Research Article
BibTex RIS Cite

Scenedesmus obliquus Suşlarının Farklı Besin Ortamlarındaki Büyüme Kinetiği

Year 2019, Volume: 5 Issue: 2, 95 - 103, 27.08.2019
https://doi.org/10.17216/limnofish.514166

Abstract

Bu çalışmada, farklı besi ortamları ve doğal maden sularının Scenedesmus obliquus (Turpin) Kützing’in büyüme dinamikleri
üzerine etkileri araştırılmıştır. S. obliquus suşları, Ankara (Türkiye) ilindeki çeşitli tatlı su kuyuları ve havuzlarından alınan
örneklerden izole edilmiştir. İzole edilen üç S. obliquus suşunun üretiminde, dört kültür besi ortamı ile dört doğal maden suyu
kullanılmıştır. Kültürlerin hücre yoğunluğu, kuru ağırlık miktarı, spesifik büyüme oranları, ikilenme süreleri ve klorofil-a miktarları
hesaplanmıştır. Sonuçlar, farklı kültür besi ortamları ve doğal mineralli suların, son hücre yoğunluğunu, biyokütleyi ve suşların
büyüme oranlarını önemli ölçüde etkilediğini göstermektedir. Bu üç suş içerisinde, ScnGP suşunda diğerlerine oranla hücre
yoğunluğu, biyokütle ağırlığı ve spesifik büyüme hızı açısından anlamlı bir fark bulunmuştur. Hücre yoğunluğu (7,4x104±1,3x103
hücre/mL), biyokütle miktarı (0,212±0,032 g/mL), spesifik büyüme oranı (0,024 h-1) ve klorofil-a (1,71±0,22 μg/mL) miktarı Bold
Wynne besi ortamında yetişen ScnGP suşunda diğer uygulamalara göre önemli ölçüde (P<0,05) daha yüksek tespit edilmiştir. Doğal
mineralli sulardan elde edilen sonuçların kültür besi ortamlarından elde edilen sonuçlar kadar iyi olduğu gözlenmiştir. Doğal
mineralli sulara çeşitli kimyasal bileşiklerin ve üreme faktörlerinin eklenerek üretimin artırılabileceği düşünülmektedir.

