Research Article
BibTex RIS Cite

KİL MİNERALLERİNİN KÖMÜRÜN FLOTASYON PERFORMANSINA VE ORTALAMA KABARCIK BOYUTUNA ETKİSİ

Year 2023, Volume: 11 Issue: 3, 635 - 644, 01.09.2023
https://doi.org/10.36306/konjes.1226001

Abstract

Flotasyon, ince boyutlu kömürlerin zenginleştirilmesinde kullanılan en etkili yöntemlerdendir. Bununla birlikte, kömürün yan kayaç olarak kil minerallerini bulundurması flotasyon işlemini olumsuz etkilemektedir. Bu çalışmada kil minerallerinin (kaolin ve montmorillonit) ve flotasyon reaktiflerinin Tunçbilek linyit kömürünün flotasyon performansına ve ortalama kabarcık boyutuna etkisi araştırılmıştır. Deneysel çalışmalarda; bastırıcı olarak sodyum silikat, toplayıcı olarak gaz yağı kullanılırken, köpürtücü olarak ise metil izobütil karbinol (MIBC) ve Dowfroth 250 kullanılmıştır. Kil türü ve miktarı, bastırıcı miktarı ve köpürtücü türü ve miktarı çalışılan deneysel parametrelerdir. Bastırıcı miktarı ve kil içeriğinin etkisinin belirlendiği deneysel çalışmalarda, kaolin içerikli numunelerde %40-55, montmorillonit içerikli numunelerde ise %30-47 aralığında yanabilir verim değerleri elde edilmiştir. Köpürtücü olarak Dowfroth 250 ile daha iyi sonuçlar elde edilmiş ve montmorillonit içeren kömür numunesi, kaolin içeren kömür numunesine göre daha büyük kabarcıklar oluşmasına neden olmuştur. Bu çalışmadan elde edilen sonuçlar yan kayaç olarak kil bulunduran kömürlerin flotasyon davranışlarının anlaşılabilmesi ve çözüm önerileri sunulabilmesi için temel bir altyapı oluşturacaktır.

References

  • J. W. Leonard III, Coal preparation, Society of Mining, Metallurgy and Exploration Inc., Littleton, CO (USA), 1991.
  • F. F. Aplan, “The historical development of coal flotation in the United States”, Advances in flotation technology, pp. 269-287,1999.
  • Z. Xu, J. Liu, J. W. Choung, and Z. Zhou, “Electrokinetic study of clay interactions with coal in flotation”, International Journal of Mineral Processing, vol. 68, pp. 183-196, 2003.
  • H. A. Taner ve V. Önen, “Killerin pülp ortamındaki davranışı ve flotasyona etkisi”, Madencilik Dergisi, Cilt 55, ss 45-51, 2016.
  • Y. Xing, X. Xu, X. Gui, Y. Cao, and M. Xu, “Effect of kaolinite and montmorillonite on fine coal flotation”, Fuel, vol. 195, pp. 284-289, 2017.
  • Y. Xing, M. Xu, F. Guo, J. Luo, Y. Zhang, Y. Cao and X. Gui, “Role of different types of clay in the floatability of coal: Induction time and bubble-particle attachment kinetics analysis”, Powder Technology, vol. 344, pp. 814-818, 2019.
  • B. Wang and Y. Peng, “The interaction of clay minerals and saline water in coarse coal flotation”, Fuel, vol. 134, pp. 326-332, 2014.
  • B. J. Arnold and F. F. Aplan, “The effect of clay slimes on coal flotation, part I: The nature of the clay”, International Journal of Mineral Processing, vol. 17, No. 3-4, pp. 225-242, 1986.
