.cfm? sayfa=mimarlik&DergiSayi=396&RecID=3627
  • Hegeir, O. A., Kvande, T., Stamatopoulos, H. & Bohne, R. A. (2022). Comparative life cycle analysis of timber, steel and reinforced concrete portal frames: A theoretical study on a norwegian ındustrial building. Buildings, 12(5), 573. Access Adress (23.06.2023): http://dx.doi.org/10.3390/buildings12050573
  • Hristovski, V., Mircevska, V., Dujic, B. & Garevski, M. (2018). Comparative dynamic investigation of cross- laminated wooden panel systems: Shaking-table tests and analysis. Advances in Structural Engineering, 21(10), 1421-1436.
  • İnan, T., Korkmaz, K. & Çağatay, İ. H. (2012). An investigation on plan geometries of RC buildings: with or without projections in plan. Computers and Concrete. 9(6), 439-435. Access Address (22.06.2023): file:///C:/Users/HP/Downloads/5511.pdf
  • Kahramanmaraş Earthquake Evaluation Report. (2023). Evaluation report including Kahramanmaraş earthquakes and their aftershocks, field observations, structural damages and suggestions for the future. Access Address (05.07.2023): https://ktu.edu.tr/apps/file/KahramanmarasDeprem.pdf
  • Karacabeyli, E., & Gagnon, S. (2019). CLT handbook. US Edition, FPInnovations and Binational Softwood Lumber Council, Point-Claire, Quebec. Access Address (18.05.2023): https://web.fpinnovations.ca/wp- content/uploads/clt-handbook-complete-version-en-low.pdf
  • Kıral, A., & Tonyali, Z. (2023a). The February 6, 2023, Kahramanmaras-Turkiye Earthquakes: Seismo-Tectonic Evaluations and Effects on RC Buildings. Paper presented at the Ege 8th International Conference on Applied Sciences, 2-4 June, Izmir -Türkiye.
  • Kıral, A., & Tonyalı, Z. (2023b). Evaluating the Kahramanmaraş Earthquakes of February 6 2023 in Turkey Based on New Generation Attenuation Ground Motion (NGA) Models. 2nd International Congress of Health Engineering and Applied Sciences, 2-4 August, Belgrad-Serbia.
  • Kuncoro, T., Ichwanto, M. A. & Muhammad, D. F. (2023). VR-Based learning media of earthquake-resistant construction for civil engineering students. Sustainability, 15(5), 4282. Access Address (06.05.2023): https://www.mdpi.com/2071-1050/15/5/4282
  • Levy, M., & Salvadori, M. (1995). Why The Earth Quakes: The Story of Earthquakes and Volcanoes. New York: W W Norton & Company Inc.
  • Li, Z., & Konstantinos, D. T. (2023). Design for Seismic Resilient Cross Laminated Timber (CLT) Structures: A Review of Research, Novel Connections, Challenges and Opportunities. Buildings, 13(2), 505. Access Address (01.12.2023): https://doi.org/10.3390/buildings13020505
  • Mestek, P., Werther, N. & Winter, S. (2010). Building with Cross Laminated Timber-Load-bearing solid wood components for walls, ceilings and roofs. Studiengemeinschaft Holzleimbau eV, Wuppertal, 67-70. Access Address (01.04.2023): https://www.it.brettsperrholz.org/publish/binarydata/Brettsperrholz/downloads/stghb_brettsperrholz_e_150d pi_101207.pdf
  • Ministry of Environment and Urbanization. (2018). "Deprem Riskine Karşı Yapılacak Binalar Hakkında Yönetmelik". Ankara: T.C. Resmi Gazete. Access Address (01.07.2023): https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm
  • Mohammad, M., Douglas, B., Rammer, D. & Pryor, S. E. (2013). Connections in cross-laminated timber buildings. CLT handbook: Cross-laminated timber. ISBN 978-0-86488-554-8.Canada US: Issued also in electronic format.
  • Porcu, M. C. (2017). Ductile behavior of timber structures under strong dynamic loads, Wood in Civil Engineering, Rijeka: InTech Open, 173-196. Access Address (01.07.2023): https://www.researchgate.net/publication/314177636_Ductile_Behavior_of_Timber_Structures_under_Strong _Dynamic_Loads
  • Reynolds, T., Casagrande, D., & Tomasi, R. (2016). Comparison of multi-storey cross-laminated timber and timber frame buildings by in situ modal analysis. Construction and building materials, 102, 1009-1017.
  • Sandoli, A., D’Ambra, C., Ceraldi, C., Calderoni, B. & Prota, A. (2021). Sustainable cross-laminated timber structures in a seismic area: Overview and future trends. Applied Sciences, 11(5), 2078. Access Adress (22.05.2023): https://www.mdpi.com/2076-3417/11/5/2078
  • Stora Enso. (2017). CLT Technical Brochure. Access Address (10.06.2023): https://www. storaenso. com/-/media/documents/download-center/documents/product-brochures/wood-products/clt-by-stora- enso-technical-brochure-en. Pdf
  • Stora Enso. (2021). CLT by Stora Enso. Construction. The Renawable Meterıals Company AB. Access Address (07.08.2023): https://www.storaenso.com/-/media/documents/download-center/documents/product- specifications/wood-products/clt-technical/clt-by-stora-enso---technical-documentation---construction-- -2021.pdf