References

  • Al-Shatri AH, Ali E, Al-Shorgani NK, Kalil MS. 2014. Growth of Scenedesmus dimorphus in different algal media and pH profile due to secreted metabolites. Afr J Biotechnol. 13 (16):1714-1720. doi: 10.5897/AJB2013.13455
  • Andersen RA, Berges JA, Harrison PJ. 2005. Recipes for freshwater and seawater media. In: Andersen RA editor. Algal culturing techniques. London: Elsevier Academic Press. p. 429-538.
  • Bhamawat PM. 2010. Growth of Chlamydomonas reinhardtii under nutrient-limited conditions in steady-state bioreactors [Master's Thesis]. Faculty of the Graduate School of Cornell University. 83 p.
  • Blair MF, Kokabian B, Gude VG. 2013. Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering. 2(1):665-674. doi: 10.1016/j.jece.2013.11.005
  • Brennan L, Owende P. 2010. Biofuels form microalgae a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sust Energ Rev. 14(2):557-577. doi: 10.1016/j.rser.2009.10.009
  • Chen M, Li L, Dai X, Sun Y, Chen F. 2011. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology. 12(2):187-192. doi: 10.1007/s10201-010-0336-y
  • Chia MA, Lombardi AT, Melao MGG. 2013. Growth and biochemical composition of Chlorella vulgaris in different growth media. Annals of the Brazilian Academy of Sciences. 85(4):1427-1438. doi: 10.1590/0001-3765201393312
  • Chu ZS, Jin XC, Yan F, Zheng SF, Pang Y, Zeng QR. 2007. Effects of EDTA and iron on growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Huanjing Kexue/Environ Sci. 28(11): 2457-2461.
  • Eida MF, Darwesh OM, Matter IA. 2018. Cultivation of oleaginous microalgae Scenedesmus obliquus on secondary treated municipal wastewater as growth medium for biodiesel production. Journal of Ecological Engineering. 19(5):38-51. doi: 10.12911/22998993/91274
  • Fallahi M, Rahbary SH, Shamsaii M. 2014. Determination of optimum concentration of diuron for the growth and bloom of the algae (Scenedesmus obliquus) in in vitro condition. Iran J Fish Sci. 13(3):739-747.
  • Godoy-Hernández G, Vázquez-Flota FA. 2006. Growth measurements: estimation of cell division and cell expansion. In: Loyola-Vargas VM, Vázquez-Flota F. editors. Methods in molecular biology. New Jersey: Humana Press Inc. 877:41-48.
  • Guillard RRL, Sierachiki MS 2005. Counting cells in cultures with the light microscope. In: Andersen RA editor. Algal culturing techniques. London: Elsevier Academic Press. p. 239-252.
  • Guiry MD, Guiry GM. 2018. AlgaeBase; [cited: 2018 Oct 21]. Available from http://www.algaebase.org.
  • Hodaifa G, Martínez ME, Sánchez S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technol. 99(5):1111-1117. doi: 10.1016/j.biortech.2007.02.020
  • Humpry AM. 2004. Chlorophyll as a color and functional ingredient. J Food Sci. 69(5):422-425. doi: 10.1111/j.1365-2621.2004.tb10710.x
  • Kabir M, Hoseini SA, Ghorbani R, Kashiri H. 2017. Performance of microalgae Chlorella vulgaris and Scenedesmus obliquus in wastewater treatment of Gomishan (Golestan-Iran) shrimp farms. Aquaculture, Aquarium, Conservation and Legislation - International Journal of the Bioflux Society. 10(3):622-632.
  • Latiffi NAA, Mohamed RM, Apandi NM, Tajuddin RM. 2017. Preliminary assessment of growth rates on different concentration of microalgae Scenedesmus sp. in industrial meat food processing wastewater. International Symposium On Civil And Environmental Engineering. 103: 1-9. doi: 10.1051/matecconf/20171030
  • Liang K, Zhang Q, Gu M, Cong W. 2013. Effect of phosphorus on lipid accumulation in freshwater microalgae Chlorella sp. J Appl Phycol. 25(1):311-318. doi: 10.1007/s10811-012-9865-6
  • Murdock JN, Wetzel DL. 2009. FT-IR Microspectroscopy enhances biological and ecological analysis of algae. Appl Spectroscopy Rev. 44(4):335-361. doi: 10.1080/05704920902907440
  • Parvin M, Zannat MN, Habib MAB. 2007. Two important technique for isolation of microalgae. Asian Fisheries Science. 20:117-124.
  • Prescott GW. 1973. Algae of the western great lakes area. Michigan: C. Brown Company Publishers 977 p.
  • Pringsheim E. 1946. Pure cultures of algae. Cambridge: University Press 119 p.
  • Rasmussen RS, Morrissey T, Steve LT. 2007. Marine biotechnology for production of food ingredients. Advances in Food and Nutrition Research. 237-292. doi: 10.1016/S1043-4526(06)52005-4
  • Rinanti A, Kardena E, Astuti DI, Dewi K. 2013. Growth response and chlorophyll content of Scenedesmus obliquus cultivated in different artificial media. Asian Journal of Environmental Biology. 1(1):1-9. doi: 10.13140/RG.2.1.3370.7926
  • Salama ES, Kim HC, Abou-Shanab RAI et al. 2013. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioproc Biosyst Eng. 36(6):827-833. doi: 10.1007/s00449-013-0919-1
  • Sforza E, Gris B, Silva C, Morosinotto T, Bertucco A. 2014. Effects of light on cultivation Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chemical Engineering Transactions. 38:211-216. doi: 10.3303/CET1438036
  • Shelly K, Heraud P, Beardall J. 2002. Nitrogen limitation in Dunaliella tertiolecta (Chlorophyceae) leads to increased susceptibility to damage by UV-B radiation but also increased repair capacity. J Phycol. 38:1-8. doi: 10.1046/j.1529-8817.2002.01147.x
  • Toyub MA, Miah MI, Habib MAB, Rahman MM. 2008. Growth performance and nutritional value of Scenedesmus obliquus cultured in different concentrations of sweetmeat factory waste media. Bangladesh Journal of Animal Science. 37(1):86-93. doi: 10.3329/bjas.v37i1.9874
  • Wang B, Li Y, Wu N, Lan CQ. 2008. CO2 bio-mitigation using microalgae. Appl Microbiol Biot 79(5):707-718. doi: 10.1007/s00253-008-1518-y
  • Youngman RE. 1978. Measurement of chlorophyll-a. New York: Water Research Centre Technical Report. Report No: TR82.