  • H. A. Taner, “Kil minerallerinin yapısal özelliklerinin metal sülfürlerin flotasyon performansına etkisi”, Doktora Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya, 2019.
  • O. Molatlhegi and L. Alagha, “Ash depression in fine coal flotation using a novel polymer aid”, International Journal of Clean Coal and Energy, vol. 5, No. 4, pp. 65-85, 2016.
  • L. Huynh, A. Feiler, A. Michelmore, J. Ralston and P. Jenkins, “Control of slime coatings by the use of anionic phosphates: A fundamental study”, Minerals Engineering, vol. 13, No. 10-11, pp. 1059-1069, 2000.
  • W. J. Oats, O. Özdemir and A. V. Nguyen, “Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation”, Minerals Engineering, vol. 23, No. 5, pp. 413-419, 2010.
  • Y. Yu, L. Ma, M. Cao and Q. Liu, “Slime coatings in froth flotation: A review”, Minerals Engineering, vol. 114, pp. 26-36, 2017.
  • M. Zhang, N. Xu and Y. Peng, “The entrainment of kaolinite particles in copper and gold flotation using fresh water and sea water”, Powder Technology, vol. 286, pp. 431-437, 2015.
  • X. Chen and Y. Peng, “Managing clay minerals in froth flotation—A critical review”, Mineral Processing and Extractive Metallurgy Review, vol. 39, No. 5, pp. 289-307, 2018.
  • Y. Peng, Y. Mao, W. Xia and Y. Li, “Ultrasonic flotation cleaning of high-ash lignite and its mechanism”, Fuel, vol. 220, pp. 558-566, 2018.
  • H. Zhu, J. Zhu, F. Min, A. L. Valdivieso, M. A. C. Arroyo and H. Wang, “Effect of frother addition mode on coal flotation in downflow flotation column”, Journal of Cleaner Production, vol. 278, No. 123844, 2021.
  • Y. Cheng, F. Min, H. Li, J. Chenand X. Fu, “Effect of reagent interaction on froth stability of coal flotation”, Fuel, vol. 318, No. 123417, 2022.
  • A. Z. Çağlar, “Kil minerallerinin kömürün flotasyon performansına ve köpük boyutuna etkisi”, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya, 2019.
  • M. Maldonado, J. J. Quinn, C. O. Gomez and J. A. Finch, “An experimental study examining the relationship between bubble shape and rise velocity”, Chemical Engineering Science, vol. 98, pp. 7-11, 2013.
  • S. Saklara, S. Ersayın ve İ. Bayraktar, “Flotasyon modelleri”, Bilimsel Madencilik Dergisi, Cilt 37, No 2, ss. 3-20, 1998.
  • H. Hacıfazlıoğlu, “Kolon flotasyonu ile bitümlü kömür atıklarından temiz kömür kazanımı”, AKÜ Fen Bil. Der., Cilt 2, ss. 11-19, 2008.
  • Z. Ekmekçi, M. Can, D. Sutterland, A. Aslan, E. Bağcı ve Ç. Ökten, “Flotasyonda palp kimyasındaki değişimlerin köpük fazına etkilerinin görüntü analiz sistemi ile belirlenmesi”, TÜBİTAK Projesi, Ankara, 2005.
  • S. M. Bulatovic, “Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores”, Elsevier, Boston, U.S.A., 2007.
  • C. Chen, Development of measurement of froth characteristics, Master of Science Thesis in the Master Degree Program, Chalmers University of Technology, Advanced Engineering Materials, Gothenburg, 2012.