  • Şengör, A. C. & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3- 4). Access Address (05.06.2023): 181-241. https://web.itu.edu.tr/~okay/geology_turkey_notes/sengor%20&%20yilmaz,%201981,%20turkey%20geology,%20t ectonophysics.pdf
  • Tandoğan Kibar, G. & Lakot Alemdağ, E. (2023). Strength of connection profiles used in cross-laminated timber walls under seismic load. Journal of Structural Engineering & Applied Mechanics (Online), 6(1). Access Address (22.05.2023): https://search.trdizin.gov.tr/tr/yayin/detay/1161449
  • Taş, N. (2003). Yerleşim alanlarında olası deprem zararlarının azaltılması. Uludağ Üniversitesi Mühendislik- Mimarlık Fakültesi Dergisi, 8 (1), 225-231. Access Adress (12.05.2023): https://dergipark.org.tr/tr/download/article-file/202888
  • Thiers-Moggia, R. & Málaga-Chuquitaype, C. (2021). Performance-based seismic design and assessment of rocking timber buildings equipped with inerters. Engineering Structures, 248, 113164.
  • TimberTech. (2022). Timber Tech Buildings Version 100, Timber Tech srl Via della Villa, 22/A -38123 – Villazzano – Trento (TN) – Italy.
  • Tobriner, S. (2000). Wooden architecture and earthquakes in Turkey: a reconnaissance report and commentary on the performance of wooden structures in the Turkish earthquakes of 17 August and 12 November 1999. 1.Proceedings, Earthquake-Safe: Lessons To Be Learned From Traditional Construction. (07.08.2023) https://www.academia.edu/51795214/Wooden_architecture_and_earthquakes_in_Turkey_a_reconnaissanc e_report_and_commentary_on_the_performance_of_wooden_structures_in_the_Turkish_earthquakes_
  • Tomasi, R., Sartori, T., Casagrande, D. & Piazza, M. (2015). Shaking table testing of a full-scale prefabricated three-story timber-frame building. Journal of Earthquake Engineering, 19(3), 505-534.
  • Trutalli, D., Marchi, L., Scotta, R. & Pozza, L. (2019). Capacity design of traditional and innovative ductile connections for earthquake-resistant CLT structures. Bulletin of Earthquake Engineering, 17, 2115-2136. Access Address (10.05.2023): https://link.springer.com/article/10.1007/s10518-018-00536-6
  • TS EN. (1995). Ahşap yapıların projelendirilmesi-Bölüm 1-1: Genel kurallar ve bina kuralları, Türk Standardları Enstitüsü, Ankara.
  • TS EN. (1998). Depreme dayanıklı yapı tasarımı - Bölüm 1: Genel kurallar, sismik etkiler ve binalar için kurallar (Eurocode 8), Türk Standardları Enstitüsü, Ankara.
  • Ussher, E., Arjomandi, K. & Smith, I. (2022). Status of vibration serviceability design methods for lightweight timber floors. Journal of Building Engineering, 50, 104111.
  • Van de Lindt, J. W., Pei, S., Pryor, S. E., Shimizu, H. & Isoda, H. (2010). Experimental seismic response of a full-scale six-story light-frame wood building. Journal of Structural Engineering, 136(10), 1262-1272.
  • Weckendorf, J., Ussher, E. & Smith, I. (2016). Dynamic response of CLT plate systems in the context of timber and hybrid construction. Composite Structures, 157, 412-423.
  • Wieruszewski, M. & Mazela, B. (2017). Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Wood Industry/Drvna Industrija, 68(4). Access Address (05.04.2023): https://www.researchgate.net/publication/322349301_Cross_Laminated_Timber_CLT_as_an_Alternative_Fo rm_of_Construction_Wood
  • Wood, S. (2019). The CLT Handbook-CLT Structures-Facts and Planning. Föreningen Sveriges Skogsindustrier: Skellefteå, Sweden. Access Address (22.05.2023): https://www.swedishwood.com/publications/list_of_swedish_woods_publications/the-clt-handbook/
  • Yön, B., Onat, O., Öncü, M. E. & Karaşi̇n, A. (2020). Failures of masonry dwelling triggered by East Anatolian Fault earthquakes in Turkey. Soil Dynamics and Earthquake Engineering, 133, 106126. Access Address (22.06.2023): https://www.sciencedirect.com/science/article/abs/pii/S0267726119311388?via%3Dihub
  • Zafer, K. & Tonyali, Z. (2020). Performance analysis of a reinforced concrete frame system according‎ to TBEC- 2018‎. Sciennovation, 1(2), 6-22.
There are 64 citations in total.

Details

Primary Language English
Subjects Materials and Technology in Architecture
Journal Section Research Articles
Authors

Zeliha Tonyalı 0000-0002-6637-7949

Esra Lakot Alemdağ 0000-0003-0959-2068

Gülten Tandoğan Kibar 0000-0002-1341-2536

Early Pub Date February 6, 2024
Publication Date February 6, 2024
Submission Date August 7, 2023
Published in Issue Year 2024 Volume: 9 Issue: Special Issue

Cite

APA Tonyalı, Z., Lakot Alemdağ, E., & Tandoğan Kibar, G. (2024). Evaluation of Seismic Response of the Cross-Laminated Timber (CLT) Multi-Storey Residential Building Under the February 6, 2023, Kahramanmaraş Earthquakes. Journal of Architectural Sciences and Applications, 9(Special Issue), 41-63. https://doi.org/10.30785/mbud.1338909