Growth Kinetics of Scenedesmus obliquus Strains in Different Nutrient Media

Year 2019, Volume: 5 Issue: 2, 95 - 103, 27.08.2019
https://doi.org/10.17216/limnofish.514166

Abstract

In this study, the effects of different media and natural mineral waters on the
growth dynamics of Scenedesmus obliquus (Turpin) Kützing were investigated.
S. obliquus strains were isolated from various freshwater wells and pools in
Ankara, Turkey. In the production of three S. obliquus strains, both four culture
medium and four natural mineral waters were used. Cell density, dry weight,
specific growth rates, duplication time and chlorophyll-a of the cultures were
calculated. The results showed that the different culture media and natural mineral
waters significantly affected the final cell density, biomass and growth rates of
strains. In three isolates, there was a significant difference in ScnGP strain in
terms of cell density, biomass weight and specific growth rate compared to others.
Cell density (7.4x104±1.3x103cells/mL), biomass amount (0.212±0.032g/mL),
specific growth rate (0.024 h-1) and chlorophyll-a (1.71±0.22μg/mL) of ScnGP
grown in Bold Wynne medium were significantly (P<0.05) higher than that of
grown in all other treatments. It has been determined that the results obtained from
natural mineral waters were as good as the results obtained from culture media. It
can be thought that various chemical compounds and reproductive factors can be
added to increase the production within the natural mineral waters.