Effect of Clay Minerals on the Flotation Performance of Coal and Mean Bubble Size

Year 2023, Volume: 11 Issue: 3, 635 - 644, 01.09.2023
https://doi.org/10.36306/konjes.1226001

Abstract

Flotation is one of the most effective methods used in the enrichment of fine sized coals. However, the presence of clay minerals as gangue minerals in coal affects the flotation process negatively. In this study, the effects of clay minerals (kaolinite and montmorillonite) and flotation reagents on the flotation performance and mean bubble size of Tunçbilek lignite coal were investigated. In the experimental studies; sodium silicate was used as depressant, kerosene was used as collector, methyl isobutyl carbinol (MIBC) and Dowfroth 250 were used as frother. Clay type and amount, depressant amount and frother type and amount were the experimental parameters studied. In experimental studies in which the effect of depressant amount and clay content was determined, combustible recovery values were obtained in the range of 40-55% for samples containing kaolinite and 30-47% for samples containing montmorillonite. Better results were obtained with Dowfroth 250 as the frother, and the coal sample containing montmorillonite caused larger bubbles to form than the coal sample containing kaolinite. The results obtained from this study will form a basic infrastructure to understand the flotation behavior of coals containing clay minerals as gangue and to offer solutions.

References

  • J. W. Leonard III, Coal preparation, Society of Mining, Metallurgy and Exploration Inc., Littleton, CO (USA), 1991.
  • F. F. Aplan, “The historical development of coal flotation in the United States”, Advances in flotation technology, pp. 269-287,1999.
  • Z. Xu, J. Liu, J. W. Choung, and Z. Zhou, “Electrokinetic study of clay interactions with coal in flotation”, International Journal of Mineral Processing, vol. 68, pp. 183-196, 2003.
  • H. A. Taner ve V. Önen, “Killerin pülp ortamındaki davranışı ve flotasyona etkisi”, Madencilik Dergisi, Cilt 55, ss 45-51, 2016.
  • Y. Xing, X. Xu, X. Gui, Y. Cao, and M. Xu, “Effect of kaolinite and montmorillonite on fine coal flotation”, Fuel, vol. 195, pp. 284-289, 2017.
  • Y. Xing, M. Xu, F. Guo, J. Luo, Y. Zhang, Y. Cao and X. Gui, “Role of different types of clay in the floatability of coal: Induction time and bubble-particle attachment kinetics analysis”, Powder Technology, vol. 344, pp. 814-818, 2019.
  • B. Wang and Y. Peng, “The interaction of clay minerals and saline water in coarse coal flotation”, Fuel, vol. 134, pp. 326-332, 2014.
  • B. J. Arnold and F. F. Aplan, “The effect of clay slimes on coal flotation, part I: The nature of the clay”, International Journal of Mineral Processing, vol. 17, No. 3-4, pp. 225-242, 1986.
  • H. A. Taner, “Kil minerallerinin yapısal özelliklerinin metal sülfürlerin flotasyon performansına etkisi”, Doktora Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya, 2019.
  • O. Molatlhegi and L. Alagha, “Ash depression in fine coal flotation using a novel polymer aid”, International Journal of Clean Coal and Energy, vol. 5, No. 4, pp. 65-85, 2016.
  • L. Huynh, A. Feiler, A. Michelmore, J. Ralston and P. Jenkins, “Control of slime coatings by the use of anionic phosphates: A fundamental study”, Minerals Engineering, vol. 13, No. 10-11, pp. 1059-1069, 2000.
  • W. J. Oats, O. Özdemir and A. V. Nguyen, “Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation”, Minerals Engineering, vol. 23, No. 5, pp. 413-419, 2010.
  • Y. Yu, L. Ma, M. Cao and Q. Liu, “Slime coatings in froth flotation: A review”, Minerals Engineering, vol. 114, pp. 26-36, 2017.
  • M. Zhang, N. Xu and Y. Peng, “The entrainment of kaolinite particles in copper and gold flotation using fresh water and sea water”, Powder Technology, vol. 286, pp. 431-437, 2015.
  • X. Chen and Y. Peng, “Managing clay minerals in froth flotation—A critical review”, Mineral Processing and Extractive Metallurgy Review, vol. 39, No. 5, pp. 289-307, 2018.
  • Y. Peng, Y. Mao, W. Xia and Y. Li, “Ultrasonic flotation cleaning of high-ash lignite and its mechanism”, Fuel, vol. 220, pp. 558-566, 2018.
  • H. Zhu, J. Zhu, F. Min, A. L. Valdivieso, M. A. C. Arroyo and H. Wang, “Effect of frother addition mode on coal flotation in downflow flotation column”, Journal of Cleaner Production, vol. 278, No. 123844, 2021.
  • Y. Cheng, F. Min, H. Li, J. Chenand X. Fu, “Effect of reagent interaction on froth stability of coal flotation”, Fuel, vol. 318, No. 123417, 2022.
  • A. Z. Çağlar, “Kil minerallerinin kömürün flotasyon performansına ve köpük boyutuna etkisi”, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya, 2019.
  • M. Maldonado, J. J. Quinn, C. O. Gomez and J. A. Finch, “An experimental study examining the relationship between bubble shape and rise velocity”, Chemical Engineering Science, vol. 98, pp. 7-11, 2013.
  • S. Saklara, S. Ersayın ve İ. Bayraktar, “Flotasyon modelleri”, Bilimsel Madencilik Dergisi, Cilt 37, No 2, ss. 3-20, 1998.
  • H. Hacıfazlıoğlu, “Kolon flotasyonu ile bitümlü kömür atıklarından temiz kömür kazanımı”, AKÜ Fen Bil. Der., Cilt 2, ss. 11-19, 2008.
  • Z. Ekmekçi, M. Can, D. Sutterland, A. Aslan, E. Bağcı ve Ç. Ökten, “Flotasyonda palp kimyasındaki değişimlerin köpük fazına etkilerinin görüntü analiz sistemi ile belirlenmesi”, TÜBİTAK Projesi, Ankara, 2005.
  • S. M. Bulatovic, “Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores”, Elsevier, Boston, U.S.A., 2007.
  • C. Chen, Development of measurement of froth characteristics, Master of Science Thesis in the Master Degree Program, Chalmers University of Technology, Advanced Engineering Materials, Gothenburg, 2012.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Vildan Önen 0000-0002-8139-8385

Ayşe Zeynep Çağlar 0000-0001-7509-5452

Hasan Ali Taner 0000-0003-2443-077X

Publication Date September 1, 2023
Submission Date December 28, 2022
Acceptance Date May 3, 2023
Published in Issue Year 2023 Volume: 11 Issue: 3

Cite

IEEE V. Önen, A. Z. Çağlar, and H. A. Taner, “KİL MİNERALLERİNİN KÖMÜRÜN FLOTASYON PERFORMANSINA VE ORTALAMA KABARCIK BOYUTUNA ETKİSİ”, KONJES, vol. 11, no. 3, pp. 635–644, 2023, doi: 10.36306/konjes.1226001.