References

  • Al-Shatri AH, Ali E, Al-Shorgani NK, Kalil MS. 2014. Growth of Scenedesmus dimorphus in different algal media and pH profile due to secreted metabolites. Afr J Biotechnol. 13 (16):1714-1720. doi: 10.5897/AJB2013.13455
  • Andersen RA, Berges JA, Harrison PJ. 2005. Recipes for freshwater and seawater media. In: Andersen RA editor. Algal culturing techniques. London: Elsevier Academic Press. p. 429-538.
  • Bhamawat PM. 2010. Growth of Chlamydomonas reinhardtii under nutrient-limited conditions in steady-state bioreactors [Master's Thesis]. Faculty of the Graduate School of Cornell University. 83 p.
  • Blair MF, Kokabian B, Gude VG. 2013. Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering. 2(1):665-674. doi: 10.1016/j.jece.2013.11.005
  • Brennan L, Owende P. 2010. Biofuels form microalgae a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sust Energ Rev. 14(2):557-577. doi: 10.1016/j.rser.2009.10.009
  • Chen M, Li L, Dai X, Sun Y, Chen F. 2011. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology. 12(2):187-192. doi: 10.1007/s10201-010-0336-y
  • Chia MA, Lombardi AT, Melao MGG. 2013. Growth and biochemical composition of Chlorella vulgaris in different growth media. Annals of the Brazilian Academy of Sciences. 85(4):1427-1438. doi: 10.1590/0001-3765201393312
  • Chu ZS, Jin XC, Yan F, Zheng SF, Pang Y, Zeng QR. 2007. Effects of EDTA and iron on growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Huanjing Kexue/Environ Sci. 28(11): 2457-2461.
  • Eida MF, Darwesh OM, Matter IA. 2018. Cultivation of oleaginous microalgae Scenedesmus obliquus on secondary treated municipal wastewater as growth medium for biodiesel production. Journal of Ecological Engineering. 19(5):38-51. doi: 10.12911/22998993/91274
  • Fallahi M, Rahbary SH, Shamsaii M. 2014. Determination of optimum concentration of diuron for the growth and bloom of the algae (Scenedesmus obliquus) in in vitro condition. Iran J Fish Sci. 13(3):739-747.
  • Godoy-Hernández G, Vázquez-Flota FA. 2006. Growth measurements: estimation of cell division and cell expansion. In: Loyola-Vargas VM, Vázquez-Flota F. editors. Methods in molecular biology. New Jersey: Humana Press Inc. 877:41-48.
  • Guillard RRL, Sierachiki MS 2005. Counting cells in cultures with the light microscope. In: Andersen RA editor. Algal culturing techniques. London: Elsevier Academic Press. p. 239-252.
  • Guiry MD, Guiry GM. 2018. AlgaeBase; [cited: 2018 Oct 21]. Available from http://www.algaebase.org.
  • Hodaifa G, Martínez ME, Sánchez S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technol. 99(5):1111-1117. doi: 10.1016/j.biortech.2007.02.020
  • Humpry AM. 2004. Chlorophyll as a color and functional ingredient. J Food Sci. 69(5):422-425. doi: 10.1111/j.1365-2621.2004.tb10710.x
  • Kabir M, Hoseini SA, Ghorbani R, Kashiri H. 2017. Performance of microalgae Chlorella vulgaris and Scenedesmus obliquus in wastewater treatment of Gomishan (Golestan-Iran) shrimp farms. Aquaculture, Aquarium, Conservation and Legislation - International Journal of the Bioflux Society. 10(3):622-632.
  • Latiffi NAA, Mohamed RM, Apandi NM, Tajuddin RM. 2017. Preliminary assessment of growth rates on different concentration of microalgae Scenedesmus sp. in industrial meat food processing wastewater. International Symposium On Civil And Environmental Engineering. 103: 1-9. doi: 10.1051/matecconf/20171030
  • Liang K, Zhang Q, Gu M, Cong W. 2013. Effect of phosphorus on lipid accumulation in freshwater microalgae Chlorella sp. J Appl Phycol. 25(1):311-318. doi: 10.1007/s10811-012-9865-6
  • Murdock JN, Wetzel DL. 2009. FT-IR Microspectroscopy enhances biological and ecological analysis of algae. Appl Spectroscopy Rev. 44(4):335-361. doi: 10.1080/05704920902907440
  • Parvin M, Zannat MN, Habib MAB. 2007. Two important technique for isolation of microalgae. Asian Fisheries Science. 20:117-124.
  • Prescott GW. 1973. Algae of the western great lakes area. Michigan: C. Brown Company Publishers 977 p.
  • Pringsheim E. 1946. Pure cultures of algae. Cambridge: University Press 119 p.
  • Rasmussen RS, Morrissey T, Steve LT. 2007. Marine biotechnology for production of food ingredients. Advances in Food and Nutrition Research. 237-292. doi: 10.1016/S1043-4526(06)52005-4
  • Rinanti A, Kardena E, Astuti DI, Dewi K. 2013. Growth response and chlorophyll content of Scenedesmus obliquus cultivated in different artificial media. Asian Journal of Environmental Biology. 1(1):1-9. doi: 10.13140/RG.2.1.3370.7926
  • Salama ES, Kim HC, Abou-Shanab RAI et al. 2013. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioproc Biosyst Eng. 36(6):827-833. doi: 10.1007/s00449-013-0919-1
  • Sforza E, Gris B, Silva C, Morosinotto T, Bertucco A. 2014. Effects of light on cultivation Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chemical Engineering Transactions. 38:211-216. doi: 10.3303/CET1438036
  • Shelly K, Heraud P, Beardall J. 2002. Nitrogen limitation in Dunaliella tertiolecta (Chlorophyceae) leads to increased susceptibility to damage by UV-B radiation but also increased repair capacity. J Phycol. 38:1-8. doi: 10.1046/j.1529-8817.2002.01147.x
  • Toyub MA, Miah MI, Habib MAB, Rahman MM. 2008. Growth performance and nutritional value of Scenedesmus obliquus cultured in different concentrations of sweetmeat factory waste media. Bangladesh Journal of Animal Science. 37(1):86-93. doi: 10.3329/bjas.v37i1.9874
  • Wang B, Li Y, Wu N, Lan CQ. 2008. CO2 bio-mitigation using microalgae. Appl Microbiol Biot 79(5):707-718. doi: 10.1007/s00253-008-1518-y
  • Youngman RE. 1978. Measurement of chlorophyll-a. New York: Water Research Centre Technical Report. Report No: TR82.
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Dilek Yalçın Duygu 0000-0003-2127-8186

Publication Date August 27, 2019
Published in Issue Year 2019Volume: 5 Issue: 2

Cite

APA Yalçın Duygu, D. (2019). Growth Kinetics of Scenedesmus obliquus Strains in Different Nutrient Media. Journal of Limnology and Freshwater Fisheries Research, 5(2), 95-103. https://doi.org/10.17216/limnofish.514166